
Fair K Mutual Exclusion Algorithm for Peer To Peer Systems ∗

Vijay Anand Reddy, Prateek Mittal, and Indranil Gupta
University of Illinois, Urbana Champaign, USA

{vkortho2, mittal2, indy}@uiuc.edu

Abstract

k-mutual exclusion is an important problem for resource-
intensive peer-to-peer applications ranging from aggrega-
tion to file downloads. In order to be practically useful,
k-mutual exclusion algorithms not only need to be safe and
live, but they also need to be fair across hosts. We pro-
pose a new solution to the k-mutual exclusion problem that
provides a notion of time-based fairness. Specifically, our
algorithm attempts to minimize the spread of access time
for the critical resource. While a client’s access time is
the time between it requesting and accessing the resource,
the spread is defined as a system-wide metric that measures
some notion of the variance of access times across a homo-
geneous host population, e.g., difference between max and
mean. We analytically prove the correctness of our algo-
rithm, and evaluate its fairness experimentally using simu-
lations. Our evaluation under two settings - a LAN setting
and a WAN based on the King latency data set - shows even
with 100 hosts accessing one resource, the spread of access
time is within 15 seconds.

1. Introduction

In peer to peer (p2p) systems, a distributed k mutual ex-
clusion primitive provides a mechanism to share resources
like bandwidth in a decentralized fashion. Consider a cen-
tral statistics collection server in a p2p system (for exam-
ple Planet-Lab [13]) that provides some distributed services.
The limited bandwidth at the server is the bottleneck here,
and in such a scenario, a k mutual exclusion primitive can
be used to cap the number of simultaneous connections to
the server at k, while providing access to the server in a
decentralized manner. We note that while there is a lot
of emerging work on distributed data collection and data
aggregation [22, 23], the current infrastructure for statis-
tics collection is largely centralized [17]. Another example
where k mutual exclusion in p2p systems would be useful

∗This work was supported in part by NSF CAREER grant CNS-
0448246 and in part by NSF ITR CMS-0427089.

is when multiple clients are simultaneously downloading
a large multimedia file, e.g., [3, 12]. Finally applications
where a service has limited computational resources will
also benefit from a k mutual exclusion primitive, preventing
scenarios where all the nodes of the p2p system simultane-
ously overwhelm the server.

The k mutual exclusion problem involves a group of pro-
cesses, each of which intermittently requires access to an
identical resource called the critical section (CS). A k mu-
tual exclusion algorithm must satisfy both safety and live-
ness. Safety means that at most k processes, 1 ≤ k ≤ n,
may be in the CS at any given time. Liveness means that
every request for critical section access is satisfied in finite
time.

For the applications described above, fairness of the
k mutual exclusion primitive is important, to ensure pre-
dictable staleness. In other words, the primitive should en-
sure timeliness of data (statistics) collection across nodes.
Previously proposed algorithms for k mutual exclusion fo-
cus on optimizing the mean time to obtain access to the
critical section, rarely accounting for metrics like fairness.
Thus, new solutions are needed that take fairness into con-
sideration. Our notion of the fairness metric is as follows:
amongst a group of homogeneous nodes having a constant
critical section execution time, the access time spread for
the critical section should be small.

We do not consider fairness to be a binary property; the
smaller the access time spread for the critical section, the
more fair the mutual exclusion algorithm. There are other
ways to measure fairness, e.g., [8] defines fairness as FIFO
with respect to request timestamps. Our notion of fairness
is more practical, yet it provides FIFO ordering as a side
affect.

In this paper, we propose a practical fair algorithm for k
mutual exclusion in p2p systems that minimizes the differ-
ence between maximum and mean time to access the criti-
cal section. We prove that our algorithm satisfies both the
safety and liveness requirements. We show that our algo-
rithm provides an order of magnitude better fairness char-
acteristics as compared to the best-known k mutual exclu-
sion algorithm [2], while the asymptotic bounds on both the

mean time to access the critical section, as well as the num-
ber of messages per critical section entry, remain the same.
We also propose a fault tolerant methodology for our algo-
rithm and show that it is resilient against churn.

2. Related Work

Classical mutual exclusion algorithms can be classified
into two groups: permission (quorum)-based and token-
based. Permission-based algorithms [6,9,16] require one or
more successive rounds of message exchanges among the
nodes to obtain the permission to execute the CS. In token-
based algorithms [4,11,15] a unique token is shared among
the nodes. A node is allowed to enter its critical section only
if it possesses the token.

The generalization to k mutual exclusion was proposed
by Raymond [14], but the algorithm is permission based.
Srimani and Reddy [19] proposed a token based algorithm
for the k mutual exclusion problem by extending the ideas
of Suzuki and Kasami [21]. Their algorithm involves flood-
ing of requests, which makes it poorly suitable to p2p sys-
tems. Ricart and Agrawala [16] used a single token with a
counter to keep track of how many processes are currently
in the critical section. It is shown in [2] that under high
load, this system behaves like a single token system. Also,
it requires all nodes to communicate in certain stages of the
algorithm, making it message inefficient for p2p environ-
ments. Also, both [19] and [16] are not fault tolerant and
do not consider fairness.

Bulgannawar and Vaidya [2] presented a token based al-
gorithm that uses k separate tokens in the system. Their al-
gorithm uses k instantiations of a dynamic forest tree struc-
ture proposed in [11]. The algorithm uses heuristics for
choosing a tree among k, to send the request. This decision
makes the algorithm unfair, since there is no load balanc-
ing of requests. Moreover, the paper does not consider fault
tolerance.

In recent years, p2p overlays like Chord [20] have been
proposed. It provides flexible route selection and static re-
silience. Lin et al [6] and Moosa et al [10] proposed quorum
based protocols for achieving mutual exclusion in dynamic
p2p systems. The Sigma protocol [6] uses logical replicas
and quorum consensus to deal with the system dynamism
whereas [10] proposed protocols which combine both token
and quorum based approaches.

3. A Fair K Mutual Exclusion Algorithm

3.1. System Model and Problem Definition

We assume that each node has a unique id and can send
messages to any other node in the system. The communi-
cation channel is reliable and does not duplicate messages.

Message delivery to the destination is time-bounded. There
are k tokens numbered 1 through k in the system and a node
can be in the critical section only if it is holding a token. A
node holds a token for only a finite time. A node does not
initiate a new critical section until it has exited all previ-
ous ones. We initially assume no joins or failures; we later
handle failures by relying on a distributed hash table (DHT)
called Chord.

The k-mutual exclusion problem involves a group of
nodes, each of which intermittently requires access to an
identical resource or piece of code called the critical section
(CS). At most k nodes, 1 ≤ k ≤ n, may be in the CS at any
given time. we next define safety, liveness and fairness:

Safety means that at most k nodes will execute the criti-
cal section at a time. As the algorithm is token based, only
nodes with a token can enter the critical section. In order to
provide safety, it is thus sufficient to show that there are at
most k tokens in the system at any time.

Liveness means that every request for critical section ac-
cess will be satisfied within a finite time. This definition
requires that neither deadlock nor starvation should occur.
Deadlock means that, while there are less than k nodes exe-
cuting critical section, no requesting node can ever enter the
critical section. Starvation occurs when one node must wait
indefinitely to enter the critical section even though other
nodes are entering and leaving the critical section.

Fairness means that amongst a group of homogeneous
nodes having a constant critical section execution time, the
access time spread to access the critical section should be
small.

3.2. Algorithm Description

Our approach to provide a fair k mutual exclusion can
be understood intuitively in a real world scenario. Imagine
a cinema hall with k ticket counters. A person entering the
cinema hall picks one of the k counters randomly with out
the prior knowledge of length of queues at each counter. We
can see that, this randomized strategy as in [2] gives a good
average time to get the ticket. However, in the worst case if
every person enters the same queue i.e., if there is no load
balancing among the ticket counters, the maximum time to
get the ticket will be very high.

A solution for this real world problem could be to place
a moderator (coordinator) at the cinema hall entry who has
the information of all the ticket counters. The coordinator
could then guide people who enter the cinema hall to ticket
counters in a round robin fashion, i.e., coordinator does the
job of load balancing the ticket requests among the k ticket
counters. Since this approach is centralized (presence of
coordinator), we cannot directly adopt this approach for our
algorithm.

Consider the following alternative approach: there is a

coordinator who has the information of the ticket counters
(locations and the counter number). When the first cus-
tomer arrives at the entry of cinema hall, the coordinator
passes his information about the ticket counters to the cus-
tomer. Now the customer selects the ticket counter with
index counter number and also acts as the new coordinator.
The new coordinator passes the updated information (incre-
ment counter number in a round robin fashion) to the next
customer at the cinema hall entry queue. This way the in-
formation required to load balance among ticket counters is
passed along the customer queue without the need for the
centralized coordinator.

The above scenario directly maps to our k mutual ex-
clusion algorithm. We use a dynamic logical tree as the
representation of the single queue out side the cinema hall
(also called the privileged queue) and k distributed token
queues as the queues at k ticket counters. The dynamic tree
is based on the path reversal technique proposed in [11] for
solving single mutual exclusion and uses an expectation of
O(log(N)) messages to access the CS. The entry of cus-
tomers into the cinema hall (becoming coordinators) can be
viewed as a single mutual exclusion problem, similarly our
algorithm has the notion of a coordinator node. The coor-
dinator node has information about the tails of the k dis-
tributed token queues and the counter number which is to
be incremented in round robin fashion while passing the in-
formation to the next node in the privileged queue. Every
requesting node has to become a coordinator node in order
to get assigned to one of k distributed token queues (defined
by child pointers).

Now, we give an overview of the single mutual exclu-
sion proposed in [11]. The basic concept underlying the
algorithm is path reversal. Path reversal at a node i is per-
formed during transit of node i’s request toward the root of
the tree structure. As the request is forwarded towards the
root, node i becomes the parent of each node on the for-
warding path. Also, node i becomes the new root of the
forest tree. Thus, the shape of the tree structure, relative
positions of the nodes in the tree structure, and the con-
nections change. Finally, all the request for critical section
form a single privileged distributed queue which is defined
by the next pointer and the end of the queue is the root of
the remaining dynamic tree.

The round robin entry of nodes ensures that all the k to-
kens are used equally and in a fair manner. This means that
the difference between average and the worst case service
times of all k distributed token queues will be small. [2]
provides FIFO ordering on requests of individual queues,
but fails to provide FIFO ordering on requests of all queues,
whereas our algorithm provides FIFO ordering on requests
of all queues beyond the coordinator, i.e, all the requests are
satisfied in order of their coordinator timestamps. Since we
are using an additional constant number of messages com-

pared to [2], average message complexity of our algorithm
remains O(log(N)).

We now present our algorithm pseudo code. The local
variables that are used to maintain state information are de-
picted in Table 1. We make use of the following messages
in our algorithm.

• Message request(k): request sent by a node k to its parent

• Message token: transmission of a token

• Message child(r): assignment of a child

• Message token locations(a,b): transmission of token locations
:= a , counter number := b

Initialization
parent := 0
requesting cs, in child queue, is coordinator := false
if node id < k then

token present, in child queue := true
else

token present := false
end if
next, child := nil; counter number := nil
if node id = 0 then

parent := nil; token counter[i] := i, i = 0, 1, ..k − 1
counter number := 0; is coordinator := true

end if

Procedure Request CS
requesting cs := true
if token present = false then

Send Message request(i) to parent /* i refers to self identifier */
parent := nil

end if

Procedure Release CS
requesting cs := false
if child �= nil then

Send Message token to child
token present := false; child := nil

end if

Procedure Process Request(r)
if parent �= nil then

Send Message request(r) to parent
else

if is coordinator = false then
next := r

else
Send Message child(r) to token locations[counter number]
token locations[counter number] := r
counter number := (counter number + 1)%k
a := token locations; b := counter number
is coordinator := false
Send Message token locations(a,b) to r
counter number := nil

end if
end if
parent := r

Procedure Process Token
token present := true

Procedure Process Child(r)
if requesting cs = true then

child, parent := r

Variable Type Description
token present boolean token present is true if the node owns the token. Otherwise, it is false.
requesting cs boolean Requesting cs is true if the node has invoked the critical section and remains true

until it has released the critical section.
parent integer with range 0, 1....N parent indicates the node to which requests for critical section execution should be

forwarded.
next integer with range 0, 1....N next indicates the node which is to be assigned to one of the k token queues after the

current node has been assigned to a token queue.
child integer with range 0, 1....N child indicates the node to which access permission should be forwarded after the

current node leaves the critical section.
token locations array of integers with range 0, 1....N token locations contains the tail nodes of the k child queues
counter number integer with range 0, 1...K The counter number indicates the queue number where the next requesting node will

be directed toward. counter number is only stored at the node which has the
token locations message.

in child queue boolean in child queue is true if the node is in one of the k distributed child queues, and
false otherwise

is coordinator boolean is coordinator is true if the node has token locations, and false otherwise.

Table 1. Variables used in the Fair K Mutual Exclusion Algorithm

else
Send Message token to r
token present := false; parent := r

end if

Procedure Process Token Locations(a,b)
token locations := a; counter number := b
is coordinator, in child queue := true
if next �= nil then

x := token locations[counter number]
Send Message child(next) to x
token locations[counter number] := next
counter number := (counter number + 1)%k
a = token location; b = counter number
is coordinator = false
Send Message token locations(a,b) to next
counter number := nil; parent := next; next := nil

end if

We now present an explanation of the individual steps
of our algorithm.

Request CS: This procedure is invoked by a node when it
wants to enter the critical section. If the node has the token,
it can immediately enter the critical section. Otherwise it
sends its request Message request(i) to its parent in the
dynamic tree structure.

Release CS: Node i sets its requesting cs to false. It for-
wards the token to its child (see Table 1) in the distributed
queue. If such a node does not exist, the token stays with
node i.

Process Request(r): This function is called when a node
receives a request for critical section. If the node i is not
root, it will send this request to its parent (see Table 1). If
this node is a root, two scenarios are possible. Firstly, if the
root node is the coordinator, then it can assign this request
to one of the k queues depending on counter number (co-
ordinator has this information). Secondly, if the root node
is not currently the coordinator (it is in transit), next is set

to node r. On reception of the Message Token locations,
node i can assign its next to one of the k distributed child
queues.

Process Token: This function is called when a node
receives a token. It sets its token present as true, and then
enters the critical section.

Process Child(r): On the reception of the message Mes-
sage child, if node i has not released the critical section,
then it sets its child := r. When node i releases the
critical section, it forwards the token to node r. In case
this message is received when requesting cs = false,
node i will immediately forward the token to node r. In
both cases, node i sets its parent to node r. Updating
parent pointers on the reception of child messages leads to
a reduction in the distance of this node from the root.

Process Token locations(a, b): On reception of the
message Message token locations, a node becomes the
coordinator. Node i’s next is assigned to a distributed
queue by sending Message child to the tail of the dis-
tributed queue (indexed by counter number), and updated
Message token locations is sent to it.

3.3. Example

Now we provide an example to explain the underlying
principle of the algorithm. In the algorithm, a distributed
privileged queue (next queue) is built if the rate of request
is high. Moreover, whenever a node joins one of the k
distributed queues (child queues), next pointers are reset.
However, we only show the child queue structure assuming
the rate of request to be low. The figure does not change
much in the presence of the next queue. There will be an

(a)

Figure 1. Example

additional distributed queue with head node as the coordi-
nator and tail node as root. Moreover, in finite time, next
queue will be reduced and the nodes will be added to the
child queues; i.e., root will eventually become the coordi-
nator. In this example the root node and the coordinator
node are the same.

There are 8 nodes in the system with nodes 1, 2 and 3
having tokens (k=3). All nodes have 3 as their parent ex-
cept the node 3 i.e., node 3 is the root of the system. Node
3 also acts as a coordinator. In other words it contains
the information about the tail nodes of the k child queues
(token locations). In the initial system (Figure 1(a)) child
queues are of length 1 and node 3 stores (1, 2 ,3) as the tail
nodes of the k child queues.

Now, suppose node 4 wants to access the critical section.
It sends a request to its parent, which is node 3. Since node
3 is the coordinator, when it receives the request it sends
the Message child to node 1. Node 1 is selected because
the counter number is initialized to 0. Node 3 updates its
parent to 4 and sends the updated token location and in-
cremented counter number to the new coordinator (node
4). Node 1 receives the Message child and updates its child
and parent to node 4. Node 4 is the new root of the tree.
On the reception of the Message token location, it becomes
the coordinator as well. Figure 1(b) depicts the change.

Figures 1(c),1(d) and Figure 1(e) show the state of the
system after node 5, node 6 and node 7 requested for crit-
ical section respectively. We can see that the child queues
build up. Now, node 1 releases its critical section. It sends
the token to child node 4, and resets child to nil. Node 4
receives the token and enters the critical section as shown in
Figure 1(f).

Next, node 8 requests for critical section. Also, nodes

2 and 3 release their critical section. Node 2 sends the to-
ken to its child node 5 and node 3 sends the token to its
child node 6. Both nodes update their child to nil. Nodes
5 and 6 receive the token and enter the critical section. This
scenario is shown in Figure 1(g) and Figure 1(h). Finally,
node 2 requests for critical section. Figure 1(i) depicts the
change.

3.4. Proof of Correctness

We now present a proof of safety as well as liveness for
our fair k mutual exclusion algorithm. We assume that there
are no failures.
Safety: Nodes 1..k are the only k nodes that have the tokens
when the system is initialized. Moreover, we are not creat-
ing new tokens in our algorithm. Since there are no failures,
safety is guaranteed.
Liveness: Consider a node i requesting entry to the critical
section. The request of i is transmitted, by the arcs corre-
sponding to parent, to a node j for which parent = nil.
If j is not the coordinator and is waiting for the token, i
will be the next of node j. Once the node j becomes the
coordinator it adds node i to one of the k child queues and
makes node i as the new coordinator by sending the Mes-
sage token locations.

We shall make use of the following five properties in
our proof. Due to lack of space, we skip the proofs of these
properties

Property 1: If a root requests for critical section, it must
have the token.
Property 2: A request for critical section reaches a root in
finite time.

Property 3: A node in the token queue obtains the token in
a finite time.
Property 4: If a node is in the privileged queue, it will
become the coordinator in finite time.
Property 5: If a root is not in the privileged queue, it will
enter the privileged queue in finite time.

THEOREM 1 (Proof of Liveness): If a node invokes the
critical section, it will be able to enter it within a finite delay.
Proof: Assume that a node i invokes entry to the critical
section. If node i is a root, then by Property 1, it already has
the token and can enter the critical section. If node i is not
the root, its request for token propagates via parent pointers
to a root in finite time (by Property 2). The root could be in
the one of the two possible states:
(a) Root is the coordinator: If the root is the coordinator,
as a result of receiving Message request(i), it sends Mes-
sage child to one of the tails of child queues. Node i there-
fore becomes part of a child token queue, and by Property
3, it will get the token in finite time.
(b) Root is not the coordinator: Two scenarios may arise:

(i) Root is not in the privileged queue: The root will be in
the privileged queue in finite time (by Property 5).

(j)Root is in the privileged queue: Then the root will be-
come coordinator in finite time using Property 4. It will then
send Message child to one of the tails in the child queues,
and by Property 3, node i will get the token in finite time.

4. Experimental Results

In this section, we present simulation results for our al-
gorithm. Our metrics of interest are the following:
1) Mean time to get the token (mttt): This is average access
time, and should be small.
2) Maximum time to get the token: This metric is an in-
dicator of the fairness of an algorithm. The more fair the
algorithm, the closer this value should be to mttt.
3) Average number of messages per critical section entry:
A smaller average number of messages is desirable for scal-
able p2p solutions.

We have implemented our algorithm inside an event-
based simulator [1]. The mutual exclusion requests arrive
according to a Poisson process with parameter λ, the rate
of arrival. The critical section duration (cset) is set to 10
seconds. This relatively higher value is reasonable as in our
applications, a node needs to establish a TCP connection
with a server and transfer its data (log file). We compare
our algorithm to the k mutual exclusion algorithm in [2], la-
beled as BV95. We limit our comparative analysis to BV95
as other protocols for k mutual exclusion have worse mean
access times and suffer from very high message overhead.

Our simulation considers two settings. In the first LAN
setting, the latency (T) between every pair of nodes is 1 sec-

ond. In the second WAN setting, we estimate the latencies
between each pair of nodes using the King data set available
at [5]. This data set contains measured latencies between
Internet domain name servers (DNS) and is highly hetero-
geneous. The average round trip time (RTT) in the data set
is around 182 ms and the maximum RTTs are around 800
ms. We simulate our protocol for N = 100 nodes and k = 3
tokens.

 240

 260

 280

 300

 320

 340

 360

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
a
n

t
i
m
e

t
o

g
e
t

t
h
e

t
o
k
e
n

(
m
t
t
t
)

Request Rate(lambda)

Our algorithm, T=1
BV95, T=1

Our algorithm, T=King
BV95, T=King

Figure 2. Plot of Mean Time to token vs request rate with
constant latency 1 and with latencies estimated from King
Data Set

In Figure 2, we show the variation in the mean time to get
the token (mttt) for different values of λ for both settings.
Our protocol performs well, even for high values of request
rate. The mttt values stabilize at 355 seconds beyond λ =
0.5. Further, for all values of λ, our protocol performance
is comparable to BV95. We note that the mttt trends in the
two settings are the same. Using the latency values in the
King data set does not have a huge impact on the results due
to the dominating effect of a large critical section executing
time. Thus, we have been able to achieve the same level
of performance in terms of mttt as [2], despite using only a
single instance of the forest tree structure.

The average contention in the system can be computed
as the product of the average arrival rate and the average
time a node spends in the system, as given by Little’s law
[7]. When λ = 1, we have that the average contention is
C = N · 1

mttt+cset+1 ·(mttt+cset), which is approximately

equal to N. Moreover, optimal mttt is given by λ·N ·cset
k . In

the LAN setting, our algorithm has a mean mttt of 355s,
which is close to the optimal value of 333s.

To measure the fairness, we plot the maximum time for
a node to get the token. Figure 3 shows, for the LAN set-
ting, the behavior of the globally maximum time to get the
token for varying values of λ. We performed 100 trials of
our experiment and in each experiment, a node requests for
CS 2000 times. We can see that for λ = 0.5, the max-
imum time to get the token for our algorithm is as much
as 370 seconds, while it is approximately 1580 seconds for
BV95. Thus, our protocol outperforms BV95 by more than
an order of magnitude in terms of fairness characteristics. It

is also interesting to note that unlike BV95, the worst case
time of our protocol does not deviate much from the mean
time to get the token.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a
x
i
m
u
m

t
i
m
e

t
o

g
e
t

t
h
e

t
o
k
e
n

Request Rate(lambda)

Our algorithm
BV95

Figure 3. Globally maximum time to get the token vs
request rate

It may well be the scenario that the poor performance of
BV95 is due to a few nodes which took a long time to get
the token. Thus,we study the cumulative distributions of the
maximum time to get the tokens for both the algorithms. We
fix λ = 0.5 for this experiment, and perform simulations for
the LAN setting. Figure 4 shows the CDF of the maximum
time to the get token for our algorithm and BV95. We can
see that the maximum time to get the token is very close to
the mean value of about 370 seconds for all the nodes, with
the deviation from the mean (access time spread) being less
than 15 seconds. On the other hand, we can see that all
the nodes have their worst access times greater than 1300
seconds, and the 90th percentile is over 1700 seconds for
the maximum access time of BV95, with the access time
spread being more than 1250s. This analysis demonstrates
the fairness of our algorithm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

F
ra

ct
io

n
of

 n
od

es

Maximum time to get the token

Our algorithm
BV95

Figure 4. Plot of cumulative distribution of the maximum
time to get the token for our algorithm and for [2]

Next, Figure 5 shows the plot of average number of
messages sent per critical section entry for varying values
of λ. This is relatively high for our protocol because of
two reasons: 1) New messages in our algorithm such as
Message child and Message token locations, compared to

BV95, and 2) To preserve the fairness properties, we do not
cache requests for the critical section.

Note that BV95 uses k instances of a dynamic tree, and
simple modifications like not caching requests for critical
section access or introducing new messages would still re-
sult in poor fairness as compared to our algorithm. This is
because in order to send a request for critical section access,
there is uncertainty in choice of the optimal dynamic tree to
use. Our algorithm intuitively solves this problem by using
only a single instance of a dynamic tree. Moreover, BV95
does not permit the tradeoff between increase in message
complexity and fairness, thus its latency cannot be reduced
by increasing its bandwidth.

We conclude that at the cost of sending higher number of
messages per critical section entry, our algorithm achieves
similar performance for mttt values and an order of mag-
nitude performance improvement for maximum time to get
the token as compared to BV95.

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e
r
a
g
e

n
u
m
b
e
r

o
f

m
e
s
s
a
g
e
s

p
e
r

c
r
i
t
i
c
a
l

s
e
c
t
i
o
n

e
n
t
r
y

Request Rate(lambda)

Our algorithm
BV95

Figure 5. Plot of Average Messages vs request rate

5. Fault Tolerant Methodology

We use a fault tolerant methodology for structured p2p
networks like Chord [20]. Chord has the concept of suc-
cessors and predecessors at each node. The main idea of
the fault tolerance methodology is that the group of succes-
sors of a node will act as replica (back-up) nodes for the
same. The successor nodes of a node i store the the state
information of node i. To ensure data consistency amongst
all backup nodes, whenever the node i changes its state,
it initiates an atomic broadcast to all the successors in the
replica set. Now, if the node i fails, all messages directed to
the identifier of node i will be received by the successor of
node i. This is because in p2p systems like Chord, a node
owns the id space between itself and its predecessor, and all
messages for that id space are directed to that node. Thus
when a node i fails, one of its successors (say node j) in the
replica set will receive the message. Since node j has the
state information about node i, it can process the message.
Node j also initiates an atomic broadcast to the replica set
of node i to update node i’s state.

Given the churn in p2p systems (continuous node arrival
and departure), there may be a scenario where a node and
all its replicas fail. Such a scenario can be detected when a
node receives a message destined to an identifier for which
it is the owner, but it does not have the state information of
that identifier. Since the node cannot process the message,
it resorts to conventional fault tolerant algorithms such as
those described in [18]. The conventional algorithms in-
volve the use of broadcasts, and are thus very expensive.
Note that the probability of p back up nodes failing simul-
taneously is fp, where f is the probability of a single node
failure. The probability of all backup nodes failing simulta-
neously is quite low for p = 6 and f = 0.01, the probability
is 10−12.

We also study the success of the fault tolerant methodol-
ogy under catastrophic failures (to minimize the broadcasts
used in conventional fault tolerance). We have assumed that
the Chord entries satisfy the specifications given in [20].
Simulations are done for λ = 0.5 in the LAN setting. Figure
6 shows the success probability of our protocol maintaining
safety and liveness when 20% and 50% random nodes fail
simultaneously. We can see that for 20% node failures, the
use of p = 4 results in a success probability greater than
0.95. For 50% node failures, the use of p = 6 backup nodes
results in a success probability greater than 0.8.

We conclude that that using Chord successors to main-
tain state information can obviate the need for expensive
broadcast based fault tolerance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
 o

f t
he

 fa
ul

t t
ol

er
an

t m
et

ho
do

lo
gy

Number of replicas(back-up nodes)

20 % node failure
50 % node failure

Figure 6. Probability of success vs number of back-up
nodes under catastrophic failures

6. Conclusion

In this paper, we have proposed and evaluated a token
based fair k mutual exclusion algorithm for p2p systems.
We used a novel technique inspired by a real world scenario
to provide fair k mutual exclusion using a single forest tree
structure. Our comparative analysis with [2] shows that our
algorithm achieves an order of magnitude improvement in
fairness characteristics, while providing low spread of ac-
cess time. This is done at the cost of a slight increase in the

message overhead. Our analysis also shows that the algo-
rithm is also resilient to failures.

References

[1] J. Banks, J. Carson, et al. Discrete-event system simulation.
Prentice Hall, 2001.

[2] S. Bulgannawar and N. Vaidya. A distributed k-mutual ex-
clusion algorithm. Proc . ICDCS, pages 153–160, 1995.

[3] Gridftp: http://www.globus.org/grid software/data/gridftp.php.
[4] J. Helary, A. Mostefaoui, and R. IRISA. A o(log2n) fault-

tolerant distributed mutual exclusion algorithm based on
open-cube structure. Proc . ICDCS, pages 89–96, 1994.

[5] King data set: http://pdos.csail.mit.edu/p2psim/kingdata.
[6] S. Lin, Q. Lian, M. Chen, and Z. Zhang. A practical dis-

tributed mutual exclusion protocol in dynamic peer-to-peer
systems. Proc . IPTPS, 2004.

[7] J. Little. A Proof for the Queuing Formula: L= λ W. Oper-
ations Research, 9(3):383–387, 1961.

[8] S. Lodha and A. Kshemkalyani. A fair distributed mutual
exclusion algorithm. IEEE TPDS, 11(6):537–549, 2000.

[9] M. Maekawa. A sqrt n algorithm for mutual exclusion in
decentralized systems. ACM TOCS, 3(2):145–159, 1985.

[10] M. Muhammad. Efficient mutual exclusion in peer-to-peer
systems. Master’s thesis, UIUC, 2005.

[11] M. Naimi, M. Trehel, and A. Arnold. A log(n) distributed
mutual exclusion algorithm based on path reversal. JPDC,
34(1):1–13, 1996.

[12] K. Park and V. Pai. Scale and performance in the coblitz
large-file distribution service. Proc . NSDI, pages 3–3, 2006.

[13] The planetlab global research network: http://www.planet-
lab.org/.

[14] K. Raymond. Multiple entries with ricart and agrawalas dis-
tributed mutual exclusion algorithm. Technical Report 78,
University of Queensland, 1987.

[15] K. Raymond. A tree-based algorithm for distributed mutual
exclusion. ACM TOCS, 7(1):61–77, 1989.

[16] G. Ricart and A. Agrawala. An optimal algorithm for mu-
tual exclusion in computer networks. Communications of
the ACM, 24(1):9–17, 1981.

[17] K. Sheers. HP OpenView Event Correlation Services.
Hewlett-Packard Journal, 47(5):31–42, 1996.

[18] J. Sopena, L. Arantes, M. Bertier, and P. Sens. A fault-
tolerant token-based mutual exclusion algorithm using a dy-
namic tree. Proc . EuroPar, pages 654–663, 2005.

[19] P. Srimani and R. Reddy. Another distributed algorithm for
multiple entries to a critical section. IPL, 41(1):51–57, 1992.

[20] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. Proc . SIGCOMM, 31(4):149–160,
2001.

[21] I. Suzuki and T. Kasami. A distributed mutual exclusion
algorithm. ACM TOCS, 3(4):344–349, 1985.

[22] R. van Renesse, K. Birman, D. Dumitriu, and W. Vogels.
Scalable Management and Data Mining Using Astrolabe.
Proc . IPTPS, 2002.

[23] P. Yalagandula and M. Dahlin. A scalable distributed in-
formation management system. In Proc . SIGCOMM, Aug.
2004.

