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Abstract
Understanding the fundamental limits of robust
supervised learning has emerged as a problem of
immense interest, from both practical and theo-
retical standpoints. In particular, it is critical to
determine classifier-agnostic bounds on the train-
ing loss to establish when learning is possible. In
this paper, we determine optimal lower bounds on
the cross-entropy loss in the presence of test-time
adversaries, along with the corresponding opti-
mal classification outputs. Our formulation of the
bound as a solution to an optimization problem
is general enough to encompass any loss func-
tion depending on soft classifier outputs. We also
propose and provide a proof of correctness for a
bespoke algorithm to compute this lower bound
efficiently, allowing us to determine lower bounds
for multiple practical datasets of interest. We use
our lower bounds as a diagnostic tool to deter-
mine the effectiveness of current robust training
methods and find a gap from optimality at larger
budgets. Finally, we investigate the possibility
of using of optimal classification outputs as soft
labels to empirically improve robust training.

1. Introduction
The robustness of machine learning systems, particularly
classifiers in the supervised setting, to adversarial perturba-
tions (Szegedy et al., 2013; Goodfellow et al., 2015; Car-
lini & Wagner, 2017; Bhagoji et al., 2018; Madry et al.,
2018) has become an important line of research owing to
the critical role they play in society. While there is a tremen-
dous amount of work on attacks and defenses (Papernot
et al., 2016), a focus of recent research (Bhagoji et al., 2019;
Dohmatob, 2019; Schmidt et al., 2018; Cullina et al., 2018;
Mahloujifar et al., 2019; Diochnos et al., 2018) has been
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on establishing fundamental bounds on learning in the pres-
ence of test-time adversaries in various settings. One line of
research (Bhagoji et al., 2019; Dohmatob, 2019; Pydi & Jog,
2020) into the limits of learning in the presence of test-time
attackers has established classifier-agnostic lower bounds
on adversarial robustness, i.e. the minimum 0 − 1 loss
that would be incurred by any classifier, when adversarial
perturbations are added to the underlying data distribution.
However, practical approaches to training classifiers such as
neural networks usually use surrogate loss functions such as
the cross-entropy loss that depend on the output confidence,
and it is critical to establish bounds on these.

Thus, in this paper, we extend work on the information-
theoretic limits of learning in the presence of test-time ad-
versaries to any loss function that uses the output probabili-
ties of a classifier, such as the cross-entropy loss. The key
question this paper answers is:

What is the minimum possible cross-entropy loss that will
be incurred by any classifier given a data distribution and
adversary specification?

Answering this question enables us to quantitatively diag-
nose the effectiveness of practical defenses against adver-
sarial examples (Madry et al., 2018; Zhang et al., 2019),
and can inform the design of better learning algorithms. In
particular, we can determine if current robust optimization
techniques are able to recover these bounds as well as find
regimes in which robust classification is not possible. A
further goal is to investigate the findings from Bhagoji et al.
(2019) which indicated a large gap between the theoretically
determined lower bound for the 0 − 1 loss and what was
achievable in practice from robust training. We seek to de-
termine if the gap arises solely from the use of a surrogate
loss during training or if there is a more fundamental barrier
to robustness.

To determine classifier-agnostic lower bounds on the cross-
entropy loss, we focus on the interaction between data points
when they are perturbed. We represent points from each
class as the vertices of a graph, with edges existing be-
tween two vertices if the neighborhoods in which they can
be perturbed overlap. We refer to this structure as a con-
flict graph (first implicitly defined by Bhagoji et al. (2019)).
Data points connected by edges are then challenging to clas-
sify, even for the optimal classifier. The problem is then



Lower Bounds on Cross-entropy Loss in the Presence of Test-time Adversaries

translated to one of finding the output probabilities of the
optimal classifier over this graph. Minimizing the cross
entropy loss over this graph determines these probabilities
and provides a lower bound, which can be efficiently com-
puted as the resulting optimization problem is convex. This
quantity, known as the graph entropy (Körner, 1973), has
independently appeared in information theory as the solu-
tion to a coding problem. We also determine an exact form
for the lower bound on cross-entropy for a mixture of two
Gaussians, along with the optimal classifer and adversarial
strategy.

An efficient determination of these lower bounds is possible
since the optimization problem is convex, but we find that
existing solvers are prohibitively slow for the programs
resulting from real-world distributions of interest. In light of
this, we derive a custom algorithm that exploits the bipartite
structure of the conflict graph and can determine bounds
far faster than a generic convex solver for instantiations
of interest. Our algorithm can find a solution in 10s of
seconds for benchmark datasets such as MNIST (LeCun
& Cortes, 1998), Fashion MNIST (Xiao et al., 2017) and
CIFAR-10 (Krizhevsky & Hinton, 2009). We provide a
proof of correctness and convergence for our algorithm.

We use our algorithm to find lower bounds on the cross-
entropy loss for these benchmark datasets, as well as for
synthetic Gaussian data. Comparing these bounds to the
training loss obtained by state-of-the-art robust optimization
techniques on commonly used deep neural networks, we
find a gap in terms of convergence to the optimal loss. Inter-
estingly, the gap is much larger for the 0−1 loss than for the
cross-entropy loss, indicating that the use of a surrogate loss
does impact achievability but is not the sole reason for it. We
examine the impact of model architectures and activation
functions on this gap, finding that the former aids conver-
gence while the latter has a negligible impact. Finally, for
certain adversarial budgets, we find that the use of soft labels
obtained from our framework during training can aid with
both convergence and generalization. The code to reproduce
all results in this paper is available at https://github.
com/arjunbhagoji/log-loss-lower-bounds.

1.1. Summary of Contributions

General framework for lower bounds for all convex
losses using output probabilities in the presence of test-
time adversaries: Our problem formulation allows us to
determine lower bounds on any loss function for a given
dataset and adversary. In particular, we can compute lower
bounds on the commonly used cross-entropy loss as well as
the the optimal classification probabilities for all points.

Efficient determination of optimal log-loss: We propose
a bespoke algorithm to compute these lower bounds and
provide a proof of its correctness. For practical settings of

interest, our algorithm provides a speedup of multiple orders
of magnitude over a generic convex solver from CVXOPT
(Andersen et al., 2013).

Analyzing the effectiveness of current robust training
methods: Our framework enables us to determine regimes
where robust classification is possible. In these regimes, we
find that current robust training techniques are able to get
close to, but not match, the lower bounds on cross-entropy
loss. This gap is smaller than that for the 0−1 loss observed
in previous work, showing the impact of using surrogate
losses. We also investigate the use of the optimal classifica-
tion probabilities computed by our framework as soft-labels
during training, and find that these aid in both convergence
and generalization for certain adversarial budgets.

2. Lower Bounds on Cross-Entropy Loss
In this section, we derive lower bounds on the cross-entropy
loss in the presence of a test-time attacker by demonstrating
that it is the solution to a convex optimization problem. We
show how this problem can be derived using a graphical
interpretation of the classification problem. Our method
applies to all discrete two-class distributions as well as all
adversaries perturbing points within a non-empty neighbor-
hood. We also extend our framework to the special case of
a mixture of two Gaussians.

2.1. Problem formulation

We consider the following supervised classification problem.
Data points x are drawn from a space X , with labels y ∈
Y = {−1, 1}. The joint probability distribution over this
data is P 1. The classification function (or classifier) f :
X → Y maps data points to the space of labels. We also
define a ‘soft’ classifier h : X → [0, 1]Y that maps data
points to a metric of their confidence of being in a class.
The index of the maximum element of h recovers f . This
approach is followed in classification algorithms such as
logistic regression and neural networks (Shalev-Shwartz &
Ben-David, 2014).

Test-time adversary: We consider a test-time adversary
that can modify any data point to generate an adversarial
example (Goodfellow et al., 2015; Szegedy et al., 2013;
Carlini & Wagner, 2017) within a neighborhood, i.e. x̃ =
N(x), where x̃ is the adversarial example and N(·) is a
non-empty neighborhood function. This general definition
includes the `p family of constraints most widely used in
previous work.

Loss functions and robust training: To obtain a classifier

1We note that some formalizations of the test-time adversary
problem assume that the labels are determined by a ground-truth
classifier.

https://github.com/arjunbhagoji/log-loss-lower-bounds
https://github.com/arjunbhagoji/log-loss-lower-bounds
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robust to test-time adversaries, f must be trained to mini-
mize the robust 0−1 loss, defined as E

[
˜̀
0−1(f, (x, y))

]
=

E
[
supx̃∈N(x) 1 (f(x̃) 6= y)

]
. However, since the 0 − 1

loss is non-differentiable, surrogate losses that are differ-
entiable and upper bound it are used in practice. One of
the most common is the cross-entropy or log loss, defined
as `CE(h, v) = − log h(x)y for a 2-class problem, where
v = (x, y) and h(x) ∈ [0, 1]Y is the probability distribution
over Y that the soft classifier h assigns to x. The robust
classification problem using a surrogate loss ` is then

inf
h

EP

[
sup

x̃∈N(x)

`CE(h, (x̃, y))

]
= inf

h
EP
[
˜̀CE(h, (x, y))

]
(1)

The robust cross-entropy loss is of particular interest in the
robust training of neural networks (Madry et al., 2018).

Problem Statement: Our aim is to determine the value of
infh EP [˜̀CE(h, (x, y))] over all measurable functions h, for
a given discrete, two class distribution P and neighborhood
function N(·).

2.2. Lower bound as the solution to a convex program

We first define a conflict graph in order to cast the problem
of finding the lower bound as an optimization problem over
the vertices of this graph. Then, we show that the feasible set
of output probabilities is determined by the edge incidence
matrix of the conflict graph. Finally, we determine the lower
bound on the cross-entropy loss by minimizing over this
feasible set.

Conflict graph: We define a conflict graph G = (V, E) that
accounts for intersections between the neighborhoods of
points from different classes. Each neighborhood represents
the set of points reachable by the adversary from point x. Let
V ⊆ X ×Y be the support of the distribution P . This means
that each labeled data point (x, y) with strictly positive
probability in P is represented as a vertex v. Since we
consider a binary classification problem, the conflict graph
is bipartite. Each part of the graph is Vc = V ∩ (X × {c}),
where c ∈ {−1, 1}. The edge ((x, 1), (x′,−1)) is present
if and only if N((x, 1)) ∩N((x′,−1)) is nonempty. There
are no edges between vertices in the same part of the graph.

Definition 1. For a soft classifier h, the correct-
classification probability qv that it can achieve on an exam-
ple v = (x, y) in the presence of an adversary is

qv = inf
x̃∈N(x)

h(x̃)y.

Lemma 1 (Feasible output probabilities). Let q ∈ RV be
the vector of correct-classification probabilities obtained by

a classifier. The feasible set of such probabilities is

q ≥ 0

Mq ≤ 1.
(2)

where M =

(
E
I

)
∈ R(EtV)×V and E ∈ RE×V is the edge

incidence matrix of the conflict graph.

Proof. Suppose that (u, v) ∈ E . Then, there is some x̃ ∈
N(u) ∩ N(v). We have qu ≤ h(x̃)1, qv ≤ h(x̃)−1, and
h(x̃)1 + h(x̃)−1 = 1. Combining these gives the constraint
in (2) indexed by (u, v).

Now, we will show that each vector q in the polytope is
achievable by some h. Let h(x̃)1 = supu:x̃∈N(u) qu and
h(x̃)−1 = 1− h(x̃)1. Then,

inf x̃∈N(u) h(x̃)1 = inf x̃∈N(u) supu′:x̃∈N(u′) qu′ ≥
inf x̃∈N(u) qu = qu

The output when the true example is v is
inf x̃∈N(v) h(x̃)−1 = inf x̃∈N(v)(1 − supu:x̃∈N(u) qu) =
infu:∃x̃∈N(u)∩N(v)(1− qu) ≥ qv.

In the non-adversarial case, all constraints in (2) are of
the forms qv ≤ 1 and q(x,1) + q(x,−1) ≤ 1. Non-trivial
adversaries lead to constraints between the probabilities
achieved for distinct examples.

Having determined the feasible set of output probabilities,
we can now determine the minimum possible cross-entropy
loss by minimizing it over this feasible set.

Theorem 1 (Lower bound on cross-entropy loss). The dis-
crete joint probability distribution P over data from two
classes, and the neighborhood function N(·) define a bipar-
tite conflict graph G with incidence matrix E. Let p ∈ RV
with pv = P ({v}). Let q∗ be the minimizer of the following
program:

min
q

∑
v:pv>0

−pv log qv

s.t. q ≥ 0

Mq ≤ 1.

(3)

Then, there is a classifier h∗ that achieves the
correct-classification probabilities q∗ and for all h,
EP [˜̀CE(h∗, v)] ≤ EP [˜̀CE(h, v)].

Proof. From Lemma 1, we know that the constraints in
Eq.(2) represent the feasible set of all possible q. Further,
there exists some h that achieves each q. The objective func-
tion must have a minimum in the feasible set. Additionally,
the objective is convex and the constraints are linear, leading
to a convex program.
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We note that a modification of the program above can be
used to derive the minimum 0 − 1 loss for discrete distri-
butions by setting minq

∑
v p

ᵀq as the objective function.
This partially recovers results from Bhagoji et al. (2019),
although that work considers a more general class of distri-
butions including continuous distributions.

Lemma 2 (Properties of an optimal q). Suppose we have q
and z such that

q ≥ 0 (4)
Mq ≤ 1 (5)
z ≥ 0 (6)

diag(q)M>z ≥ p (7)

1>z ≤ 1>p. (8)

Then, q is optimal in (3).

Proof. From (7) we have 1>p ≤ q>M>z and from the
(5) we have z>Mq ≤ z>1. Then (8) implies 1>z =
1>p = q>M>z. Furthermore pv = (diag(q)M>z)v =
qv(M

>z)v .

There is always some feasible q that makes the objective
function finite, so q∗v = 0 implies pv = 0. For q∗v > 0, the
upper bound on log qv from the linear approximation at q∗v
is qv−q∗v

q∗v
+ log q∗v . Thus

∑
v:pv>0

pv log qv ≤
∑

v:pv>0

pv

(
qv − q∗v
q∗v

+ log q∗v

)
=

∑
v:pv>0

pv
q∗v
qv − 1>p+

∑
v:pv>0

pv log q∗v .

To prove
∑
v −pv log qv ≥

∑
v −pv log q∗v for all q, we

need
∑
v
pv
q∗v
qv ≤ 1>p. To show this, we note that z>Mq ≤

z>1 and 1>z ≤ 1>p. Then, we only need that (z>M)v ≥
pv
q∗v

, which follows from diag(q)M>z = p.

The vector z in Lemma 2 can be interpreted as the optimal
strategy followed by the adversary.

2.3. Gaussian Case

We now consider the case when the data is generated from
a mixture of two Gaussians with identical covariances and
means that differ in their sign. Formally, we have P =
p1N (µ,Σ) + p−1N (−µ,Σ), where p1, p−1 ∈ [0, 1] and
p1 + p−1 = 1. X is then Rd. We set the neighborhood
function N(x) = x+ ε∆, where ε is the adversarial budget
and ∆ ∈ Rd is a closed, convex, absorbing and origin-
symmetric set.

Our first lemma proves that the optimal classifier is linear
and the corresponding optimal adversarial strategy z∗ 2 is
just a translation of each component of the mixture. To show
this, we just establish that these are identical to the solutions
obtained in the 0− 1 loss case, allowing us to use Lemma 1
from (Bhagoji et al., 2019).

Lemma 3. The optimal classifier h∗y minimizing the cross-
entropy loss is given by 1

1+exp (y(w∗)ᵀx) where w∗ =

2Σ−1(µ − z∗), and z∗ is the optimal adversarial strategy
given by Lemma 1 of (Bhagoji et al., 2019).

The cross-entropy lower bound can then be directly com-
puted.

Theorem 2. The cross-entropy lower bound for a mixture
of two Gaussians is

inf
h

EP [˜̀CE(h, v)]

= p1EN(µ−z∗,Σ)[log(1 + exp ((w∗)ᵀx))]

+ p−1EN(µ+z∗,Σ)[log(1 + exp (−(w∗)ᵀx))]

(9)

We defer the proofs to Section A of the Supplementary.

3. Efficiently Computing Lower Bounds
In this section, we show that the convex program defined
above can be efficiently solved by lower bounding its objec-
tive with a linear function and solving a recursive series of
linear programs. We develop a specialized algorithm instead
of using an off-the-shelf convex program solver in order to
exploit the structure in the problem for faster computation.

3.1. Algorithm overview

Our algorithm (OptProb) executes the following strategy. It
starts by guessing that there is a single correct-classification
probability that should be assigned to all vertices from class
1 and a single probability for vertices from class −1. If this
were the case, those probabilities should reflect the relative
frequencies of the classes. The algorithm solves a linear
program and either finds a dual certificate proving that the
initial guess is correct or a partition of the vertices based
on whether the optimal correct-classification probabilities
are larger or smaller than the guess. In the latter case, the
algorithm is applied recursively to the two subproblems and
their solutions are assembled into a solution to the original
problem. A precise description appears as Algorithm 1.

The computation of OptProb uses the function LinOpt
at each stage of the recursion. The function
LinOpt(A,B, E , P ) solves a dual pair of linear programs
with variables y ∈ RA∪B and z ∈ R(A×B)∪A∪B :

2We note that there is a slight abuse of notation here since z in
the previous section is a probability and is a perturbation here.
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Algorithm 1 OptProb
Input: Bipartite graph (A,B, E), vertex weights P
Output: Classifier probabilities q, adversarial strategy z

1: (A+,A−,B+,B−, zlin) = LinOpt(A,B, E , P )
2: if P (A+)P (B+) > P (A−)P (B−) then
3: E ′ = E ∩ (A+ × B−)
4: E ′′ = E ∩ (A− × B+)
5: (q′, z′) = OptProb(A+,B−, E ′, P )
6: (q′′, z′′) = OptProb(A−,B+, E ′′, P )

7: q = v 7→

{
q′v v ∈ A+ ∪ B−

q′′v v ∈ A− ∪ B+

8: z = e 7→


z′e e ∈ (A+ × B−) ∪ A+ ∪ B−

z′′e e ∈ (A− × B+) ∪ A− ∪ B+

0 otherwise
9: else

10: q = v 7→

{
P (A)/P (A ∪ B) v ∈ A
P (B)/P (A ∪ B) v ∈ B

11: z = zlin

12: return (q, z)

max r>y

y ≥ 0

My ≤ 1

min1>z

z ≥ 0

M>z ≥ r
where r ∈ RA∪B is defined as follows. If both P (A) > 0
and P (B) > 0, then

rv =

{
P ({v})P (A ∪ B)/P (A) v ∈ A
P ({v})P (A ∪ B)/P (B) v ∈ B

and otherwise rv = P ({v}).

The primal polytope is the vertex packing polytope of the
bipartite graph (A,B, E). This is integral, so there is some
optimal y ∈ {0, 1}A∪B. The sets A+,A−,B+,B− encode
the support of y in a way that is convenient for expressing
OptProb: A+ = {v ∈ A : yv = 1}, A− = A \ A+,
B+ = {v ∈ B : yv = 1}, and B− = B \ B+. The support
of y is an independent set: (A+ × B+) ∩ E = ∅.

3.2. Proof sketch for algorithm optimality

Theorem 3 (Convergence to optimal for algorithm). The
proposed Algorithm 1 returns the correct optimal classifier
probability: the minimizer of (3).

The proof of Theorem 3 mirrors the recursive structure of
OptProb and uses induction on the number of vertices. It
relies on two technical lemmas (proofs deferred to Section
B of the Supplementary). Lemma 4 establishes properties
of the solutions to linear programs that are solved at each it-
eration. The proof uses standard duality and complementary

slackness arguments for linear programs.

Lemma 4. The function LinOpt(A,B, E , P ) produces
(A+,A−,B+,B−, z) with the following properties.

1. P (A+)P (B+) ≥ P (A−)P (B−)

2. If P (A+)P (B+) = P (A−)P (B−), then

(a) 1>z = P (A ∪ B),

(b) P (A)
P (A∪B) (M>z)v = P ({v}) for all v ∈ A,

(c) P (B)
P (A∪B) (M>z)v = P ({v}) for all v ∈ B.

Lemma 5 establishes that OptProb terminates and describes
the structure of the optimal (q, z) in detail. Both vertex sets
are split in partitions with paired parts and each pair of
parts behaves similarly to a complete bipartite graph. Edges
between pairs of parts are restricted by an order relation.

Lemma 5. If P (A ∪ B) > 0, the computation of
OptProb(A,B, E , P ) terminates and produces a pair (q, z).
For some [k] = {0, 1, . . . , k − 1}, there are functions
a : A → [k] and b : B → [k] with the following prop-
erties.

1. If (u, v) ∈ E , a(u) ≤ b(v).

2. We have z ≥ 0, 1>z = P (A ∪ B), and P ({v}) =
qv(M

>z)v .

3. Let Ai = a−1(i) and Bi = b−1(i).
For all i, P (Ai ∪ Bi) > 0. For all u ∈ A and v ∈ B,
qu =

P (Aa(u))

P (Aa(u)∪Ba(u))
and qv =

P (Ab(v))

P (Ab(v)∪Bb(v))
.

4. For u, u′ ∈ A, if a(u) ≤ a(u′) then qu ≤ qu′ .

Proof of Theorem 3. From Lemma 5, we have that the com-
putation of OptProb terminates and some information about
(q, z) = OptProb(V1,V−1, E , P ). Properties 1,3, and 4 to-
gether imply (4) and (5) (i.e. that q is feasible in (3)): for
any (u, v) ∈ E , there is some u′ such that a(u′) = b(v) and
qu ≤ qu′ = 1 − qv. Property 2 provides (6), (7), and (8).
Lemma 2 establishes the optimality of q.

3.3. Complexity analysis

In the worst case, at each step of the algorithm, only a
single vertex will be removed from one part of the bipartite
graph, and the algorithm will only terminate when only
singleton parts of the graph remain. In this case, if there are
|V| vertices in the graph, there will be |V| recursive steps,
with each run taking O(|V||E| log(|V|2/|E|)) (Goldberg &
Tarjan, 1988).
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(b) Fashion MNIST
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(c) CIFAR-10

Figure 1. Variation in minimum log-loss for an `2 adversary with adversarial budget ε and the number of samples from each class. The
maximum possible log-loss is ln 2, which is around 0.693. The total number of samples is 5000.

4. Experiments: Using Bounds as a
Diagnostic Tool

In the previous section, we derived lower bounds on the
cross-entropy loss that are applicable for all discrete distri-
butions as well as for Gaussian data. In this section, we
compute and use these bounds as a diagnostic tool to better
understand limits of robust learning for practical datasets
and algorithms. We determine lower bounds on the cross-
entropy loss for practical datasets of interest. We analyze
the runtime of Algorithm 1 and show its speedup over the
generic non-linear convex solver from CVXOPT (Andersen
et al., 2013). Finally, we uncover a gap between the loss
obtained by several robust training methods and the lower
bound, and investigate the use of ‘soft-label’ training with
optimal classifier outputs to close this gap. All results are
obtained on an Intel Xeon cluster with 8 P100 GPUs.

4.1. Lower bounds on robustness for real-world
datasets

From Theorem 3 and Algorithm 1, we have an efficient
method to compute the optimal log-loss for any empirical
distribution. Here, we consider 3 benchmark computer
vision datasets: MNIST (LeCun & Cortes, 1998), Fashion
MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky &
Hinton, 2009). Each of these datasets is originally a 10-
class classification problem, and from each, without loss
of generality, we choose the ‘3 vs. 7’ classification task as
a representative binary classification problem (results for
other choices are in Section C.1. of the Supplementary). In
each case, there are a total of n = 5000 training samples
per class which can be used to compute the lower bound.

To derive a numerical bound, we need to specify the neigh-
borhood function (adversarial constraints). While our
bounds are valid for any non-empty neighborhood func-
tion, we pick the commonly used `2-norm ball constraint,
parametrized by its radius ε. This has been used numer-
ous times for both attacks (Carlini & Wagner, 2017) and
defenses (Madry et al., 2018), and has well-established
benchmarks (adv). Although `p-norm constraints have been
critiqued (Gilmer et al., 2018a; Evtimov et al., 2020), we

nonetheless choose to use them to provide a point of com-
parison with existing work.

Algorithm implementation: We first create the conflict
graph by checking for `2 ball intersections between all pairs
of points from the two classes. The number of vertices
V in the conflict graph G is n1 + n−1. We will generally
consider the case when the total number of datapoints in
each class is equal, giving |V| = 2n. The total number of
edges E is then p̂(n, ε)n2, where p̂(n, ε) is an estimate of
the probability that the neighborhoods around points from
the two classes have a non-empty intersection. We find that
for the `2 norm, p̂(n, ε) increases monotonically with ε and
unlike the log-loss, is largely independent of the number of
samples (Section C.2. of the Appendix).

Using this conflict graph, represented by a sparse matrix,
we use Algorithm 1 to compute the lower bound. We use
the maximum flow algorithm from Scipy (Virtanen, 2020)
as LinOpt at the top level and for each recursively obtained
split. This implementation uses the Edmonds-Karp (Ed-
monds & Karp, 1972) algorithm. We note that any linear
program solver can be used and casting the problem as
maximum flow is not canonical.

Numerical lower bounds: In Figure 1, we plot the varia-
tion in the minimum cross-entropy loss over the full set of
5000 training samples for all 3 datasets as the adversary’s `2
budget is varied. The lower bound is only non-trivial after a
budget of around 3.0 for the MNIST dataset and 4.0 for the
CIFAR-10 dataset. At smaller budgets, the optimal classifier
can achieve 0 loss even in the presence of an adversary. We
note that this classifier may not generalize well to test data,
since these bounds do not represent the population lower
bound over the unknown underlying distribution.

Impact of subsampling: We also analyze the impact of
subsampling from the complete set of samples to under-
stand the dependence of the lower bound on the number of
samples. We find that as the number of samples increases,
the lower bound increases as well, indicating the presence of
more intersections among samples, and thus more flexibility
for the adversary.

Empirical runtime comparison: We compare the runtime
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Figure 2. Algorithm runtime comparisons for CIFAR-10

of Algorithm 1 using the max-flow solver from Scipy to
that of the general purpose solver for convex programs with
non-linear objective functions from CVXOPT (Andersen
et al., 2013), which uses primal-dual interior point methods
(Boyd et al., 2004).

The two parameters that determine the runtime of the algo-
rithms to compute the minimum log-loss are the number of
vertices |V| and the adversary’s budget ε which controls the
graph density. In Figure 2a, we show the variation in CPU
time in seconds as the number of vertices in each class is
varied. The mean and standard deviation over 10 runs is
reported and the maximum time either algorithm is allowed
to run is 10, 000 seconds after which it is terminated. It
is clear that our custom algorithm runs significantly faster
than the general purpose convex solver, with speed-ups of
up to 3000×. The advantages are even starker as ε is varied
in Figure 2b, with the general purpose solver taking in ex-
cess of 10, 000 seconds for any budget greater than 5.6. We
can draw the same conclusions for the other two datasets
from the runtime analysis presented in Section C.3. of the
Supplementary.

4.2. Synthetic Gaussian data

From Section 2.3, we have a complete characterization of
the robust learning problem for Gaussian distributions with
respect to the cross-entropy loss. We use this to study
the gap between population-level and sample-level cross-
entropy lower bounds, finding that this gap increases with
the dimension of the data. Thus, when the underlying dis-
tribution is unknown, sample-level lower bounds must be
used carefully, especially with a small number of samples.

We use a diagonal covariance matrix Σ with Σii sampled
uniformly between 0 and 1, and set µi = CΣii√

d
, where C

is a constant determining the distance between the means.
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Figure 3. Comparing the population-level and sample-level lower
bounds on cross-entropy loss for synthetic 2-class Gaussian data
of dimension 100.

The two classes have identical covariances and means of
opposite sign. In Figure 3, we compare the lower bound
on cross-entropy loss directly obtained from Theorem 2
(‘Population loss’) and that over the empirical distributions
resulting from sampling it (‘k samples’) for d = 100. In the
latter case, the lower bounds are computed using Algorithm
1. The reason for the lack of intersections at lower budgets
for the empirical distribution is that in high dimensions, even
when the underlying distributions overlap, further perturba-
tion is needed for intersections between the neighborhoods
of sampled points. Results for other choices of d are in
Section C.4. of the Supplementary.

4.3. Evaluating the performance of robust training

We now compare the cross-entropy loss obtained by ro-
bust training techniques such as adversarial training (Madry
et al., 2018) and TRADES (Zhang et al., 2019) to our lower
bounds. We present results on the MNIST (LeCun & Cortes,
1998) and Fashion-MNIST (Xiao et al., 2017) datasets in the
main body, and on CIFAR-10 in Section ?? of the Appendix.

Our key takeaways are i) standard adversarial training can
achieve close to the minimum cross-entropy loss with a suf-
ficiently large architecture, but a gap still remains for the
0− 1 loss and, ii) soft label training with optimal probabili-
ties obtained from our framework can help close this gap as
well as aid in generalization in some cases.

Robust training setup. We train a ResNet-18 network
using adversarial training and TRADES, these being the
most effective robust training methods for an `2 adversary
(Croce et al., 2020). The robust cross-entropy loss for these
models is computed using the state-of-the-art AutoAttack
(Croce & Hein, 2020). Adversarial training, referred to
as ‘hard labels’ in Figure 4, utilizes one-hot labels, while
TRADES uses the network’s own prediction as soft-labels.

How close is the robust training loss of current tech-
niques to optimal? In Figure 4, for both datasets, adversar-
ial training achieves close to the minimum possible cross-
entropy loss on the training data. However, TRADES is
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Figure 4. Comparison on training data between the cross-entropy
loss (computed using AutoAttack) obtained by different training
methods versus the optimal loss.

outperformed by standard adversarial training with hard
labels. This runs counter to earlier observations at lower
adversarial budgets that TRADES was more robust. In the
case of the 0− 1 loss for all datasets and the cross-entropy
loss for CIFAR-10, the gap is far larger even for moderate
budgets (Section D of the Supplementary). Nevertheless,
since a gap exists even for the cross-entropy loss, we can
rule out the possibility that the gap previously observed for
the 0 − 1 loss in Bhagoji et al. (2019) is only due to the
use of a surrogate loss. Our experiments indicate that at
larger adversarial budgets, especially for the MNIST and
CIFAR-10 datasets, robust training does not converge to
the optimal loss. We leave for future work to determine if
closing this gap will lead to improved generalization.

We also conduct ablation studies with larger networks and
smoother activation functions, techniques known to help
with robust training. Resnet-101 for FMNIST reduces cross-
entropy loss to 0.42, in comparison to 0.45 with ResNet-18,
which is close to the optimal loss for Fashion MNIST at
ε = 5.0. Additionally, with over 15 different activation
functions, we did not observe any significant drop in cross-
entropy loss compared to the standard ReLU. Further details
and results are in Section D.2. of the Supplementary.

Using soft labels. Training using soft labels is known to
improve the performance of deep neural networks (Zheng
et al., 2016). Since at higher values of ε, the optimal classi-

Table 1. Comparison of train and test set robust accuracy with
different robust training techniques for the FMNIST dataset.

FMNIST (ε = 4.6) FMNIST (ε = 5.0)

Train Test Train Test

Hard labels 0.349 0.348 0.451 0.451
Clipped soft labels 0.326 0.331 0.419 0.420

Optimal 0.305 – 0.401 –

fier may assign a higher probability to the opposite class as
the true label, the obtained soft labels are noisy. To avoid
introducing this label noise, while also extracting meaning-
ful gradients, we impose a lower bound on the probability
of the correct class (details in Section ?? of the Appendix).
We find that training with these clipped soft-labels can re-
duce the cross-entropy loss by a significant margin (Table
1). Additionally, this method can also improve the 0−1 loss
for the MNIST datasets for a range of budgets (Section D.1.
of the Supplementary). Overall, these results indicate that
appropriately calibrated soft label training can help with
robustness.

5. Related Work
We only discuss the closest related work here on theoretical
analysis of test-time adversaries and robust training. Exten-
sive surveys (Papernot et al., 2016; Liu et al., 2018; Biggio
& Roli, 2017; Li et al., 2020) provide a broader overview.

Information-theoretic limits on robust learning. All pre-
vious work on information-theoretic limits on robust learn-
ing has focused on the 0 − 1 loss. (Dohmatob, 2019) and
(Mahloujifar et al., 2019) use the ‘blowup’ property of spe-
cific data distributions to determine bounds on the robust
loss, given some level of loss on benign data. (Bhagoji
et al., 2019) and (Pydi & Jog, 2020) use optimal transport to
provide lower bounds on the robust loss for a general class
of distributions, without a dependence on the loss on benign
data. While (Pydi & Jog, 2020) does consider convex losses,
we are the first to provide an explicit method and framework,
as well as numerical results, for the cross-entropy loss.

Generalization for adversarially robust learning. A
number of papers analyze the sample complexity of robust
learning for specific distributions of interest such as Gaus-
sians (Schmidt et al., 2018; Javanmard et al., 2020; Dan
et al., 2020), uniform (Diochnos et al., 2018) and spherical
(Gilmer et al., 2018b). The sample complexity of PAC-
learning (worst case over distributions) for robust classifiers
has also been derived (Cullina et al., 2018; Yin et al., 2019;
Montasser et al., 2019). However, this line of work does not
analyze the minimum possible loss, only the gap between
the minimum and learned.

Computational limits of robust learning. Computation-
ally bounded adversaries (Garg et al., 2020) were consid-
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ered to devise instances where there is a separation between
their power and that of unbounded adversaries. Other work
(Bubeck et al., 2018; Awasthi et al., 2019; Montasser et al.,
2020) has focused on instances where computationally effi-
cient robust learning is possible.

Robust training of neural networks. Adversarial train-
ing (Madry et al., 2018) with follow-up improvements in
TRADES (Zhang et al., 2019), remains the most successful
robust training technique. Its performance is further im-
proved with larger networks (Gowal et al., 2020), smooth
activations (Xie et al., 2020), early stopping (Rice et al.,
2020), and careful tuning of weight decay (Pang et al., 2021).
Some other works investigate the effect of weight pertur-
bation (Wu et al., 2020), weight averaging (Gowal et al.,
2020), sub-networks on robustness (Sehwag et al., 2020)
and additional data (Carmon et al., 2019). Wang et al. (2020)
further demonstrate minor improvements in robustness with
sample-weighted adversarial training. Goibert & Dohma-
tob (2019) show that the use of smoothed labels obtained
from the classifier can improve upon benign training, but
performs worse than standard adversarial training. For a
detailed comparison of state-of-the-art robust training tech-
niques, we refer the reader to RobustBench (Croce et al.,
2020).

6. Discussion
In this paper, we have provided a framework to compute
optimal lower bounds on the cross-entropy loss for general
discrete distributions as well as Gaussian mixtures. We
showed how to leverage this framework to analyze current
robust training methods.

While the results in this paper are restricted to the two-class
case, here we sketch how they can be extended to the multi-
class setting. There are several relationships between our
approach to the two class problem and the analogous quan-
tities for the k-class problem with k ≥ 3. When k ≥ 3, the
targeted and untargeted adversarial classification problems
become distinct. The untargeted version is the direct gen-
eralization of our formulation for the two class version. In
the targeted version, in addition to a labeled example, the
adversary received another random class label that serves
as the target and the classifier incurs a loss based on the
probability for the target class assigned to the adversarial
example. Clearly, the untargeted version is more favorable
for the adversary and the optimal loss for the untargeted
version is at least as large as the optimal loss for the targeted
version. Using the optimal losses for all of the one-vs-one
and one-vs-rest two-class classification tasks, simple lower
bounds on the optimal loss for both versions of the k-class
problem can be derived.

Our characterization of the exact optimal loss extends to

the untargeted version of the k-class problem in a reason-
bly straightforward manner. The bipartite conflict graph is
replaced with a k-partite hypergraph: hyperedges contain
up to one vertex from each class. A polytope derived from
this hypergraph contains the achievable correct classifica-
tion probabilities. Minimizing the cross-entropy over this
polytope is still a convex problem, but our special purpose
algorithm no longer applies. The situation in the targeted
case is more complicated and we are currently extending
our framework to handle this case.

On the empirical front, we aim to further investigate the
convergence of robust training for complex datasets such
as CIFAR-10, as well as to use our framework to guide the
generation of more robust feature representations. The link
between achieving a training loss close to optimal and the
generalization gap for robust training is one of great interest
for future work in this domain.
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