
Proceedings on Privacy Enhancing Technologies ; 2021 (1):188–208

Sameer Wagh*, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal
Rabin

Falcon: Honest-Majority Maliciously Secure
Framework for Private Deep Learning
Abstract: We propose Falcon, an end-to-end 3-party
protocol for efficient private training and inference of
large machine learning models. Falcon presents four
main advantages – (i) It is highly expressive with sup-
port for high capacity networks such as VGG16 (ii) it
supports batch normalization which is important for
training complex networks such as AlexNet (iii) Fal-
con guarantees security with abort against malicious
adversaries, assuming an honest majority (iv) Lastly,
Falcon presents new theoretical insights for protocol
design that make it highly efficient and allow it to out-
perform existing secure deep learning solutions. Com-
pared to prior art for private inference, we are about 8×
faster than SecureNN (PETS’19) on average and com-
parable to ABY3 (CCS’18). We are about 16 − 200×
more communication efficient than either of these. For
private training, we are about 6× faster than SecureNN,
4.4× faster than ABY3 and about 2−60× more commu-
nication efficient. Our experiments in the WAN setting
show that over large networks and datasets, compute
operations dominate the overall latency of MPC, as op-
posed to the communication.

Keywords: Multi Party Computation, Secure Compari-
son, Deep Learning, Neural Networks

DOI 10.2478/popets-2021-0011
Received 2020-05-31; revised 2020-09-15; accepted 2020-09-16.

1 Introduction
With today’s digital infrastructure, tremendous

amounts of private data is continuously being generated
– data which combined with deep learning algorithms

*Corresponding Author: Sameer Wagh: Princeton Uni-
versity & UC Berkeley, E-mail: swagh@princeton.edu
Shruti Tople: Microsoft Research, E-mail:
shruti.tople@microsoft.com
Fabrice Benhamouda: Algorand Foundation, E-mail: fab-
rice.benhamouda@normalesup.org
Eyal Kushilevitz: Technion, E-mail: eyalk@cs.technion.ac.il
Prateek Mittal: Princeton University, E-mail: pmit-
tal@princeton.edu
Tal Rabin: Algorand Foundation, E-mail: talrny@yahoo.com

can transform the current social and technological land-
scape. For example, distribution of child exploitative im-
agery has plagued social media platforms [1, 2]. How-
ever, stringent government regulations hamper auto-
mated detection of such harmful content. Support for se-
cure computation of state-of-the-art image classification
networks would aid in detecting child exploitative im-
agery on social media. Similarly, there is promise in ana-
lyzing medical data across different hospitals especially
for the treatment of rare diseases [3]. In both these sce-
narios, multiple parties (i.e., social media platforms or
hospitals) could co-operate to train efficient models that
have high prediction accuracy. However, the sensitive
nature of such data demands deep learning frameworks
that allow training on data aggregated from multiple en-
tities while ensuring strong privacy and confidentiality
guarantees. A synergistic combination of secure com-
puting primitives with deep learning algorithms would
enable sensitive applications to benefit from the high
prediction accuracies of neural networks.

Secure multi-party computation (MPC) techniques
provide a transformative capability to perform secure
analytics over such data [4, 19, 20]. MPC provides a
cryptographically secure framework for computations
where the collaborating parties do not reveal their se-
cret data to each other. The parties only learn the out-
put of the computation on the combined data while re-
vealing nothing about the individual secret inputs. Re-
cently, there has been research in reducing the perfor-
mance overhead of MPC protocols, specifically tailored
for machine learning [5, 8, 9, 11, 12]. In this work, we fo-
cus on advancing the research in other dimensions such
as expressiveness, scalability to millions of parameters,
and stronger security guarantees (where parties can ar-
bitrarily deviate from the protocol) that are necessary
for practical deployment of secure deep learning frame-
works. We present Falcon — an efficient and expressive
3-party deep learning framework that provides support
for both training and inference with malicious security
guarantees. Table 1 provides a detailed comparison of
Falcon with prior work.

Contributions. Our contributions are as follows:

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 189

In
fe
re
nc
e

Tr
ai
ni
ng

Se
m
i-h

on
es
t

M
al
ici
ou
s

Li
ne
ar

Co
nv
ol
ut
io
n

Ex
ac
t R

eL
U

M
ax
po

ol
Ba

tc
h-
N
or
m

H
E

GC SS LA
N

W
AN

M
N
IS
T

CI
FA

R-
10

Ti
ny

Im
ag
eN

et
Fr
om

[4
]

Fr
om

[5
]

Fr
om

[6
]

Le
N
et

Al
ex
N
et

VG
G-
16

Framework Private Threat Supported Techniques LAN/ Evaluation Network
Capability Model Layers Used WAN Dataset Architectures

Theoretical Metrics Evaluation Metrics

2PC

MiniONN [6] # # # # # # # # #
Chameleon [5] # # # # # # G# #

EzPC [7] # # # # # # # # #
Gazelle [8] # # # # # # # #

SecureML [4] # # G# # # # # # # #
XONN [9] # G# # # # # # G#
Delphi [10] # # # # # # # # # # G#

3PC

ABY3 [11] # # G# # # # # #
SecureNN [12] G# G# # # # # # # #
CryptFlow [13] # # # # G# # # G#

QuantizedNN [14]* # G# G# # # # # # # # # G#
ASTRA [15] G# # # # # # # # # #
BLAZE [16] # # G# # # # # # # #

Falcon (This Work) # # G#

4PC FLASH [17] # # # G# # G# # # # #
Trident [18] # # # # # # # # #

Table 1. Comparison of various private deep learning frameworks. Falcon proposes efficient protocols for non-linear functionalities
such as ReLU and batch normalization (1) purely using modular arithmetic (2) under malicious corruptions (3) supporting both pri-
vate training and inference. Falcon also provides a comprehensive evaluation (1) over larger networks and datasets (2) extensively
compares with related work (3) provides newer insights for future directions of PPML. indicates the framework supports a feature,
indicates not supported feature, and G# refers to fair comparison difficult due to the following reasons: SecureNN provides malicious
privacy but not correctness and supports division but not batch norm, XONN supports a simplified batch norm specific to a binary ac-
tivation layer, ABY3 does not present WAN results for neural networks, Chameleon evaluates over a network similar to AlexNet but
using the simpler mean-pooling operations, and due to the high round complexity and communication, SecureML provides an esti-
mate of their WAN evaluation, Delphi evaluates over network such as ResNet-32, CryptFlow evaluates networks such as DenseNet-121,
ResNet-50, uses weaker network parameters in LAN and uses ImageNet dataset. QuantizedNN uses inherent quantization of the under-
lying NN and performs extensive evaluation over MobileNet architectures and * refers to 3PC version among the 8 protocols. BLAZE
uses a Parkinson disease dataset, similar in dimension to MNIST. FLASH and Trident use few other smaller datasets in their evaluation
as well as evaluate over increasing number of layers over the network architecture from [4].

(1) Malicious Security: Falcon provides strong se-
curity guarantees in an honest-majority adversarial set-
ting. This assumption is similar to prior work where
majority of the parties (e.g., 2 out of three) behave hon-
estly [11, 21]. Falcon proposes new protocols that are
secure against such corruptions and ensure that either
the computation always correctly completes or aborts
detecting malicious activity. We achieve this by design-
ing new protocols for the computation of non-linear
functions (like ReLU). While MPC protocols are very
efficient at computing linear functions, computing non-
linear functions like ReLU is much more challenging. We
propose solutions both for the malicious security model
and provide even more efficient protocols where semi-
honest security is sufficient. We formally prove the secu-
rity of Falcon using the standard simulation paradigm
(see Section 4.1). We implement both the semi-honest
and malicious protocols in our end-to-end framework.
In this manner, Falcon provides a choice to the devel-
opers to select between either of the security guarantees

depending on the trust assumption among the parties
and performance requirements (improved performance
for semi-honest protocols).

(2) Improved Protocols: Falcon combines tech-
niques from SecureNN [12] and ABY3 [11] that result in
improved protocol efficiency. We improve the theoretical
complexity of the central building block – derivative of
ReLU – by a factor of 2× through simplified algebra for
fixed point arithmetic. We demonstrate our protocols
in a smaller ring size, which is possible using an exact
yet expensive truncation algorithm. However, this en-
ables the entire framework to use a smaller datatype,
thus reducing their communication complexity at least
2×. This reduced communication is critical to the com-
munication improvements of Falcon over prior work.
Furthermore, as can be seen in Section 5, these theoret-
ical improvements lead to even larger practical improve-
ments due to the recursive dependence of the complex
functionalities on the improved building blocks. Overall,
we demonstrate how to achieve maliciously secure pro-

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 190

tocols for non-linear operations using arithmetic secret
sharing and avoiding the use of interconversion proto-
cols (between arithmetic, Boolean and garbled circuits).

(3) Expressiveness: Our focus is to provide simple
yet efficient protocols for the fundamental functionali-
ties commonly used in state-of-the-art neural networks.
Batch normalization, has been previously considered in
privacy-preserving inference as linear transformation us-
ing Homomorphic Encryption [22–24]. However, batch
normalization is critical for stable convergence of net-
works as well as to reduce the parameter tuning required
during training of neural networks. Falcon demon-
strates full support for Batch-Normalization layers,
both forward and backward pass, in private machine
learning. In other words, Falcon supports both private
training and private inference. This extensive support
makes Falcon expressive, thereby supporting evalua-
tion of large networks with hundreds of millions param-
eters such as VGG16 [25] and AlexNet [26] over datasets
such as MNIST [27], CIFAR-10 [28] as well as Tiny
ImageNet [29] including in both the LAN and WAN
network settings. Designing secure protocols for train-
ing is more difficult due to the operations involved in
back-propagation which are not required for inference.
A number of prior works assume training in a trusted en-
vironment and hence provide support for only inference
service [5–9]. However, sensitive data is often inaccessi-
ble even during training as described in our motivating
application in Section 2.

End-to-end Implementation and Results. We
implement both the semi-honest and malicious variants
of Falcon in our end-to-end framework. The codebase
is written in C++ in about 14.6k LOC and will be open
sourced. We experimentally evaluate the performance
overhead of Falcon for both private training and infer-
ence on multiple networks and datasets. We use 6 di-
verse networks ranging from simple 3-layer multi-layer
perceptrons (MLP) with about 118, 000 parameters to
large networks with about 16-layers having 138 million
parameters. We trained these networks on MNIST [27],
CIFAR-10 [28] and Tiny ImageNet [29] datasets as ap-
propriate based on the network size. We note that Fal-
con is one of the few private ML frameworks to sup-
port training of high capacity networks such as AlexNet
and VGG16 on the Tiny ImageNet dataset. We per-
form extensive evaluation of our framework in both the
LAN and WAN setting as well as semi-honest and ma-
licious adversarial setting. For private inference, we are
16× faster than XONN [9], 32× faster than Gazelle [8],
8× faster than SecureNN, and comparable to ABY3 on
average. For private training, we are 4.4× faster than

ABY3 and 6× faster than SecureNN [12]. Depending on
the network, our protocols can provide up to an order of
magnitude performance improvement. Falcon is up to
two orders of magnitude more communication efficient
than prior work for both private training and inference.
Our results in the WAN setting show that compute op-
erations dominate the overall latency for large networks
in Falcon and not the communication rounds. Hence,
Falcon is an optimized 3-PC framework w.r.t. the com-
munication which is often the bottleneck in MPC.

2 Falcon Overview
Next, we describe the application setting for Fal-

con, provide a motivating application, state the threat
model, and an overview of our technical contributions.

2.1 A 3-Party Machine Learning Service
We consider the following scenario. There are two

types of users, the first own data on which the learning
algorithm will be applied, we call them data holders.
The second are users who query the system after the
learning period, we call these query users. These two
sets of users need not be disjoint. We design a machine
learning service. This service is provided by 3 parties
which we call computing servers. We assume that gov-
ernment regulations or other social deterrents are suffi-
cient enforcers for non-collusion between these comput-
ing servers. The service works in two phases: the train-
ing phase where the machine learning model of interest
is trained on the data of the data holders and the in-
ference phase where the trained model can be queried
by the query users. The data holders share their data
in a replicated secret sharing form [30] between the 3
computing servers. These 3 servers utilize the shared
data and privately train the network. After this stage,
query users can submit queries to the system and receive
answers based on the newly constructed model held in
shared form by the three servers. This way, the data
holders’ input has complete privacy from each of the 3
servers. Moreover, the query is also submitted in shared
form and thus is kept secret from the 3 servers.

Recent advances in MPC have rendered 3PC pro-
tocols some of the most efficient protocols in the space
of privacy-preserving machine learning. Though MPC is
not a broadly deployed technology yet, the 3PC adver-
sarial model has enjoyed adoption [31–33] due to their
efficiency and simplicity of protocols. Below, we describe
a concrete motivating application that would benefit
from such a 3-party secure machine learning service.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 191

2.1.1 Motivating Application: Detection of Child
Exploitative Images Online

In recent years, the distribution of child exploitative
imagery (CEI) has proliferated with the rise of social
media platforms – from half a million reported in be-
tween 1998-2008 to around 12 million reports in 2017
and 45 million in 2018 [1, 2]. Given the severity of the
problem and stringent laws around the handling of such
incidents (18 U.S. Code §2251, 2252), it is important
to develop solutions that enable efficient detection and
handling of such data while complying with stringent
privacy regulations. Given the success of ML, especially
for image classification, it is important to leverage ML
in detecting CEIs (a computer vision application). Fal-
con’s approach, in contrast to deployed systems such
as PhotoDNA [34], enables the use of ML for this use-
case. However, the inability to generate a database of
the original images (due to legal regulations) leads to
a problem of lack of training data. Falcon provides a
cryptographically secure framework for this conundrum,
where the client data is split into unrecognizable parts
among a number of non-colluding entities. In this way,
the solution is two-fold, MPC enables the ability to ac-
cumulate good quality training data and at the same
time can enable machine-learning-as-a-service (MLaaS)
for the problem of CEIs. The 3 computing parties can
be Facebook, Google, and Microsoft, and will in turn
be the providers of such a service. A public API can be
exposed to entities willing to make use of this service,
very similar to the PhotoDNA portal [34]. Organiza-
tions (clients of this service) that deal with significant
number of CEI’s can send automated requests to these
3 servers and locally reconstruct the classification result
using the received responses. In terms of the adversar-
ial model, we believe that the stringent legal framework
around this application is a sufficient deterrent for these
large organizations to prevent collusion among the par-
ties. Similarly, a maliciously secure adversarial model
further safeguards against individual servers being com-
promised. In this manner, MPC can enable an end-to-
end solution to automated detection of CEIs in social
media with strong privacy to the underlying data.

2.2 Threat Model
Our threat model assumes an honest majority

among the three parties in the setting described above.
This is a common adversarial setting considered in pre-
vious secure multi-party computation approaches [4, 11,
21, 30]. We consider that one of the three parties can be
either semi-honest or malicious. A semi-honest adver-

sary passively tries to learn the secret data of the other
parties while a malicious adversary can arbitrarily de-
viate from the protocol. We assume the private keys of
each of the parties are stored securely and not suscep-
tible to leakage. We do not protect against denial of
service attacks where parties refuse to cooperate. Here,
Falcon simply resorts to aborting the computation.

Assumptions & Scope. The 3 parties each have
shared point-to-point communication channels and pair-
wise shared seeds to use AES as a PRNG to gener-
ate cryptographically secure common randomness. We
note that as the query users receive the answers to the
queries in the clear Falcon does not guarantee protect-
ing the privacy of the training data from attacks such
as model inversion, membership inference, and attribute
inference [35–37]. Defending against these attacks is an
orthogonal problem and out of scope for this work. We
assume that users provide consistent shares and that
model poisoning attacks are out of scope.

2.3 Technical Contributions
In this section, we summarize some of the main con-

tributions of this work with a focus on techniques used
to achieve our results and improvements.

Hybrid Integration for Malicious Security.
Falcon consists of a hybrid integration of ideas from Se-
cureNN and ABY3 along with newer protocol construc-
tions for privacy-preserving deep learning. SecureNN
does not provide correctness in the presence of mali-
cious adversaries. Furthermore, the use of semi-honest
parties in SecureNN makes it a significant challenge to
convert those protocols to provide security against mali-
cious corruptions. We use replicated secret sharing (such
as in [11, 21, 30]) as our building block and use the re-
dundancy to enforce correct behaviour in our protocols.
Note that changing from the 2-out-of-2 secret sharing
scheme in SecureNN to a 2-out-of-3 replicated secret
sharing crucially alters some of the building blocks –
these protocols are a new contribution of this work. We
work in the 3 party setting where at most one party
can be corrupt. We prove each building block secure in
the Universal Composability (UC) framework. We show
that our protocols are (1) perfectly secure in the stand-
alone model, i.e., the distributions are identical and not
just statistically close in a model where the protocol is
executed only once; and (2) have straight-line black-box
simulators, i.e., only assume oracle access and do no
rewind. Theorem 1.2 from Kushilevitz et al. [38] then
implies security under general concurrent composition.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 192

Theoretical Improvements to Protocols. Fal-
con proposes more efficient protocols for common ma-
chine learning functionalities while providing stronger
security guarantees. We achieve this through a num-
ber of theoretical improvements for reducing both the
computation as well as the communication. First, in
Falcon all parties execute the same protocol in con-
trast to SecureNN where the protocol is asymmetric.
The uniformity of the parties leads to more optimal re-
source utilization. Second, the protocol for derivative
of ReLU, in SecureNN [12] first transforms the inputs
using a Share Convert subroutine (into secret shares
modulo an odd ring) and then invokes a Compute MSB
subroutine to compute the most significant bit (MSB)
which is closely related to the DReLU function. Note
that DReLU, when using fixed point encoding over a
ring ZL is defined as follows:

DReLU(x) =

{
0 if x > L/2
1 Otherwise

(1)

Each of these subroutines have roughly the same over-
head. In Falcon, we show an easier technique using
new mathematical insights to compute DReLU which
reduces the overhead by over 2×. Note that ReLU and
DReLU, non-linear activation functions central to deep
learning, are typically the expensive operations in MPC.
The first two points above lead to strictly improved pro-
tocol for these. Third, Falcon uses a smaller ring size
while using an exact yet expensive truncation protocol.
This trade-off however allows the entire framework to
operate on smaller data-types, thus reducing the com-
munication complexity at least 2×. Furthermore, this
communication improvement is amplified with the su-
perlinear dependence of the overall communication on
the ring size (cf Table 9). This reduced communication
is critical to the communication improvements of Fal-
con over prior work. In other words, we notice strictly
larger performance improvements (than the theoretical
improvements) in our end-to-end deployments of bench-
marked networks presented in Section 5.

Improved Scope of ML Algorithms. Prior
works focus on implementing protocols for linear lay-
ers and important non-linear operations. We propose
and implement an end-to-end protocol for batch nor-
malization (both forward and backward pass). Batch-
normalization is widely used in practice for speedy train-
ing of neural networks and is critical for machine learn-
ing for two reasons. First, it speeds up training by allow-
ing higher learning rates and prevents extreme values of
activations [39]. This is an important component of the
parameter tuning for neural networks as there is limited

“seeing and learning” during private training. Second, it
reduces over-fitting by providing a slight regularization
effect and thus improves the stability of training [39]. In
other words, private training of neural networks without
batch normalization is generally difficult and requires
significant pre-training. To truly enable private deep
learning, efficient protocols for batch-normalization are
required. Implementing batch normalization in MPC is
hard for two reasons, first computing the inverse of a
number is generally difficult in MPC. Second, most ap-
proximate approaches require the inputs to be within a
certain range, i.e., there is a trade-off between having
an approximate function for inverse of a number over
a large range and the complexity of implementing it in
MPC. Through our implementation, we enable batch
normalization that can allow the training of complex
network architectures such as AlexNet (about 60 mil-
lion parameters).

2.3.1 Comprehensive Evaluation

As shown in Table 1, there are a number of factors
involved in comparing different MPC protocols and that
none of the prior works provide a holistic solution. We
also thoroughly benchmark our proposed system – we
evaluate our approach over 6 different network architec-
tures and over 3 standard datasets (MNIST, CIFAR-
10, and Tiny ImageNet). We also benchmark our sys-
tem in both the LAN and WAN setting, for training
as well as for inference, and in both the semi-honest
and actively secure adversarial models. Finally, we pro-
vide a thorough performance comparison against prior
state-of-the-art works in the space of privacy preserving
machine learning (including 2PC, purely for the sake
of comprehensive comparison). We believe that such a
comparison, across a spectrum of deployment scenarios,
is useful for MPC practitioners.

Finally, we note that the insights and techniques
developed in this work are broadly applicable. For in-
stance, ReLU is essentially a comparison function which
can thus enable a number of other applications – pri-
vate computation of decision trees, privacy-preserving
searching and thresholding, and private sorting.

3 Protocol Constructions
We begin by describing the notation used in this

paper. We then describe how basic operations are per-
formed over the secret sharing scheme and then move
on to describe our protocols in detail.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 193

3.1 Notation
Let P1, P2, P3 be the parties. We use Pi+1, Pi−1

to denote the next and previous party for Pi (with
periodic boundary conditions). In other words, next
party for P3 is P1 and previous party for P1 is P3. We
use JxKm to denote 2-out-of-3 replicated secret sharing
(RSS) modulo m for a general modulus m. For any x let
JxKm = (x1, x2, x3) denote the RSS of a secret x modulo
m i.e., x ≡ x1 +x2 +x3 (mod m), but they are otherwise
random. We use the notation JxKm to mean (x1, x2) is
held by P1, (x2, x3) by P2, and (x3, x1) by P3. We denote
by x[i] the ith component of a vector x. In this work, we
focus on three different moduli L = 2`, a small prime p,
and 2. In particular, we use ` = 25, p = 37. We use fixed-
point encoding with 13 bits of precision. In ΠMult over
Zp, the multiplications are performed using the same
procedure with no truncation. ReLU, which compares
a value with 0 in this representation corresponds to a
comparison with 2`−1.

3.2 Basic Operations
To ease the exposition of the protocols, we first de-

scribe how basic operations can be performed over the
above secret sharing scheme. These operations are ex-
tensions of Boolean computations from Araki et al. [30]
to arithmetic shares, similar to ABY3 [11]. However,
ABY3 relies on efficient garbled circuits for non-linear
function computation which is fundamentally different
than the philosophy of this work which relies on sim-
ple modular arithmetic. In this manner, we propose a
hybrid integration of ideas from SecureNN and ABY3.

Correlated Randomness: Throughout this work,
we will need two basic random number generators. Both
of these can be efficiently implemented (using local com-
putation) using PRFs. We describe them below:
• 3-out-of-3 randomness: Random α1, α2, α3 such that
α1 + α2 + α3 ≡ 0 (mod L) and party Pi holds αi.
• 2-out-of-3 randomness: Random α1, α2, α3 such that
α1 +α2 +α3 ≡ 0 (mod L) and party Pi holds (αi, αi+1).

Given pairwise shared random keys ki (shared be-
tween parties Pi and Pi+1), the above two can be com-
puted as αi = Fki

(cnt) − Fki−1(cnt) and (αi, αi−1) =
(Fki

(cnt), Fki−1(cnt)) where cnt is a counter incremented
after each invocation. This is more formally described
later on in ΠPrep in Fig. 6.

Linear Operations: Let a, b, c be public constants
and JxKm and JyKm be secret shared. Then Jax+by+cKm

can be locally computed as (ax1+by1+c, ax2+by2, ax3+
by3) and hence are simply local computations.

Multiplications ΠMult: To multiply two shared
values together JxKm = (x1, x2, x3) and JyKm =
(y1, y2, y3), parties locally compute z1 = x1y1 + x2y1 +
x1y2, z2 = x2y2+x3y2+x2y3 and z3 = x3y3+x1y3+x3y1.
At the end of this, z1, z2 and z3 form a 3-out-of-3 secret
sharing of Jz = x · yKm. Parties then perform resharing
where 3-out-of-3 randomness is used to generate 2-out-
of-3 sharing by sending αi+zi to party i−1 where {αi}
form a 3-out-of-3 secret sharing of 0.

Convolutions and Matrix Multiplications: We
rely on prior work to perform convolutions and matrix
multiplications over secret shares. To perform matrix
multiplications, we note that ΠMult described above ex-
tends to incorporate matrix multiplications. To perform
convolutions, we simply expand the convolutions into
matrix multiplications of larger dimensions (cf Section
5.1 of [12]) and invoke the protocol for matrix multi-
plications. With fixed-point arithmetic, each multiplica-
tion protocol has to be followed by the truncation proto-
col (cf Fig. 6) to ensure correct fixed-point precision. For
more details on fixed-point multiplication, semi-honest,
and malicious variants of this refer to [11, 21].

Reconstruction of JxKm: In the semi-honest set-
ting, each party sends one ring element to the next
party, i.e., Pi sends share xi to Pi+1. In the malicious
setting, each party sends xi to Pi+1 and xi+1 to Pi−1
and aborts if the two received values do not agree. In
either case, a single round of communication is required.

Select Shares ΠSS: We define a sub-routine ΠSS,
which will be used a number of times in the descriptions
of other functionalities. It takes as input shares of two
random values JxKL, JyKL, and shares of a random bit
JbK2. The output JzKL is either JxKL or JyKL depending on
whether b = 0 or b = 1. To do this, we assume access to
shares of a random bit JcK2 and JcKL (pre-computation).
Then we open the bit (b ⊕ c) = e. If e = 1, we set
JdKL = J1 − cKL otherwise set JdKL = JcKL. Finally, we
compute JzKL = J(y−x) · dKL + JxKL where J(y−x) · dKL

can be computed using ΠMult (y − x, d).
XOR with Public Bit b: Given shares of a bit

JxKm and a public bit b, we can locally compute shares
of bit JyKm = Jx ⊕ bKm by noting that y = x + b −
2b · x. Since b is public, this is a linear operation and
can be computed in both the semi-honest and malicious
adversary models.

Evaluating J(−1)β · xKm from JxKm and JβKm:
We assume that β ∈ {0, 1}. We first compute J1− 2βKm

and then perform the multiplication protocol described
above to obtain J(1− 2β) · xKm = J(−1)β · xKm. We split
our computations into data dependent online computa-

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 194

tions and data independent offline computations. Pro-
tocols for offline computations are presented in Fig. 6.

3.3 Private Compare
This function evaluates the bit x ≥ r where r is

public and the parties hold shares of bits of x in Zp.
Algorithm 1 describes this protocol. Note that β is nec-
essary for privacy as β′ reveals information about the
output (x ≥ r) if not blinded by a random bit β. Each
of the bits are independent so a single blinding bit β is
sufficient to hide computation of (x ≥ r) or (r > x).
(A) Step 2: u[i] can be computed by first evaluating

shares of 2β − 1 and then computing the product
of (2β − 1) and x[i] − r[i]. This can be done in a
single round using one invocation of ΠMult.

(B) Steps 3,4: These are simply local computations. For
instance, Jw[i]K = (w[i]1, w[i]2, w[i]3) can be com-
puted as w[i]j = x[i]j + δj1r[i] − 2r[i]x[i]j where
j ∈ {1, 2, 3} and δij is the Kronecker delta function
and is 1 if i = j and 0 otherwise.

(C) Step 6 can be computed in log2 ` + 1 rounds us-
ing sequential invocations of the ΠMult with smaller
strings (One additional round because of multipli-
cation by random blinding factor).

(D) Steps 7,8: These are once again local computations.
This protocol is an example of the challenges of integrat-
ing approaches based on simple modular arithmetic with
malicious security. Both SecureNN and Falcon aim to
find if there exists an index i such that c[i] = 0. However,
the existence of a semi-honest third party makes check-
ing this much easier in SecureNN. The two primary par-
ties simply blind and mask their inputs and send them
to the third party. This is not possible in Falcon due to
the stronger adversarial model and requires newer pro-
tocol constructions. In particular, we need to multiply
all the c[i]’s together along with a mask in Z∗p and reveal
this final product to compute the answer.

3.4 Wrap Function
Central to the computation of operations such as

ReLU and DReLU is a comparison function. The wrap
functions, wrap2 and wrap3 are defined below as a func-
tion of the secret shares of the parties and effectively
compute the “carry bit” when the shares are added to-
gether as integers. Eq. 11 shows that DReLU can be
easily computed using the wrap3 function. So all we
require is a secure protocol for wrap3. We define two
similar functions called “wrap” (denoted by wrap2 and
wrap3). We call Eq. 3 the exact wrap function. For the
remainder of the paper, we use the (mod 2) reduction

Algorithm 1 Private Compare ΠPC(P1, P2, P3):
Input: P1, P2, P3 hold secret sharing of bits of x in Zp.
Output: All parties get shares of the bit (x ≥ r) ∈ Z2.
Common Randomness: P1, P2, P3 hold a public ` bit integer

r, shares of a random bit in two rings JβK2 and JβKp and
shares of a random, secret integer m ∈ Z∗p.

1: for i = {`− 1, `− 2, . . . , 0} do
2: Compute shares of u[i] = (−1)β(x[i]− r[i])
3: Compute shares of w[i] = x[i]⊕ r[i]
4: Compute shares of c[i] = u[i] + 1 +

∑`

k=i+1 w[k]
5: end for
6: Compute and reveal d := JmKp ·

∏`−1
i=0 c[i] (mod p)

7: Let β′ = 1 if (d 6= 0) and 0 otherwise.
8: return Shares of β′ ⊕ β ∈ Z2

of the wrap function defined in Equation 4 and refer to
it as simply the wrap function.

wrap2(a1, a2, L) =

{
0 if a1 + a2 < L

1 Otherwise
(2)

wrap3e(a1, a2, a3, L) =

0 if

∑3
i=1 ai < L

1 if L ≤
∑3
i=1 ai < 2L

2 if 2L ≤
∑3
i=1 ai < 3L

(3)

wrap3(a1, a2, a3, L) = wrap3e(a1, a2, a3, L) (mod 2) (4)

Next we briefly describe the connection between
wrap3 computed on shares a1, a2, a3 and the most sig-
nificant bit (MSB) of the underlying secret a. Note
that a = a1 + a2 + a3 (mod L) as ai’s are shares of
a modulo L. Considering this sum as a logic circuit
(for instance as a ripple carry adder), we can see that
MSB(a) = MSB(a1) + MSB(a2) + MSB(a3) + c (mod 2)
where c is the carry bit from the previous index. The
key insight here is that the carry c from the previous
index is simply the wrap3 function computed on ai’s (ig-
noring their MSB’s) modulo L/2 (this is evident from
Eq. 3). And this last operation is synonymous with com-
puting the wrap3 function on 2ai’s modulo L. We will
further describe the consequences of this connection in
Section 3.5 where we describe a protocol to compute
the ReLU and DReLU functions. Algorithm 2 gives the
protocol for securely computing the wrap3 function.

Note that wrap2 function is always computed locally
and hence a secure algorithm is not needed for the same.
Furthermore, note that the wrap2 function allows us to
write exact integer equations as follows: if a ≡ a1 + a2
(mod L) then a = a1 +a2−wrap2(a1, a2, L) ·L where the
former relation is a congruence relation but the latter is
an integer relation (and has exact equality). Finally, to
see the correctness of the wrap3 protocol, in reference to

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 195

Algorithm 2 wrap3 ΠWA(P1, P2, P3):
Input: P1, P2, P3 hold shares of a in ZL.
Output: P1, P2, P3 get shares of a bit θ = wrap3(a1, a2, a3, L)
Common Randomness: P1, P2, P3 hold shares JxKL (of a

random number x), Jx[i]Kp (shares of bits of x) and JαK2

where α = wrap3(x1, x2, x3, L).

1: Compute rj ≡ aj + xj (mod L) and βj = wrap2(aj , xj , L)
2: Reconstruct r ≡

∑
rj (mod L)

3: Compute δ = wrap3(r1, r2, r3, L) . In the clear
4: Run ΠPC on x, r + 1 to get η = (x ≥ r + 1).
5: return θ = β1 + β2 + β3 + δ − η − α

Algorithm 2, we can write the following set of equations

r = a+ x− η · L (5)
r = r1 + r2 + r3 − δe · L (6)
ri = ai + xi − βi · L ∀i ∈ {1, 2, 3} (7)
x = x1 + x2 + x3 − αe · L (8)

where δe, αe denote the exact wrap functions, Eq. 6,8
follow from the definition of the exact wrap function,
while Eq 7 follows from the definition of wrap2 function.
To see Eq. 5, note that r, a, x ∈ [0, L − 1] and that r ≡
a + x (mod L). Hence a + x ≥ L iff r < x (or x ≥
r + 1). Finally, assuming θe is the exact wrap function
on a1, a2, a3 i.e.,

a = a1 + a2 + a3 − θe · L (9)

Eqs. 5-9 together give a constraint among the Greek
symbols (in other words, (5) - (6) - (7) + (8) + (9)
gives Eq. 10 below)

θe = β1 + β2 + β3 + δe − η − αe (10)

Reducing Eq. 10 modulo 2 gives us θ = β1 +β2 +β3 +δ−
η−α which is used to compute wrap3 as in Algorithm 2.

3.5 ReLU and Derivative of ReLU
We now describe how to construct a protocol for

securely computing ReLU(a) and DReLU(a) for a given
secret a. Recall that we use fixed point arithmetic over
Z2` for efficiency reasons. Using the natural encoding
of native C++ data-types, we know that positive num-
bers are the first 2`−1 and have their most significant
bit equal to 0. Negative numbers, on the other hand are
the last 2`−1 numbers in the `-bit range and have their
most significant bit equal to 1. Thus, the DReLU func-
tion defined by Eq. 1, has a simple connection with the
most significant bit (MSB) of the fixed point representa-
tion viz., DReLU(a) = 1−MSB(a). Furthermore, in Sec-
tion 3.4, we have seen the connection between MSB(a)

Algorithm 3 ReLU, ΠReLU(P1, P2, P3):
Input: P1, P2, P3 hold shares of a in ZL.
Output: P1, P2, P3 get shares of ReLU(a).
Common Randomness: JcK2 and JcKL (shares of a random

bit in two rings)

1: Run ΠWA to get wrap3(2a1, 2a2, 2a3, L)
2: Compute JbK2 where b = DReLU(a) . Local comp. (Eq. 11)
3: return Output of ΠSS run on {a, 0} with b as selection.

and wrap3. Together, these insights can be distilled into
the following equation:

DReLU(a) = MSB(a1)⊕MSB(a2)⊕MSB(a3)
⊕ wrap3(2a1, 2a2, 2a3, L)⊕ 1

(11)

In particular, Derivative of ReLU can be computed by
combining the output of the wrap function with lo-
cal computations. Finally, for computing ReLU from
DReLU, we simply call ΠSS (which effectively performs
ΠMult on shares of a and shares of DReLU(a)). With
these observations, we can implement the ReLU and
Derivative of ReLU protocols (see Algorithm 3). Note
that the approach here is crucially different from the
approach SecureNN uses due to use of fundamentally
different building blocks as well as deeper mathemati-
cal insights such as Eq. 11. To achieve the DReLU func-
tionality, SecureNN first uses a subroutine to transform
the shares of the secret into an odd modulus ring and
then uses another subroutine to compute the MSB (cf
Section 2.3). Both these subroutines have similar com-
plexities. Falcon on the other hand uses the insight
presented in Eq. 11 to completely eliminate the need
for these subroutines, improving the efficiency by about
2× and simplifying the overall protocol. This also dras-
tically improves the end-to-end performance (by over
6.4×) as the ReLU and DReLU functionalities are the
building blocks of every comparison in the network.

3.6 Maxpool and Derivative of Maxpool
The functionality of maxpool simply takes as in-

put a vector of secret shared values and outputs the
maximum value. For derivative of maxpool, we need a
one-hot vector of the same size as the input where the
1 is at the location of the index of the maximum value.
Maxpool can be implemented using a binary sort on
the vector of inputs and small amounts of bookkeeping,
where the comparisons can be performed using ReLUs.
Derivative of maxpool can be efficiently implemented
along with maxpool described in Algorithm 4.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 196

Algorithm 4 Maxpool, ΠMaxpool(P1, P2, P3):
Input: P1, P2, P3 hold shares of a1, a2, . . . an in ZL.
Output: P1, P2, P3 get shares of ak and ek where k =

argmax{a1, . . . an} and where ek = {e1, e2, . . . en} with
ei = 0 ∀i 6= k and ek = 1.

Common Randomness: No additional common randomness
required.

1: Set max ← a1 and ind← e1 = {1, 0, . . . , 0}
2: for i = {2, 3, . . . n} do
3: Set dmax ← (max − ai) and dind ← (ind − ei)
4: b← ΠDReLU(dmax) . b → Derivative of ReLU
5: max ← ΠSS on inputs {ai,max, b}.
6: ind← ΠSS on inputs {ei, ind, b}.
7: end for
8: return max, ind

Algorithm 5 Bounding Power, ΠPow(P1, P2, P3):
Input: P1, P2, P3 hold shares of x in ZL.
Output: P1, P2, P3 get α in the clear, where 2α ≤ x < 2α+1.
Common Randomness: No additional common randomness

required.

1: Initialize α← 0
2: for i = {`− 1, . . . , 1, 0} do
3: c← ΠDReLU(x − 22i+α) and reconstruct c
4: Set α← α+ 2i if c = 1
5: end for
6: return α

3.7 Division and Batch Normalization
Truncation allows parties to securely eliminate

lower bits of a secret shared value (i.e., truncation by k
bits of a secret a→ a/2k). However, the problem of di-
viding by a secret shared number is considerably harder
and efficient algorithms rely on either (1) sequential
comparison (2) numerical methods. In this work, we use
the numerical methods approach for its efficiency. We
use the specific choices of initializations given in [40, 41]
to efficiently compute division over secret shares. A cru-
cial component of numerical methods is the need to esti-
mate the value of the secret within a range. We achieve
this using Algorithm 5. Note that Algorithm 5 outputs
the bounding power of 2, which is also what is guaran-
teed by the functionality. In this way, we only reveal the
bounding power of 2 and nothing else.

Algorithm 6 is used to compute the value of a/b
where a, b are secret shared. The first step for the algo-
rithm is to transform b→ x where x ∈ [0.5, 1). Note that
even though b is a fixed-point precision of fp, for the
computations in Algorithm 6, x has to be interpreted
as a value with fixed-point precision α + 1 where 2α ≤
b < 2α+1. Thus we first need to extract α (the appro-
priate range) using Algorithm 5. Let w0 = 2.9142− 2x,

ε0 = 1 − x · w0 (cf. [40, 41] for choice of constants).
Then an initial approximation for 1/x is w0 · (1 + ε0).
For higher order approximations, set εi = ε2i−1 and mul-
tiply the previous approximate result by (1 + εi) to get
a better approximate result. Each successive iteration
increases the round complexity by 2. For our value of
fixed-point precision, we use the following approxima-
tion which works with high accuracy (refer to Section 5
for details):

Algorithm 6 Division, ΠDiv(P1, P2, P3):
Input: P1, P2, P3 hold shares of a, b in ZL.
Output: P1, P2, P3 get shares of a/b in ZL computed as integer

division with a given fixed precision fp.
Common Randomness: No additional common randomness

required.

1: Run ΠPow on b to get α such that 2α ≤ b < 2α+1

2: Compute w0 ← 2.9142− 2b
3: Compute ε0 ← 1− b · w0 and ε1 ← ε20
4: return aw0(1 + ε0)(1 + ε1)

Algorithm 7 Batch Norm, ΠBN(P1, P2, P3):
Input: P1, P2, P3 hold shares of a1, a2 . . . am in ZL where m is

the size of each batch and shares of two learnable parameters
γ, β.

Output: P1, P2, P3 get shares of γzi + β for i ∈ [m] and zi =
(ai−µ)/(

√
σ2 + ε) where µ = 1/m

∑
ai, σ2 = 1/m

∑
(ai−

µ)2, and ε is a set constant.
Common Randomness: No additional common randomness

required.

1: Set µ← 1/m ·
∑

ai
2: Compute σ2 ← 1/m ·

∑
(ai − µ)2 and let b = σ2 + ε

3: Run ΠPow on b to find α such that 2α ≤ b < 2α+1

4: Set x0 ← 2−bα/2e

5: for i ∈ 0, . . . , 3 do
6: Set xi+1 ← xi

2 (3− bx2
i)

7: end for
8: return γ · xrnds · (ai − µ) + β for i ∈ [m]

AppDiv(x) = w0 · (1 + ε0)(1 + ε1) ≈ 1
x

(12)

Batch-norm is another important component of neural
network architectures. They improve the convergence as
well as help automate the training process. Algorithm 7
describes the protocol to compute batch-norm. For step
3, we use Newton’s method and use 2−bα/2e as an initial
approximation of 1/

√
σ2 + ε, where 2α ≤ σ2 + ε < 2α+1

and use the successive iterative formula:

xn+1 = xn
2
(
3− ax2

n

)
(13)

Given the choice of initial guess, 4 rounds are suffi-
cient for a close approximation with our choice of fixed-
point precision. However, batch normalization during

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 197

training is computed by sequentially computing
√
σ2 + ε

and then computing the inverse. This approach is used
to optimize the computation required during back-
propagation which requires the values of

√
σ2 + ε. For

computing the square root of a value a, we use Newton’s
method given by Eq. 14. This can then be used in con-
junction with the inverse computation given by Eq. 12
to complete the batch-norm computations.

xn+1 = 1
2

(
xn + a

xn

)
(14)

4 Theoretical Analysis
We provide theoretical analysis of our framework

and protocols. In particular, we provide proofs of secu-
rity and analyze the theoretical complexity.

4.1 Security Proofs
We model and prove the security of our construction

in the real world-ideal world simulation paradigm [42–
44]. In the real interaction, the parties execute the pro-
tocol in the presence of an adversary and the environ-
ment. On the other hand, in the ideal interaction, the
parties send their inputs to a trusted party that com-
putes the functionality truthfully. Finally, to prove the
security of our protocols, for every adversary in the real
interaction, there exists a simulator in the ideal interac-
tion such that the environment cannot distinguish be-
tween the two scenarios. In other words, whatever in-
formation the adversary extracts in the real interaction,
the simulator can extract it in the ideal world as well.

We show that our protocols are perfectly secure (i.e.,
the joint distributions of the inputs, outputs, and the
communication transcripts are exactly the same and
not statistically close) in the stand-alone model (i.e.,
protocol is executed only once), and that they have a
straight-line black-box simulators (i.e., only assume ora-
cle access to the adversary and hence do no rewind). We
then rely on the result of Kushilevitz et al. [38] to prove
that our protocols are secure under concurrent general
composition (Theorem 1.2 in [38]).

Due to space constraints, we formally describe the
functionalities in Appendix E. We describe simulators
for ΠPC (Fig. 3), ΠWA (Fig. 4), ΠReLU (Fig. 5), ΠMaxpool
(Fig. 7), ΠPow (Fig. 8), ΠDiv (Fig. 9), and ΠBN (Fig. 10)
that achieve indistinguishability. FMult,FTrunc,FReconst
are identical to prior works [11, 21]. We prove security
using the standard indistinguishability argument. To
prove the security of a particular functionality, we set-
up hybrid interactions where the sub-protocols used in
that protocol are replaced by their corresponding ideal

functionalities and then prove that the interactions can
be simulated. This hybrid argument in effect sets up a
series of interactions I0, I1, . . . Ik for some k where I0
corresponds to the real interaction and Ik corresponds
to the ideal interaction. Each neighboring interaction,
i.e., Ii, Ii+1 for i ∈ {0, . . . , k − 1} is then shown indis-
tinguishable from each other, in effect showing that the
real and ideal interactions are indistinguishable. With-
out loss of generality, we assume that party P2 is cor-
rupt. In the real world, the adversary A interacts with
the honest parties P0 and P1. In the ideal world, the
simulator interacts with the adversary and simulates ex-
act transcripts for interactions between the adversary A
and P0, P1. On the other hand, the simulator should be
able to extract the adversaries inputs (using the val-
ues for the inputs of the honest parties in the internal
run and the fact that each honest party has one com-
ponent of the replicated secret sharing). These inputs
are fed to the functionality to generate correct output
distributions, thus achieving security against malicious
adversaries. Theorems 1-6 gives the indistinguishability
of these two interactions.

Theorem 1. ΠPC securely realizes FPC with abort,
in the presence of one malicious party in the
(FMult,FReconst,FPrep)-hybrid model.

Proof. We first set up some detail on the proof strategy
that is essential for other proofs as well. For the ease
of exposition, we describe it in the context of ΠPC. The
goal of designing a simulator is to be able to demon-
strate the ability to produce transcripts that are indis-
tinguishable from the transcripts in the real world. The
joint distribution of the inputs and outputs is a part of
these transcripts and hence has to be indistinguishable
in the two interactions. However, since the honest par-
ties simply forward their inputs to the functionality, the
simulator must be able to extract the inputs of the ma-
licious parties to be able to generate the correct shares
for the honest parties.

The usual technique to achieve this is to have the
simulator run a simulated version of the protocol in-
ternally, i.e., emulating the roles of the honest parties
and interacting with the adversary. This is what we call
an internal run. This internal run can then be used to
extract the inputs of the adversarial party (which can
then be forwarded to the functionality in the ideal inter-
action). In the hybrid argument, the subroutines used
in the protocol can be replaced by their corresponding
ideal interactions, the simulator can emulate the roles
of these trusted functionalities in its internal run.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 198

In the specific context of ΠPC, the simulator S for
adversary A works by playing the role of the trusted
party for FMult,FReconst and FPrep. To be able to simu-
late, we need to show that:

(1) Real interaction transcripts can be simulated.
(2) Honest parties receive their outputs correctly.

Simulation follows easily from the protocol and the hy-
brid argument. The simulator for ΠMult (along with the
simulator for ΠReconst) can be used to simulate the tran-
scripts from Steps 2, 6 (from Algorithm 1). Note that
the distributions of these transcripts are all uniformly
random values (β is required to make the transcript for
β′ uniformly random, the various bits u[i], w[i], and c[i]
are random because x is random) and hence achieve per-
fect security. Steps 3, 4, 7, and 8 on the other hand are
all local and do not need simulation.

To extract the inputs of the malicious party, the
simulator uses the fact that it has access to r and β

(though FPrep) and all the internal values for the honest
parties (in the internal run) and hence can extract the
shares of x[i] from the corrupt party P2. Finally, if the
protocol aborts at any time in the internal run, then the
simulator sends Abort to FPC otherwise, it inputs the
extracted shares of x[i] to FPC and the honest parties
receive their outputs.

Theorem 2. ΠWA securely realizes FWA with abort,
in the presence of one malicious party in the
(FMult,FPC,FReconst,FPrep)-hybrid model.

Proof. We use a similar set-up as the proof of Theo-
rem 1. Step 1 is local computation and does not need
simulation. Steps 2, 4 can be simulated using the sim-
ulators for FReconst,FPC respectively. Input extraction
follows from having access to ri (through FPrep) and out-
put x if the protocol does not abort. If the protocol does
abort at any time in the internal run, then the simulator
sends Abort to FWA. Otherwise, it simply passes on the
extracted shares of a[i] to FWA and the honest parties
receive their outputs. Note that ΠDReLU is not formally
defined. However, this is simply local computation over
ΠWA and the proofs can be extended analogously.

Theorem 3. ΠReLU securely realizes FReLU with abort,
in the presence of one malicious party in the
(FMult,FWA,FPrep)-hybrid model.

Proof. Simulation is done using the hybrid argument.
The protocol simply composes FWA and FMult and hence
is simulated using the corresponding simulators.

Theorem 4. ΠMaxpool securely realizes FMaxpool with
abort, in the presence of one malicious party in the
(FMult,FReLU,FPrep)-hybrid model.

Proof. Similar to the proof of Theorem 3, simulation
works by sequentially composing the simulators for
FReLU and FMult.

Theorem 5. ΠPow securely realizes FPow with abort,
in the presence of one malicious party in the
(FMult,FReLU,FReconst,FPrep)-hybrid model.

Proof. The simulator for A works by playing the role
of the trusted party for FMult,FReLU, and FReconst. The
protocol sequentially reveals bits of the scale α. It is
important to note the functionality that it emulates (see
in Fig. 8). The simulator runs the first iteration of the
loop and in the process extracts the adversaries inputs.
Then it proceeds to complete all the iterations of the
loop. If the protocol proceeds without aborting till the
end, then the simulator sends the extracted shares of
b along with k = 0 to the functionality FPow. If the
protocol aborts at iteration k, then the simulator sends
the extracted shares of b along with k to FPow.

Theorem 6. ΠDiv, ΠBN securely realize FDiv, FBN re-
spectively, with abort, in the presence of one malicious
party in the (FMult,FPow,FPrep)-hybrid model.

Proof. ΠDiv, ΠBN are sequential combinations of local
computations and invocations of FMult. Simulation fol-
lows directly from composing the simulators and input
extraction follows from the simulator of ΠPow.

4.1.1 Protocol Overheads

We theoretically estimate the overheads of our pro-
tocols in Table 9 in Appendix B. The dominant round
complexity for private compare comes from the string
multiplication in Step 6. wrap3 requires one additional
round and one additional ring element (two in malicious
security) over private compare. Computing derivative
of ReLU is a local computation over the wrap3 func-
tion. Computing ReLU requires two additional rounds
and one ring element (two for malicious). Maxpool and
derivative of require rounds proportional to the area
of the filter. Finally, pow, division, and batch-norm re-
quires a quadratic number of rounds in `.

5 Experimental Evaluation
We evaluate the performance of training and infer-

ence with Falcon on 6 networks of varying parameter

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 199

sizes trained using MNIST, CIFAR-10 and Tiny Ima-
geNet datasets (cf. Appendix C). A number of prior
works such as SecureML [4], DeepSecure [45], Min-
iONN [6], Gazelle [8], SecureNN [12], ABY3 [11], and
Chameleon [5] evaluate over these networks and we
mimic their evaluation set-up for comparison.

5.1 Experimental Setup
We implement Falcon framework in about 14.6k

LOC in C++ using the communication backend of Se-
cureNN and will be open-sourced at https://github.
com/snwagh/falcon-public. We run our experiments
on Amazon EC2 machines over Ubuntu 18.04 LTS
with Intel-Core i7 processor and 64GB of RAM. Our
evaluation set-up uses similar as compared to prior
work [4, 5, 8, 11, 12]. We perform extensive evaluation
of our framework in both the LAN and WAN setting.
For the LAN setting, our bandwidth is about 625 MBps
and ping time is about 0.2ms. For WAN experiments,
we run servers in different geographic regions with 70ms
ping time and 40 MBps bandwidth.

Optimizations: All data-independent computa-
tion, i.e., pre-computation, is parallelized using 16 cores
to reduce the run-time. When a ReLU layer is followed
by a Maxpool layer, we swap the order of these two
layers for optimized runtimes. We use the Eigen li-
brary for faster matrix multiplication and parallelize the
private compare computation. We optimize across the
forward and backward pass for Maxpool, ReLU, and
Batch-Normalization layers, i.e., we compute the rele-
vant derivatives while computing the functions. We use
32-bit integer range with 16 bits of fixed-point preci-
sion. As the entire codebase is parallelizable, significant
improvement is possible by implementing Falcon using
TensorFlow or PyTorch which support easy paralleliza-
tion as well as computations over GPUs.

Networks and Datasets: For comparison with
different networks as well as plaintext computa-
tions, we select 3 standard benchmarking datasets —
MNIST [27], CIFAR-10 [28], and Tiny ImageNet [29]
and 6 standard network architectures – 3 from the
privacy-preserving ML community and 3 from the ML
community. For more details refer to Appendix C, D.

5.2 Results for Private Inference
Tables 2, 3 report the end-to-end latency time (in

seconds) and number of bytes (in MB) communicated
for performing a single inference query with Falcon.
We execute the queries in both LAN and WAN as well
as semi-honest and malicious settings and compare with
prior work wherever applicable.

Comparison to Prior Work. We compare the in-
ference time of a single query and the communication
bytes of Falcon with prior work on networks A, B and
C. None of the prior works evaluate the remaining net-
works and hence we do not compare the performance of
Falcon for the networks in Table 3. Depending on the
network architecture, our results are between 3×-120×
faster than existing work. In particular, we are up to
18× faster than XONN [9] (11× on average) and 32×
faster than Gazelle (23× on average), 8× faster than
SecureNN (3× on average), and comparable to ABY3

on small networks. We are also 40× more communica-
tion efficient than ABY3 [11], 200× more communica-
tion efficient than SecureNN [12], and over 760× more
communication efficient compared to XONN [9]. Note
that it is hard to compare frameworks without actually
running benchmarks as different protocols scale differ-
ently for different architectures. For instance, GC based
protocols scale better when run over WAN settings and
larger networks change the fraction of the total overhead
from linear layers for reasons described in Section 5.4
and thus affect different protocols differently.

Inference Time and Communication with
Falcon. For both the adversarial settings, the inference
latency for Falcon over LAN is within 25ms for smaller
networks (A and B) and around 100ms for Network-C
and LeNet. For AlexNet and VGG16, the inference time
ranges from 0.5 to 12s depending on the model and the
input dataset. The inference time increases with the size
of the input image. Hence, queries over Tiny ImageNet
are slower than CIFAR-10 for the same model architec-
ture. The inference time over the WAN setting ranges
from 1 to 3s for the networks A, B and C and from 3
to 37s for the larger networks. However, we emphasize
that the inference time with semi-honest adversarial set-
ting is around 3× faster than that for the malicious ad-
versary. Hence, a faster deployment protocol is possible
depending on the trust assumptions of the application.

In addition to efficient response times, our results
show that Falcon requires small amounts of commu-
nication. Parties exchange less than 4MB of data for
smaller networks (Table 2) and 5-400MB for larger net-
works (Table 3) (same for both LAN, WAN). However,
similar to the inference time, malicious setting requires
a higher communication and thus higher run-time.

5.3 Results for Private Training
Tables 4, 5 report the execution time and the com-

munication required for training the 6 networks.

https://github.com/snwagh/falcon-public
https://github.com/snwagh/falcon-public

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 200

Framework Threat Model LAN/ WAN Network-A Network-B Network-C

Time Comm. Time Comm. Time Comm.

2PC

SecureML [4] Semi-honest LAN 4.88 - - - - -
DeepSecure [45] Semi-honest LAN - - 9.67 791 - -
EzPC [7] Semi-honest LAN 0.7 76 0.6 70 5.1 501
Gazelle [8] Semi-honest LAN 0.09 0.5 0.29 0.8 1.16 70
MiniONN [6] Semi-honest LAN 1.04 15.8 1.28 47.6 9.32 657.5
XONN [9] Semi-honest LAN 0.13 4.29 0.16 38.3 0.15 32.1

Chameleon [5] Semi-honest LAN - - 2.7 12.9 - -
ABY3 [11] Semi-honest LAN 0.008 0.5 0.01 5.2 - -
SecureNN [12] Semi-honest LAN 0.043 2.1 0.076 4.05 0.13 8.86

Semi-honest LAN 0.011 0.012 0.009 0.049 0.042 0.51Falcon Malicious LAN 0.021 0.31 0.022 0.52 0.089 3.37
SecureNN [12] Semi-honest WAN 2.43 2.1 3.06 4.05 3.93 8.86

Semi-honest WAN 0.99 0.012 0.76 0.049 3.0 0.5

3PC

Falcon Malicious WAN 2.33 0.31 1.7 0.52 7.8 3.37

4PC FLASH [17] Malicious LAN 0.029 - - - - -
FLASH [17] Malicious WAN 12.6 - - - - -

Table 2. Comparison of inference time of various frameworks for different networks using MNIST dataset. All runtimes are reported in
seconds and communication in MB. ABY3 and XONN do no implement their maliciously secure versions. 2-party (2PC) protocols are
presented here solely for the sake of comprehensive evaluation of the literature.

Framework Threat Model LAN/WAN LeNet (MNIST) AlexNet (CIFAR-10) VGG16 (CIFAR-10) AlexNet (ImageNet) VGG16 (ImageNet)

Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

Semi-honest LAN 0.047 0.74 0.043 1.35 0.79 13.51 1.81 19.21 3.15 52.56
Malicious LAN 0.12 5.69 0.14 8.85 2.89 90.1 6.7 130.0 12.04* 395.7*

Semi-honest WAN 3.06 0.74 0.13 1.35 1.27 13.51 2.43 19.21 4.67 52.56Falcon

Malicious WAN 7.87 5.69 0.41 8.85 4.7 90.1 8.68 130.0 37.6* 395.7*

Table 3. Comparison of inference time of various frameworks over popular benchmarking network architectures from the machine learn-
ing domain. All runtimes are reported in seconds and communication in MB. * indicate non-amortized numbers.

Comparison to Prior Work. For private train-
ing, Falcon is up to 6× faster than SecureNN [12] (4×
on average), 4.4× faster than ABY3 and 70× faster than
SecureML [4]. We highlight that Falcon achieves these
speedups due to improved protocols (both round com-
plexity and communication as described in Section 2.3).
Table 4 shows that the communication overhead is 10×
to 100× as compared to other solutions.

Execution Time for Falcon. The time to pri-
vately train networks A, B and C with Falcon is around
3 to 40 hrs. For larger networks, we extrapolate time
from a single iteration of a forward and a backward pass.
The training time ranges from a few weeks to hundreds
of weeks. Although these values seem to be quite large,
high capacity machine learning models are known to
take from a few days to weeks to achieve high accuracy
when trained (both on CPU as well as GPU). Such net-
works can also benefit from transfer learning techniques,
where a public pre-trained model is fine-tuned with a
private dataset. This fine-tuning requires fewer epochs
and hence speed up the overall runtime considerably.

5.4 Compute vs. Communication Cost
Figure 1 shows the computation time as compared

to the communication time for the inference of a single
input over different network sizes. We observe that the
computation cost increases with the network size and
becomes the dominant reason for the performance over-
head in private deep learning with Falcon. The reason
for this is because the complexity of matrix multiplica-
tion is “super-quadratic” i.e., to multiply two n×n ma-
trices, the computation overhead is strictly larger than
O(n2). Note that the communication of the matrix mul-
tiplication protocol in this work is only linear in the size
of the matrices and has a round complexity of a single
round. On the other hand, the non-linear operations,
though more communication expensive in MPC, are ap-
plied on vectors of size equal to the output of the matrix
product and thus are “quadratic.” In other words, the
non-linear operations such as ReLU are applied on the
output of the matrix multiplication (FC/Conv layers)
and are applied on vectors of size O(n2) assuming they
are applied on the output of the multiplication of two

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 201

Framework Threat Model LAN/ WAN Network-A Network-B Network-C

Time Comm. Time Comm. Time Comm.

SecureML [4]* Semi-honest LAN 81.7 - - - - -
SecureML [4] Semi-honest LAN 7.02 - - - - -
ABY3 [11] Semi-honest LAN 0.75 0.031 - - - -
SecureNN [12] Semi-honest LAN 1.03 0.11 - - 17.4 30.6

Semi-honest LAN 0.17 0.016 0.42 0.056 3.71 0.54Falcon Malicious LAN 0.56 0.088 1.17 0.32 11.9 3.29
SecureML [4]* Semi-honest WAN 4336 - - - - -
SecureNN [12] Semi-honest WAN 7.83 0.11 - - 53.98 30.6

Semi-honest WAN 3.76 0.016 3.4 56.14 14.8 0.54Falcon Malicious WAN 8.01 0.088 7.5 0.32 39.32 3.29

Batch Size, Epochs 128, 15 128, 15 128, 15

Table 4. Comparison of training time of various frameworks over popular benchmarking network architectures from the security do-
main. All runtimes are reported in hours and communication in TB. * correspond to 2PC numbers. ABY3 does not implement their
maliciously secure protocols.

Framework Threat Model LAN/ WAN LeNet AlexNet (CIFAR-10) VGG16 (CIFAR-10) AlexNet (ImageNet) VGG16 (ImageNet)

Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

Semi-honest LAN 6.05× 100 0.81 7.89× 101 7.24 8.43× 102 45.9 1.23× 104 222.9 5.19× 103 156.0
Malicious LAN 1.22× 101 4.82 2.82× 102 43.4 3.05× 103 185.3 4.63× 104 1598 1.95× 104 1012

Semi-honest WAN 1.85× 101 0.81 2.33× 102 7.24 2.09× 103 45.9 1.54× 104 222.9 6.89× 103 156.0Falcon

Malicious WAN 5.20× 101 4.82 7.24× 102 43.4 5.26× 103 185.3 5.71× 104 1598 2.47× 104 1012

Batch Size, Epochs 128, 15 128, 90 128, 25 128, 90 128, 25

Table 5. Comparison of training time of various frameworks over popular benchmarking network architectures from the machine learn-
ing domain. All runtimes are reported in hours and communication in TB.

Network Training Inference Falcon Inference Relative
Accuracy Accuracy Accuracy Error

Network-A 98.18% 97.42% 97.42% 0.471%
Network-B 98.93% 97.81% 97.81% 0.635%
Network-C 99.16% 98.64% 98.64% 0.415%
LeNet 99.76% 99.15% 96.85% 0.965%

Table 6. Summary of experiments involving accuracy of neural
networks using secure computation. The first two columns refer
to the plaintext accuracies and relative error refers to the average
relative error of one forward pass computation using Falcon.

n × n matrices. Hence, for large network architectures,
the time required for the matrix-multiplication domi-
nates the overall cost.

This observation is against the conventional wis-
dom that MPC protocols are communication bound and
not computation bound. When running larger networks
such as AlexNet and VGG16, and especially for Tiny
ImageNet, the computation time starts becoming a sig-
nificant fraction of the total time. Hence, we claim that
Falcon is optimized for communication rounds, specif-
ically when operating over large networks. With our re-
sults, we motivate the community to focus on design-
ing faster compute solutions using accelerators such as
GPUs, parallelization, efficient matrix multiplications
and caching, along with the conventional goals of re-
ducing communication and round complexity.

Fig. 1. Compute vs. communication cost for private inference us-
ing Falcon over WAN for the malicious adversary. We show that
as the network size increases, computation becomes a dominant
factor in the overall end-to-end runtime.

5.5 Comparison vs. Plaintext Computation
Given the surprising insights from Figure 1, we also

compare the execution of privacy-preserving computa-
tions with plaintext computations. These results are
summarized in Table 7. We use standard PyTorch li-
braries for the plaintext code, similar hardware as that
of privacy-preserving benchmarks for CPU-CPU com-
parison, and use a single Nvidia P100 GPU for the
GPU-CPU comparison. Our findings indicate that pri-
vate deep learning (over CPU) is within a factor of 40×-

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 202

(a) (b) (c)

Fig. 2. In Figs. 2a, 2b, we study the model accuracy with and without batch normalization layers as a function of epochs for AlexNet
network. As can be seen, batch normalization not only helps train the network faster but also train better networks. In Fig. 2c, we
study the performance overhead of running the network (using Falcon) with and without batch normalization layers.

1200× of plaintext execution of the same network over
CPU and within 50×-four orders of magnitude that of
plaintext execution over GPU (using PyTorch) when
performed over LAN. The overhead further increases by
1.2×-2.4× when comparing against WAN evaluations.
This indicates the importance of supporting GPUs and
optimizers for private deep learning and showcases the
need for further reducing the overhead of MPC pro-
tocols. We believe that it is beneficial for the broader
research community to have an estimate of the gap be-
tween plaintext and privacy-preserving techniques for
realistic size networks and datasets.

5.6 Batch Normalization and Accuracy
We study the benefits of batch normalization for

privacy-preserving training of neural networks. We com-
pute the accuracy of partially trained models after each
epoch with and without the batch normalization layers.
As seen in Figs. 2a, 2b, batch normalization layers not
only help train the network faster but also train better
networks. Fig. 2c demonstrates the overhead of MPC
protocols with and without batch normalization layers.
Given the high round complexity of batch normaliza-
tion, the gap is significant only in the WAN setting.

We also study the effect of our approximations and
smaller datatype on the accuracy of the computation.
We compare the evaluation of the networks with 64-bit
float datatypes over PyTorch against a 32-bit datatype
uint32_t using fixed-point arithmetic for Falcon. The
final layer outputs differ by small amounts (less than
1%) in comparison with the high precision 64-bit com-
putation. As a consequence, as seen in Table 6, most
networks show no/low loss in the overall neural network
accuracy when the computation is performed as fixed-
point integers over 32-bit datatype. This is because the
final prediction is robust to small relative error in in-
dividual values at the output. This also makes the fi-

nal prediction vector inherently noisy and may provide
some defense against model inversion attacks.

6 Related Work
Privacy-preserving Training. In a seminal paper

on private machine learning, Mohassel et al. [4] show
protocols for a variety of machine learning algorithms
such as linear regression, logistic regression and neural
networks. Their approach is based on a 2-party com-
putation model and rely on techniques such as obliv-
ious transfer [46] and garbled circuits [19]. Following
that, Mohassel et al. [11] proposed a new framework
called ABY3 which generalizes and optimizes switch-
ing back and forth between arithmetic, binary, and
Yao garbled circuits in a 3-party computation model.
Wagh et al. [12] proposed SecureNN that considers a
similar 3-party model with semi-honest security and
eliminate expensive cryptographic operations to demon-
strate privacy-preserving training and inference of neu-
ral networks. SecureNN also provides malicious privacy,
a notion formalized by Araki et al. [30] but not cor-
rectness under malicious corruption. Falcon provides
a holistic framework for both training and inference of
neural networks while improving computation and com-
munication overhead as compared to prior work.

Privacy-preserving Inference. Privacy-
preserving inference has received considerable attention
over the last few years. Recall that we have summarized
some of these works in Table 1. Private inference typi-
cally relies on one or more of the following techniques:
secret sharing [11, 12], garbled circuits [7, 9], homomor-
phic encryption [4, 6, 47] or Goldreich-Micali-Wigderson
(GMW) [5, 42], each with its own advantages and disad-
vantages. CryptoNets [48] was one of the earliest works
to demonstrate the use of homomorphic encryption to
perform private inference. CryptoDL [49] developed
techniques that use approximate, low-degree polynomi-

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 203

Run-type
CIFAR-10 Tiny ImageNet

Training Inference Training Inference

AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16

Plaintext CPU-only localhost 1.6× 102 7.3× 102 7.2× 101 3.4× 102 5.0× 102 3.1× 103 2.5× 102 1.3× 103

GPU-assisted localhost 2.8× 101 6.4× 101 3.8× 101 5.8× 101 3.6× 101 1.2× 102 3.8× 101 5.7× 101

Private CPU-only LAN 6.4× 103 2.5× 105 5.6× 103 1.0× 105 6.3× 105 9.5× 105 2.3× 105 4.0× 105

CPU-only WAN 2.4× 104 6.2× 105 1.7× 104 1.6× 105 7.8× 105 1.2× 106 3.1× 105 5.9× 105

Private Bandwidth 6.4× 103 2.5× 105 5.6× 103 1.0× 105 6.3× 105 9.5× 105 2.3× 105 4.0× 105

Table 7. Comparison of private computation (for semi-honest protocols, cf Section 5.1 for network parameters) with plaintext over the
same hardware using PyTorch and a single NVIDIA P100 GPU. Numbers are for a 128 size batch in milliseconds.

als to implement non-linear functions and improve on
CryptoNets. DeepSecure [45] uses garbled circuits to
develop a privacy-preserving deep learning framework.

Chameleon [5] is another mixed protocol frame-
work that uses the Goldreich-Micali-Wigderson (GMW)
protocol [42] for low-depth non-linear functions, gar-
bled circuits for high-depth functions and secret shar-
ing for linear operations to achieve high performance
gains. The above three [4, 5, 11] demonstrate private
machine learning for other machine learning algorithms
such as SVMs, linear and logistic regression as well.
Gazelle [8] combines techniques from homomorphic en-
cryption with MPC and optimally balances the use
of a specially designed linear algebra kernel with gar-
bled circuits to achieve fast private inference. EzPC [7]
is a ABY-based [50] secure computation framework
that translates high-level programs into Boolean and
arithmetic circuits. Riazi et al. propose a framework
XONN [9] and showcase compelling performance for in-
ference on large binarized neural networks and uses gar-
bled circuits to provide constant round private infer-
ence. The work also provides a simple easy-to-use API
with a translator from Keras [51] to XONN. EPIC [52]
demonstrates the use of transfer learning in the space of
privacy-preserving machine learning while Quotient [53]
takes the first steps in developing two party secure
computation protocols for optimizers and normaliza-
tions. CrypTFlow [13] builds on SecureNN and uses
trusted hardware to achieve maliciously secure proto-
cols in a 3PC model. Delphi [10] builds on Gazelle to
further improve performance and proposes a novel plan-
ner that automatically generates neural network archi-
tecture configurations that navigate the performance-
accuracy trade-offs. Astra [15] is a 3PC protocol with
semi-honest security and forms the foundation for a few
follow-up works. BLAZE [16] builds on Astra to achieve
malicious security and fairness in a 3PC honest majority
corruption model and uses an adder circuit approach for
non-linear function computation. Trident achieves the

same result in a 4PC model with further performance
improvements. FLASH [17] also proposes a 4PC model
that achieves malicious security with guaranteed output
delivery. QuantizedNN [14] proposes an efficient PPML
framework using the quantization scheme of Jacob et
al. [54] and provides protocols in all combinations of
semi-honest/malicious security and honest majority vs
dishonest majority corruptions.

7 Conclusion
Falcon supports new protocols for private train-

ing and inference in a honest-majority 3-party setting.
Theoretically, we propose novel protocols that improve
the round and communication complexity and provide
security against maliciously corrupt adversaries with an
honest majority. Falcon thus provides malicious secu-
rity and provides several orders of magnitude perfor-
mance improvements over prior work. Experimentally,
Falcon is the first secure deep learning framework to
examine performance over large-scale networks such as
AlexNet and VGG16 and over large-scale datasets such
as Tiny ImageNet. We also are the first work to demon-
strate efficient protocols for batch-normalization which
is a critical component of present day machine learning.

Acknowledgments
We thank Vikash Sehwag for his help with the ex-

periments, the anonymous reviews, and our Shepherd
Melek Önen. We also thank the following grant/awards
for supporting this work: Facebook Systems for ML
award, Qualcomm Innovation Fellowship, Princeton
CSML DataX award, Princeton E-ffiliates Partnership
award, Army Research Office YIP award, Office of
Naval Research YIP Award, and National Science Foun-
dation’s CNS-1553437 and CNS-1704105, ISF grant
2774/20, BSF grant 2018393, NSF-BSF grant 2015782,
and a grant from the Ministry of Science and Technol-
ogy, Israel, and the Dept. of Science and Technology,
Government of India.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 204

References
[1] E. Bursztein, E. Clarke, M. DeLaune, D. M. Elifff, N. Hsu,

L. Olson, J. Shehan, M. Thakur, K. Thomas, and T. Bright,
“Rethinking the detection of child sexual abuse imagery on
the internet,” in The World Wide Web Conference. ACM,
2019, pp. 2601–2607.

[2] “Child Abusers Run Rampant as Tech Companies Look the
Other Way,” https://www.nytimes.com/interactive/2019/
11/09/us/internet-child-sex-abuse.html, 2019.

[3] H. Cho, D. J. Wu, and B. Berger, “Secure genome-wide as-
sociation analysis using multiparty computation,” in Nature
biotechnology, vol. 36, no. 6, 2018, p. 547.

[4] P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in IEEE Sympo-
sium on Security and Privacy (S&P), 2017.

[5] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar, “Chameleon: A hybrid
secure computation framework for machine learning applica-
tions,” in ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2018.

[6] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural
network predictions via MiniONN transformations,” in ACM
Conference on Computer and Communications Security
(CCS), 2017.

[7] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tri-
pathi, “EzPC: programmable, efficient, and scalable secure
two-party computation for machine learning,” in IEEE Euro-
pean Symposium on Security and Privacy (S&P), 2019.

[8] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“Gazelle: A low latency framework for secure neural network
inference,” in USENIX Security Symposium, 2018.

[9] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “XONN: XNOR-based oblivious deep neural
network inference,” in USENIX Security Symposium, 2019.

[10] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A.
Popa, “Delphi: A cryptographic inference service for neural
networks,” in USENIX Security Symposium, 2020.

[11] P. Mohassel and P. Rindal, “ABY3: A mixed protocol frame-
work for machine learning,” in ACM Conference on Com-
puter and Communications Security (CCS), 2018.

[12] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party
secure computation for neural network training,” in Privacy
Enhancing Technologies Symposium (PETS), 2019.

[13] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow: Secure tensorflow inference,” in
IEEE Symposium on Security and Privacy (S&P), 2020.

[14] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation
of quantized neural networks,” https://eprint.iacr.org/2019/
131, 2019.

[15] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “As-
tra: High throughput 3pc over rings with application to
secure prediction,” in ACM SIGSAC Conference on Cloud
Computing Security Workshop, 2019.

[16] A. Patra and A. Suresh, “Blaze: Blazing fast privacy-
preserving machine learning,” in Symposium on Network
and Distributed System Security (NDSS), 2020.

[17] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH:
Fast and robust framework for privacy-preserving machine

learning,” in Privacy Enhancing Technologies Symposium
(PETS), 2020.

[18] R. Rachuri and A. Suresh, “Trident: Efficient 4pc framework
for privacy preserving machine learning,” in Symposium on
Network and Distributed System Security (NDSS), 2019.

[19] A. C. Yao, “Protocols for secure computations,” in IEEE
Symposium on Foundations of Computer Science (FOCS),
1982.

[20] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[21] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-
throughput secure three-party computation for mali-
cious adversaries and an honest majority,” in Advances in
Cryptology—EUROCRYPT, 2017.

[22] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and
E. Prouff, “Privacy-preserving classification on deep neu-
ral network.” IACR Cryptol. ePrint Arch., vol. 2017, p. 35,
2017.

[23] A. Ibarrondo and M. Önen, “Fhe-compatible batch normal-
ization for privacy preserving deep learning,” in Data Privacy
Management, Cryptocurrencies and Blockchain Technology.
Springer, 2018, pp. 389–404.

[24] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-
Fei, “Faster cryptonets: Leveraging sparsity for real-world
encrypted inference,” arXiv preprint arXiv:1811.09953, 2018.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” https://arxiv.
org/abs/1409.1556, 2014.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
2012.

[27] “MNIST database,” http://yann.lecun.com/exdb/mnist/,
accessed: 2017-09-24.

[28] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10
dataset,” 2014.

[29] J. Wu, Q. Zhang, and G. Xu, “Tiny ImageNet Challenge,”
http://cs231n.stanford.edu/reports/2017/pdfs/930.pdf.

[30] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara,
“High-throughput semi-honest secure three-party compu-
tation with an honest majority,” in ACM Conference on
Computer and Communications Security (CCS), 2016.

[31] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A
framework for fast privacy-preserving computations,” in
European Symposium on Research in Computer Security
(ESORICS), 2008, pp. 192–206.

[32] “Announcing securenn in tf-encrypted,” https://mc.ai/
announcing-securenn-in-tf-encrypted/, 2018.

[33] PySyft, “Implement securenn within pysyft #1990,” https:
//github.com/OpenMined/PySyft/issues/1990, 2019.

[34] “Microsoft photodna cloud service,” 2018. [Online]. Available:
https://www.microsoft.com/en-us/photodna

[35] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership inference attacks against machine learning models,”
in IEEE Symposium on Security and Privacy (S&P), 2017.

[36] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confidence information and basic
countermeasures,” in ACM Conference on Computer and
Communications Security (CCS). ACM, 2015.

[37] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction APIs,” in

https://www.nytimes.com/interactive/2019/11/09/us/internet-child-sex-abuse.html
https://www.nytimes.com/interactive/2019/11/09/us/internet-child-sex-abuse.html
https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/131
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
 http://yann.lecun.com/exdb/mnist/
http://cs231n.stanford.edu/reports/2017/pdfs/930.pdf
https://mc.ai/announcing-securenn-in-tf-encrypted/
https://mc.ai/announcing-securenn-in-tf-encrypted/
https://github.com/OpenMined/PySyft/issues/1990
https://github.com/OpenMined/PySyft/issues/1990
https://www.microsoft.com/en-us/photodna

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 205

USENIX Security Symposium, 2016.
[38] E. Kushilevitz, Y. Lindell, and T. Rabin, “Information-

theoretically secure protocols and security under compo-
sition,” SIAM Journal on Computing, vol. 39, no. 5, pp.
2090–2112, 2010.

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International Conference on Machine Learning, 2015, pp.
448–456.

[40] O. Catrina and A. Saxena, “Secure computation with fixed-
point numbers,” in International Conference on Financial
Cryptography and Data Security, 2010, pp. 35–50.

[41] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure
computation on floating point numbers,” in Symposium on
Network and Distributed System Security (NDSS), 2013.

[42] O. Goldreich, S. Micali, and A. Wigderson, “How to play
any mental game or a completeness theorem for protocols
with honest majority,” in ACM Symposium on Theory of
Computing (STOC), 1987.

[43] R. Canetti, “Security and composition of multiparty crypto-
graphic protocols,” in Journal of CRYPTOLOGY, vol. 13,
no. 1, 2000, pp. 143–202.

[44] ——, “Universally composable security: A new paradigm for
cryptographic protocols,” in IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2001, pp. 136–.

[45] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure:
Scalable provably-secure deep learning,” in Annual Design
Automation Conference, 2018.

[46] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework
for efficient and composable oblivious transfer.” in Advances
in Cryptology—CRYPTO, 2008.

[47] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen:
Maliciously secure coopetitive learning for linear models,” in
IEEE Symposium on Security and Privacy (S&P), 2019.

[48] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter,
M. Naehrig, and J. Wernsing, “CryptoNets: Applying neural
networks to encrypted data with high throughput and
accuracy,” in International Conference on Machine Learning,
2016.

[49] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep
Neural Networks over Encrypted Data,” in Privacy Enhancing
Technologies Symposium (PETS), 2018.

[50] D. Demmler, T. Schneider, and M. Zohner, “ABY – A
framework for efficient mixed-protocol secure two-party
computation.” in Symposium on Network and Distributed
System Security (NDSS), 2015.

[51] F. Chollet et al., “Keras,” https://github.com/fchollet/keras,
2015.

[52] E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren, “EPIC:
efficient private image classification (or: learning from the
masters),” in Cryptographers’ Track at the RSA Conference.
Springer, 2019, pp. 473–492.

[53] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and
A. Gascón, “Quotient: Two-party secure neural network
training and prediction,” in ACM Conference on Computer
and Communications Security (CCS). ACM, 2019, pp.
1231–1247.

[54] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training
of neural networks for efficient integer-arithmetic-only

inference,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[55] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[56] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Backpropaga-
tion applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, 1989.

A Recent Related Work
We compare the theoretical complexities of proto-

cols in Astra, BLAZE, FLASH, and Trident with proto-
cols in Falcon. Since the approach for computing non-
linear operations is fundamentally different, we compare
the end-to-end overhead of the ReLU protocol in each
of these frameworks. Table 8 shows a comparison of the
theoretical complexities. Note that BLAZE and Astra
are 3PC protocols and FLASH and Trident are 4PC pro-
tocols. In terms of evaluation of neural networks, most
of these works evaluate their approach only over DNNs.
None of these frameworks evaluate their approaches for
training of neural networks. Comparison of concrete ef-
ficiency of these protocols is documented in Table 2.

B Theoretical Complexity
We theoretically estimate the overheads of our pro-

tocols in Table 9. The dominant round complexity for
private compare comes from the string multiplication
in Step 6. wrap3 requires one additional round and one
additional ring element (two in malicious security) over
private compare. Computing derivative of ReLU is a
local computation over the wrap3 function. Computing
ReLU requires two additional rounds and one ring el-
ement (two for malicious). Maxpool and derivative of
require rounds proportional to the area of the filter. Fi-
nally, pow, division, and batch-norm require a quadratic
number of rounds in `.

C Datasets
We select 3 datasets popularly used for training im-

age classification models — MNIST [27], CIFAR-10 [28],
and Tiny ImageNet [29]. We describe these below:
(A) MNIST [27]: MNIST is a collection of hand-

written digits dataset. It consists of 60,000 im-
ages in the training set and 10,000 in the test set.
Each image is a 28 × 28 pixel image of a hand-
written digit along with a label between 0 and
9. We evaluate Network-A, B, C, and the LeNet

https://github.com/fchollet/keras

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 206

3PC 4PC

Protocol Astra BLAZE Falcon FLASH Trident

Round Comm. Round Comm. Round Comm. Round Comm. Round Comm.

Multiplication 1 4` 1 3` 1 4` 1 3` 1 3`
ReLU 3 + log ` 45` 4 (κ+ 7)` 5 + log ` 32` log `+ 10 46` 4 8`+ 2

Table 8. Comparison of theoretical complexities of privacy-preserving protocols for Multiplication and ReLU with Astra, BLAZE,
FLASH, Trident, and Falcon. ` is the bit-size of the datatype and κ is the security parameter (usually set to 40).

Protocol Dependence Semi-Honest Malicious

Rounds Comm Rounds Comm

B
as

ic
P

ro
to

co
ls MatMul (x× y)(y × z) 1 kxz 1 2kxz

Private Compare n 2 + log2 ` 2kn 2 + log2 ` 4kn
wrap3 n 3 + log2 ` 3kn 3 + log2 ` 6kn

C
o

m
p

o
u

n
d

P
ro

to
co

ls

ReLU and
n 5 + log2 ` 4kn 5 + log2 ` 8knDerivative of ReLU

MaxPool and
n, {w, h} (wh− 1)(7 + log2 `) 5k + wh (wh− 1)(7 + log2 `) 10k + 2whDerivative of Maxpool

Pow n 5`+ ` · log2 ` 4kn` 5`+ ` · log2 ` 8kn`
Division n 7 + 5`+ ` · log2 ` 4kn`+ 7kn 7 + 5`+ ` · log2 ` 8kn`+ 14kn

Batch Norm r, n 15 + 5`+ ` · log2 ` kr + 4kr`+ 14krn 15 + 5`+ ` · log2 ` 2kr + 8kr`+ 28krn

Table 9. Theoretical overheads of basic and compound protocols. Communication is in Bytes where ` is the logarithm of the ring size
and k is its Byte size. We use n to denote the size of the vector in vectorized implementations. Malicious protocols suffer from higher
communication complexity compared to semi-honest protocols that results in poor concrete efficiency when implemented.

network on this dataset in both the semi-honest
and maliciously secure variants.

(B) CIFAR-10 [28]: CIFAR-10 consists of 60,000
images (50,000 training and 10,000 test images)
of 10 different classes (such as airplanes, dogs,
horses etc.). There are 6,000 images of each class
with each image consisting of a colored 32 × 32
image. We perform private training and inference
of AlexNet and VGG16 on this dataset.

(C) Tiny ImageNet [29]: Tiny ImageNet dataset
consists of 100,000 training samples and 10,000
test samples with 200 different classes [29]. Each
sample is cropped to a size of 64 × 64 × 3. We
perform private training and inference of AlexNet
and VGG16 on this dataset.

D Networks
We evaluate Falcon on the following popular deep

learning networks. We select these networks based on
the varied range of model parameters and different types
of layers used in the network architecture. The first three
networks are purposely selected to perform performance
comparison of Falcon with prior work that evaluated
on these models. The number of layers that we report
include only convolutional and fully connected layers.

We also note that we enable the exact same functional-
ity as prior work with no further approximations. Our
networks achieve an accuracy of 97.42% on Network-
A, 97.81% on Network-B, 98.64% on Network-C, and
99.15% on LeNet – similar to the accuracy obtained by
SecureNN, SecureML, and ABY3 [4, 11, 12].
(A) Network-A: This is a 3 layer fully-connected net-

work with ReLU activation after each layer as was
evaluated in SecureML [4]. This is the smallest net-
work with around 118K parameters.

(B) Network-B: This network is a 3 layer network
with a single convolution layer followed by 2 fully-
connected layers and ReLU activations. This archi-
tecture is chosen from Chameleon [5] with approx-
imately 100K parameters.

(C) Network-C: This is a 4 layer network with 2
convolutional and 2 fully-connected layers selected
from prior work MiniONN [6]. This network uses
Max Pooling in addition to ReLU layer and has
around 10,500 parameters in total.

(D) LeNet: This network, first proposed by LeCun
et al. [55] was used in automated detection of zip
codes and digit recognition [56]. The network con-
tains 2 convolutional layers and 2 fully connected
layers with 431K parameters.

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 207

(E) AlexNet: AlexNet is the famous winner of the
2012 ImageNet ILSVRC-2012 competition [26]. It
has 5 convolutional layers and 3 fully connected
layers and uses batch norm layer for stability, effi-
cient training and has about 60 million parameters.
Falcon is the first private deep learning frame-
work that evaluates AlexNet because of the sup-
port for batch norm layer in our system.

(F) VGG16: The last network which we implement
is called VGG16, the runner-up of the ILSVRC-
2014 competition [25]. VGG16 has 16 layers and
has about 138 million parameters.

E Functionality Descriptions

FPC

Input: The functionality receives inputs {JxiKp}`i=1, r

Output: Compute the following
1. Reconstruct bits xi and x =

∑
xi · 2i

2. Compute b = (x ≥ r)
3. Generate random shares of b and send back to the

parties

Fig. 3. Ideal functionality for ΠPC

FWA

Input: The functionality receives inputs JaKL.
Output: Compute the following

1. Compute b = wrap3(a1, a2, a3, L)
2. Generate random shares of b and send back to the

parties

Fig. 4. Ideal functionality for ΠWA

FReLU

Input: The functionality receives inputs JaKL.
Output: Compute the following

1. Compute b = ReLU(a1 + a2 + a3 (mod L))
2. Generate random shares of b and send back to the

parties

Fig. 5. Ideal functionality for ΠReLU

ΠPrep

Usage: This is used to generate pre-processing material re-
quired for the online protocol.

Setup: This step will have to be done only once.
1. Each party Pi chooses a random seed ki
2. Send this random seed to party Pi+1

Common randomness: Let F be any seeded PNRG. Then
3-out-of-3 and 2-out-of-3 common randomness described
in Section 3.2 can be generated as follows:
1. αi = Fki

(cnt)− Fki−1 (cnt) and cnt++
2. (αi, αi−1) = (Fki

(cnt), Fki−1 (cnt)) and cnt++
Truncation Pair: Generate truncation pair JrK, Jr′K =

Jr/2dK.
1. Run protocol Πtrunc2 from [11] (Figure 3)

Correlated randomness for Private Compare:
Generate correlated randomness required for ΠPC
1. Sample random bit JbK2

2. Use bit injection from [11] JbK2 → JbKp

3. Sample random values m1, . . .mk ∈ Zp.
4. Compute and open mp−1

1 , . . . ,mp−1
k

.
5. Remove openings that equal 0 and queue open-

ings that equal 1. Note that this computation takes
dlog2 pe rounds and can be amortized for efficiency
(by setting a large value of k).

Correlated randomness for Wrap3: Generate corre-
lated randomness required for ΠWA
1. Sample random bits JriK2 for i ∈ [`]
2. Perform bit composition from [11] to get JriKL

3. Use bit injection from [11] JriK2 → JriKp

4. Use the optimized full adder FA to compute the final
carry bit. Note that this bit is precisely wrap3(·)

Correlated randomness for ReLU: Generate corre-
lated randomness required for ΠReLU
1. Sample random bit JbK2

2. Use bit injection from [11] JbK2 → JbKL

Correlated randomness for Maxpool and Division:
No additional correlated randomness necessary other than
that used in their subroutines.

Fig. 6. Protocols for generating various pre-processing material

Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 208

FMaxpool

Input: The functionality receives inputs Ja1KL, . . . JanKL.
Output: Compute the following

1. Reconstruct a1, . . . an and compute k =
argmax{a1, . . . an}.

2. Set ek = {e1, e2, . . . en} with ei = 0 ∀i 6= k and
ek = 1.

3. Generate random shares of ak and ek and send back
to the parties.

Fig. 7. Ideal functionality for ΠMaxpool

FPow

Input: The functionality receives inputs JbKL and an index
k ∈ {0, 1, . . . `− 1}.

Output: Compute each bit of α sequentially as follows:
1. Reconstruct b.
2. Compute α such that 2α−1 < b ≤ 2α

3. If k = 0 send α[i] for i ∈ {`− 1, . . . , 0} to all parties.
4. If k 6= 0 send α[i] for i ∈ {`− 1, . . . , k} to all parties

and then Abort.

Fig. 8. Functionality for ΠPow

FDiv

Input: The functionality receives inputs JaKL, JbKL and an
index k ∈ {0, 1, . . . `− 1}.

Output: Compute the following
1. Reconstruct a, b.
2. Compute α such that 2α ≤ b < 2α+1

3. If k = 0 send α[i] for i ∈ {`− 1, . . . , 0} to all parties.
4. If k 6= 0 send α[i] for i ∈ {`− 1, . . . , k} to all parties

and then Abort.
5. Generate random shares of a · AppDiv(b) and send

back to the parties

Fig. 9. Ideal functionality for ΠDiv

FBN

Input: The functionality receives inputs Ja1KL, . . . JanKL

and JγKL, JβKL and an index k ∈ {0, 1, . . . `− 1}.
Output: Compute the following

1. Reconstruct a1, . . . an and compute µ and σ2 as given
in Step 1,2 of Algorithm 7

2. Set b = σ2 + ε and compute α such that 2α ≤ b <

2α+1

3. If k = 0 send α[i] for i ∈ {`− 1, . . . , 0} to all parties.
4. If k 6= 0 send α[i] for i ∈ {`− 1, . . . , k} to all parties

and then Abort.
5. Complete steps 4-8 of Algorithm 7 and return random

shares of the output.

Fig. 10. Ideal functionality for ΠBN

	Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning
	1 Introduction
	2 Falcon Overview
	2.1 A 3-Party Machine Learning Service
	2.1.1 Motivating Application: Detection of Child Exploitative Images Online

	2.2 Threat Model
	2.3 Technical Contributions
	2.3.1 Comprehensive Evaluation

	3 Protocol Constructions
	3.1 Notation
	3.2 Basic Operations
	3.3 Private Compare
	3.4 Wrap Function
	3.5 ReLU and Derivative of ReLU
	3.6 Maxpool and Derivative of Maxpool
	3.7 Division and Batch Normalization

	4 Theoretical Analysis
	4.1 Security Proofs
	4.1.1 Protocol Overheads

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results for Private Inference
	5.3 Results for Private Training
	5.4 Compute vs. Communication Cost
	5.5 Comparison vs. Plaintext Computation
	5.6 Batch Normalization and Accuracy

	6 Related Work
	7 Conclusion
	A Recent Related Work
	B Theoretical Complexity
	C Datasets
	D Networks
	E Functionality Descriptions

