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ABSTRACT
When deploying machine learning models in real-world applica-
tions, an open-world learning framework is needed to deal with both
normal in-distribution inputs and undesired out-of-distribution
(OOD) inputs. Open-world learning frameworks include OOD de-
tectors that aim to discard input examples which are not from the
same distribution as the training data of machine learning clas-
sifiers. However, our understanding of current OOD detectors is
limited to the setting of benign OOD data, and an open question
is whether they are robust in the presence of adversaries. In this
paper, we present the first analysis of the robustness of open-world
learning frameworks in the presence of adversaries by introduc-
ing and designing OOD adversarial examples. Our experimental
results show that current OOD detectors can be easily evaded by
slightly perturbing benign OOD inputs, revealing a severe limita-
tion of current open-world learning frameworks. Furthermore, we
find that OOD adversarial examples also pose a strong threat to
adversarial training based defense methods in spite of their effec-
tiveness against in-distribution adversarial attacks. To counteract
these threats and ensure the trustworthy detection of OOD inputs,
we outline a preliminary design for a robust open-world machine
learning framework.
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1 INTRODUCTION
Machine learning (ML) models, especially deep neural networks,
have become prevalent and are being widely deployed in real-world
applications, such as image classification [40, 57], face recognition
[51, 61], and autonomous driving [9, 16]. Motivated by the fact
that real-world applications need to be resilient to arbitrary in-
put data, an important line of work has developed the open-world
learning framework that checks if the inputs are within the same
distribution as training data (in-distribution examples), or if they
come from a different distribution referred to as out-of-distribution
(OOD) examples [5, 6]. State-of-the-art open-world learning sys-
tems equip machine learning classifiers with OOD detectors, and an
input example is processed for classification only if the input passes
through those detectors. In recent years, the research community
has developed several OOD detection mechanisms that are effective
in distinguishing OOD inputs [30, 42, 44].

However, a severe limitation of current open-world learning
frameworks is that their development and investigation has been
limited to the setting of benign (natural and unmodified) OOD data.
Despite their good performance in detecting benign OOD inputs, an
important open question is whether open-world learning frameworks
are robust in the presence of adversaries? Specifically, can OOD
detectors perform reliably when an adversary tries to evade them
bymaliciously perturbing OOD inputs? In this paper, we thoroughly
evaluate the performance of open-world machine learning models
against such maliciously-perturbed OOD inputs, which we refer to
as OOD adversarial examples, motivated by the line of research on
adversarial attacks against neural networks [8, 11, 62]. Our analysis
shows that state-of-the-art OOD detectors [42, 44] are quite fragile:
their detection performance drops drastically with perturbations to
out-of-distribution inputs. For example, as highlighted in Figure 1,
benign OOD inputs can be reliably detected as out-of-distribution
by current open-world learning systems. However, OOD adversarial
examples are able to both evade the OOD detector as well as achieve
targeted misclassification by the classifier.

Beyond revealing the lack of robustness of current OOD detec-
tors, we further examine the behavior of OOD adversarial examples
on state-of-the-art robustly trained classifiers [46, 65], which were
designed for robustness against in-distribution adversarial exam-
ples. This novel examination is critical because once the adversary
manages to bypass the OOD detector, the open-world learning frame-
work will pass that input to the relevant classifier. We find that
compared to in-distribution attacks, OOD adversarial examples
result in much higher attack success rates against robust classifiers.
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Figure 1: Performance of an open-world image classifica-
tion system (OOD detector + image classifier) on unmodi-
fied OOD inputs and OOD adversarial examples for Wide-
ResNet-28-10 [69] classifier trained on CIFAR-10 along with
ODIN [44] as OOD detector. While unmodified OOD inputs
are easily detected by the detector, OOD adversarial exam-
ples can evade the detector and achieve targeted classifica-
tion (e.g., “airplane”) with confidence close to 100%.

Under the taxonomy of attacks on ML systems laid out by Huang
et al. [34], OOD adversarial examples are a form of exploratory
integrity attacks with the intent of targeted misclassification of
input data. Intuitively, we would expect a well-behaved classifier
to classify an OOD adversarial example with low confidence, since
it has never encountered an example from that portion of the input
space before. This intuition underlies the design of state-of-the-art
OOD detectors. However, OOD adversarial examples constitute an
integrity violation for classifiers as well as OOD detectors as they
induce high confidence targeted misclassification in state-of-the-art
classifiers, which is unwanted system behavior.

While previous work [26, 50, 56, 58] has hinted at the possi-
bility of generating adversarial examples without the use of in-
distribution data, we are the first to rigorously examine the im-
pact of OOD adversarial examples on OOD detectors and robustly
trained ML classifiers. We also showcase their feasibility in real-
world contexts by demonstrating attacks against the Clarifai con-
tent moderation system [17] and a traffic sign classification system.
Finally, to counteract these threats, we also outline a preliminary
design for robust open-world learning by combining OOD adver-
sarial examples with adversarial training, and demonstrate the
generalization properties of this approach.

In summary, we make the following contributions in this paper:
Robustness evaluation of open-world learning framework:
We introduce and design OOD adversarial examples by adversari-
ally perturbing OOD inputs for evading OOD detectors. Our experi-
ments with two state-of-the-art OOD detection mechanisms, ODIN
[44] and Confidence-calibrated classifiers [42], show that current
open-world machine learning models are not robust: most OOD
inputs (up to 99.8%) can pass through OOD detectors successfully
by adding imperceptible perturbations.
Bypassing state-of-the-art defenses for in-distribution attacks:
Although state-of-the-art defenses such as iterative adversarial
training [46] and provably robust training with the convex outer
polytope [38, 65] are promising approaches for the mitigation of
in-distribution attacks, their performance significantly degrades

with the use of OOD adversarial examples. We demonstrate that
OOD adversarial examples can achieve a significantly higher target
success rate (up to 4× greater) than that of adversarial examples
generated from in-distribution data. Further, we demonstrate that
OOD adversarial examples are able to evade adversarial example
detectors such as feature squeezing [68] and MagNet [48], with
close to 100% success rate (similar to in-distribution adversarial
examples). We also show this for Adversarial Logit Pairing [37].
OOD adversarial examples in the real world: We demonstrate
the success of OOD adversarial examples in real-world settings by
targeting a content moderation service provided by Clarifai [17].
We also show how physical OOD adversarial examples can be used
to fool traffic sign classification systems.
Towards robust open-world learning:We explore the possibil-
ity of increasing the robustness of open-world machine learning by
including a small number of OOD adversarial examples in robust
training. Our results show that such an increase in robustness, even
against OOD datasets excluded in training, is possible.

We hope that ourwork serves to inspire a rigorous understanding
of open-world learning frameworks in the presence of adversaries,
with the end-goal of facilitating trustworthy and safe deployment
of open-world ML systems 1.

2 BACKGROUND AND RELATEDWORK
In this section we present the background and related work on
open-world deep learning, adversarial examples generated from
in-distribution data, and corresponding defenses.

2.1 Supervised classification
Let X be a space of examples and let Y be a finite set of classes. A
classifier is a function f (·) : X → Y. Let P(Y) be the set of probabil-
ity distributions overY. In our setting, a classifier is always derived
from a function д(·) : X → P(Y) that provides confidence infor-
mation, i.e. f (x) = argmaxi ∈Y д(x)(i). In particular, for DNNs, the
outputs of the penultimate layer of a neural network f , representing
the output of the network computed sequentially over all preceding
layers, are known as the logits. We represent the logits as a vector
ϕf (x) ∈ R |Y | . The classifier is trained by minimizing the empirical
loss 1

n
∑n
i=1 ℓд(xi ,yi ) over n samples {(x1,y1), . . . (xn ,yn )} (train-

ing set), where ℓд(·, ·) is a loss function such as the cross-entropy
loss [25] that depends on the output confidence function д(·). The
training set is drawn from a distribution P inX ,Y over the domain
X ×Y. The marginal distribution over the space of examples X is
represented as P inX . These samples usually represent an application-
specific set of concepts that the classifier is being trained for.

2.2 Open-world Deep learning
The closed-world approach to deep learning, described in Section
2.1 operates using the assumption that both training and test data
are drawn from the same application-specific distribution P inX ,Y .
However, in a real-world environment, ML systems need to be
resilient to data at test time that is not drawn from P inX ,Y but belongs
to the same input space, i.e. they encounter samples that are out-
of-distribution (OOD). This leads to the open-world learning model.
1An extended technical report [55] with additional results and our code (https://github.
com/inspire-group/OOD-Attacks) are available.
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Thus, in order to extend supervised learning algorithms to the
open-world learning model, it is critical to enable them to reject
out-of-distribution inputs. The importance of this learning model is
highlighted by the fact that a number of security and safety-critical
applications such as biometric authentication, intrusion detection,
autonomous driving, medical diagnosis are natural settings for the
use of open-world machine learning [13, 27, 45, 53].

2.2.1 Out-of-Distribution data. To design and evaluate the success
of an open-world ML approach, it is first critical to define out-of-
distribution data. Existing work on open-world machine learning
[5, 6, 20] defines an example x as OOD if it is drawn from a mar-
ginal distribution PoutX (over X, the input feature space) which is
different from P inX and has a label set that is disjoint from that of
in-distribution data. As a concrete example, consider a classifier
trained on the CIFAR-10 image dataset [39]. This dataset only has
10 output classes and does not include classes for digits such as ‘3’
or ‘7’ like the MNIST [41] dataset or ‘mushroom’ or ‘building’ like
the Imagenet dataset [19]. Thus, these datasets can act as a source
of OOD data.

2.2.2 OOD detectors. Here, we only review recent approaches to
OOD detection that scale to DNNs used for image classification.
Hendrycks and Gimpel [30] proposed a method for detecting OOD
inputs for neural networks which uses a threshold for the output
confidence vector to classify an input as in/out-distribution. This
method relies on the assumption that the classifier will tend to
have higher confidence values for in-distribution examples than
OOD examples. An input is classified as being OOD if its output
confidence value is smaller than a certain learned threshold.

In this work, we evaluate the state-of-the-art OOD detectors for
DNNs proposed by Liang et al. [44] (ODIN) and Lee et al. [42] which
also use output thresholding for OOD detection but significantly
improve upon the baseline approach of Hendrycks and Gimpel
[30]. The ODIN detector uses temperature scaling and input pre-
processing to improve detection rates. Lee et al. [42] propose a
modification to the training procedure to ensure that the neural
network outputs a confidence vector which has probabilities uni-
formly distributed over classes for OOD inputs. However, as OOD
inputs are unavailable at training time, they generate synthetic data,
using a modified Generative Adversarial Network (GAN), which
lies on the boundary between classes to function as OOD data.

2.3 Evasion attacks and defenses
2.3.1 Evasion attacks. Evasion attacks are test-time attacks that
have been demonstrated to be highly successful for a number of
ML classifiers [8, 11, 26, 62]. These attacks aim to modify benign,
in-distribution examples x ∼ P inX by adding an imperceptible pertur-
bation to them such that the modified examples x̃ are adversarial
[62]. The adversary’s aim is to ensure that these adversarial exam-
ples are successfully misclassified by the ML system in a targeted
class (targeted attack), or any class other than the ground truth
class (untargeted attack). We focus entirely on targeted attacks
since these are more realistic from an attacker’s perspective and are
strictly harder to carry out than untargeted attacks. To generate a
successful targeted adversarial example x̃ for class T starting from
a benign example x for a classifier f , the following optimization

problem must be solved

f (x̃) = T s.t. d(x̃, x) < ϵ (1)

where d(·, ·) is an appropriate distance metric for inputs from the
input domain X used to model imperceptibility-based adversarial
constraints [11, 26]. The distance metric imposes an ϵ-ball con-
straint on the perturbation. The optimization problem in Eq. 1
is combinatorial and thus difficult to solve. In practice, a relaxed
version using an appropriate adversarial loss function ℓadvд (x,T )
derived from the confidence function д(·) is used and solved with
an iterative optimization technique [11, 26, 46, 62]. Details of the
state-of-the-art attack methods we use are in Section 4.3.

The two key threat models for these adversarial attacks are
white-box and black-box with query access. While in the former the
adversary has complete access to the classifier, including employed
defenses, dataset, and hyperparameters, the latter threat model
only allows access to the output probability distribution д(·) for
any input x ∈ X [3, 11, 26, 62]. Work on adversarial examples has
also examined the threat they pose in real-world settings. One line
of work has been to analyze attacks on real-world ML services in
black-box threat models [7, 35] while other focus on breaking ML
systems with physically realized adversarial examples [4, 23]. We
will engage with both of these directions in Section 5.4.

Current research on evasion attacks is limited in the closed-
world setting: adversarial examples are generated using training or
test inputs as starting points. Meanwhile, as shown in our paper,
extending evasion attacks to the out-of-distribution space is natural
and critical for the robustness evaluation of open-world machine
learning systems.

2.3.2 Defenses against evasion attacks. Robust training is one of the
most effective methods to achieve robustness against adversarial
attacks on deep neural networks [26, 38, 46, 52, 64]. It seeks to
embed resilience into the classifier during training by modifying
the standard loss ℓд(·, ·) used during the training process to one
that accounts for the presence of an adversary at test time. It can
be divided into two categories:
Adversarial training: These heuristic methods defend against
adversarial examples by modifying the loss function such that it
incorporates both clean and adversarial inputs [26, 37, 46].

ℓ̃д (x, y) = α ℓд (x, y) + (1 − α )ℓд (x̃, y), (2)

where y is the true label of the sample x.
In this paper, we consider the robustness of networks trained

using iterative adversarial training [46, 67], which uses adversar-
ial examples generated using Projected Gradient Descent (PGD).
This method has been shown to be empirically robust to adap-
tive white-box adversaries using adversarial examples generated
from in-distribution data which use the same Lp norm [3] for mod-
els trained on the MNIST [41], CIFAR-10 [39], and ImageNet [19]
datasets.
Provable robustness using convex relaxations: We focus on
the approach of Kolter and Wong [38, 65] which scales to neural
networks on the CIFAR-10 dataset [39]. They aim to certify robust-
ness in an ϵ-ball around any point in the input space by upper
bounding the adversarial loss with a convex surrogate. They find a
convex outer approximation of the activations in a neural network
that can be reached with a perturbation bounded within an ϵ-ball



and show that an efficient linear program can be used to minimize
the worst case loss over this region.

In Section 5.2, we show reduced effectiveness of both adver-
sarial training and provable robustness based defenses for OOD
adversarial examples.

2.3.3 Adversarial Example Detectors and secondary defenses. Ad-
versarial detectors [48, 54, 68] aim to exploit the difference in prop-
erties of adversarial and unmodified input to detect adversarial ex-
amples. We consider two of the most promising detectors, namely
feature squeezing [68] and MagNet [48]. In Section 5.3, we show
that these detectors lack robustness to OOD adversarial examples.

Initial works on iterative adversarial training [46, 64] have high-
lighted the challenge of scaling and convergence for Imagenet-scale
datasets [46]. The first approach to overcome this challenge was
Adversarial Logit Pairing (ALP) [37]. However, it was shown that
simply increasing the number of PGD attack iterations used to
generate adversarial examples from in-distribution data reduced
the additional robustness to a negligible amount [21]. In Section 5.2,
we show that this lack of robustness persists for OOD adversarial
examples.

3 OPEN-WORLD EVASION ATTACKS
Deployed ML systems must be able to robustly handle inputs which
are drawn from distributions other than those used for training/testing
(open-world learning [42, 44]). In order to test the robustness of
such open-world learning systems, we define open-world evasion
attacks, which can use arbitrary points from the input space to gen-
erate out-of-distribution (OOD) adversarial examples, making our
work the first to combine the paradigms of open-world learning and
adversarial examples. We then analyze the effectiveness of OOD
adversarial examples in bypassing OOD detectors as well as de-
fenses for in-distribution adversarial examples. We find that OOD
adversarial examples present a potent threat in the open-world
learning model, and summarize our key results in Table 1. Finally,
we also examine how robustness against OOD adversarial examples
can be achieved.

3.1 OOD adversarial examples
In the open-world learning model, an adversary is not restricted to
in-distribution data, and can generate adversarial examples using
OOD data. In order to carry out an evasion attack in this setting,
the adversary generates an OOD adversarial example starting from
xOOD.

Definition 1 (OOD adversarial examples). An OOD adversarial
example x̃OOD is generated from an OOD example xOOD drawn
from PoutX by adding a perturbation δ with the aim of inducing
classification in a target class T ∈ Y1, i.e. f (x̃OOD) = T .

Existing attack methods use optimization-based approaches [3,
11, 26, 62] to generate in-distribution adversarial examples, which
are misclassified with high confidences. While in the open-world
learning setting, we also need to consider OOD detection mecha-
nisms in the attack algorithm for detection bypassing (see further
discussion in Section 3.1.1). Next, we highlight the importance of

constructing OOD adversarial examples to fool classifiers by dis-
cussing the limitations of directly using unmodified/benign OOD
data.
Limitations of unmodifiedOODdata for evasion attacks:While
unmodified OOD data already represents a concern for the deploy-
ment of ML classifiers (Section 2.2), we now discuss why they are
severely limited from an adversarial perspective. First, with un-
modified OOD data, the typical output confidence values are small,
while an attacker aims for high-confidence targeted misclassifica-
tion. Second, the attacker will have no control over the target class
reached by the unmodified OOD example. Finally, due to the low
typical output confidence values of unmodified OOD examples they
can easily be detected by state-of-the-art OOD detectors (Section
2.2.2) which rely on confidence thresholding.

3.1.1 Evading OOD detectors. OOD detectors are an essential com-
ponent of any open-world learning system and OOD adversarial
examples should be able to bypass them in order to be successful.
State-of-the-art OOD detectors mark inputs which have confidence
values below a certain threshold as being OOD. The intuition is that
a classifier is more likely to be highly confident on in-distribution
data. Recall that when generating adversarial examples, the adver-
sary aims to ensure high-confidence misclassification in the desired
target class. The goal of an adversary seeking to generate high-
confidence targeted OOD adversarial examples will align with that
of an adversary aiming to bypass an OOD detector. In other words,
OOD adversarial examples that achieve high-confidence targeted mis-
classification also bypass OOD detectors. Our empirical results in
Section 5.1 demonstrate this conclusively, with OOD adversarial
examples inducing high false negative rates in the OOD detectors,
which mark them as being in-distribution.

3.1.2 Evading robust training based defenses. Given the lack of
robustness of OOD detectors, it becomes important to examine
the impact of OOD adversarial examples on the underlying (in-
distribution) classifier. This is because in an open-world learning
framework, input examples which pass through OOD detectors are
processed by the underlying classifier for a final prediction. For
our analysis, we focus on robustly trained neural networks as the
underlying classifier. Robustly trained neural networks [38, 46, 52]
(recall Section 2.3.2), incorporate the evasion attack strategy into
the training process. Since the training and test data are drawn
in an i.i.d. fashion, the resulting neural networks are robust to
in-distribution adversarial examples at test time. However, these
networks may not be able to provide robustness if the attack strat-
egy were to be changed. In particular, we change the starting point
for the generation of adversarial examples to be out-of-distribution
samples, and since the training process for these robust defenses does
not account for the possibility of OOD data being encountered at test
time, they remain vulnerable to OOD adversarial examples. We find
that for defenses based on robust training, OOD adversarial exam-
ples are able to increase targeted success rate by 4× (Sections 5.2.2
and 5.2.3). This finding illustrates the potent threat of open-world
evasion attacks, which must be addressed for secure deployment
of ML models in practice. We further demonstrate that adversarial
example detectors such as MagNet and Feature Squeezing can be
similarly bypassed by incorporating the metrics and pre-processing
they use into the attack objective for OOD adversarial examples.



Table 1: Summary of results on CIFAR-10 trained models. Novel results and empirical conclusions from this paper are in bold.
The last column shows the successful OOD adversarial examples for each defense, where all images are classified as airplane.

Behavior on data type

Defense Type Defense Name
In-distribution adversarial

(white-box, adaptive)

Out-of-distribution adversarial

(white-box, adaptive)

Representative

OOD adversarial examples

N.A. Undefended
Not robust [11, 46]

Rate: 100.0, Conf: 1.00

Not robust

Rate: 100.0, Conf: 1.00 (ImageNet)

OOD

Detection

ODIN [44] N.A.
Not robust

Rate: 81.6, Conf: 0.97 (Internet Photographs)

Confidence-calibrated [42] N.A.
Somewhat robust

Rate: 47.1 , Conf: 0.99 (VOC12)

Robust

Training

Iterative adv. training [46]
Somewhat robust [46]

Rate: 22.9, Conf: 0.81

Not robust

Rate: 87.9, Conf: 0.86 (Gaussian Noise)

Convex polytope relaxation [38]
Provably robust [38]

Rate: 15.1, Conf: 0.41

Somewhat robust

Rate: 29.1, Conf: 0.32 (Gaussian Noise)

3.1.3 Real-world attacks. Since the aim of the open-world threat
model is to elucidate the wider range of possible threats to a de-
ployed ML model than previously considered, we analyze the pos-
sibility of realizing OOD adversarial examples in the following
real-world settings:

(1) Physical attacks: We consider attacks on a traffic sign
recognition system where an adversary uses custom signs
and logos in the environment as a source of OOD adver-
sarial examples, since the classifier has only been trained
on traffic signs. In a physical setting, there is the additional
challenge of ensuring that the OOD adversarial examples
remain adversarial in spite of environmental factors such as
lighting and angle. We ensure this by incorporating random
lighting, angle and re-sizing transformations into the OOD
adversarial example generation process [4, 23].

(2) Query-limited black-box attacks:We use OOD adversar-
ial examples to carry out a Denial of Service style attack
on a content moderation model provided by Clarifai [17],
by classifying clearly unobjectionable content as objectionable
with high confidence. Since we only have query-access to the
model being attacked, the model gradients usually needed
to generate adversarial examples (see Section 4.3) have to be
estimated. This is done using the finite difference method
with random grouping based query-reduction [7].

Our results in Section 5.4 show that OOD adversarial examples
remain effective in these settings and are able to successfully attack
content moderation and traffic sign recognition systems.

3.2 Towards Robust Open-World Deep
Learning

A robust open-world deep learning system is expected to satisfy
the following two properties: (i) It should have high accuracy in de-
tecting both unmodified and adversarial OOD inputs; (ii) It should

have high accuracy in classifying unmodified and adversarial in-
distribution inputs. To move towards a robust open-world deep
learning system, we take inspiration from previous work on se-
lective prediction [15, 24, 47] which augments classifiers for in-
distribution data with an additional class (referred to as background
class) so they can be extended to open-world learning environment
and detect OOD inputs. Further, since iterative adversarial training
[46] enables the robust classification of in-distribution adversar-
ial examples, we can intuit that a similar approach may provide
robustness to OOD adversarial examples. Thus, we examine a hy-
brid approach where we use iterative adversarial training to ensure
robust classification of OOD data, both unmodified and adversarial,
to the background class. Similar to other OOD detection approaches
[30, 31, 42, 44], selective prediction is semi-supervised, i.e. it as-
sumes access to a small subset of OOD data at training time. As
highlighted by our results in Section 6, this detector can successfully
generalize to unseen OOD adversarial examples. We note that since
all of these state-of-the-art approaches consider the detection of
specific (multiple) OOD datasets, we follow the same methodology
for robust OOD classification. To achieve robust classification in the
open-world environment, we perform iterative adversarial training
with the following loss function:

ℓ̃д(xin, xOOD,y) = α ℓ̃д(xin,y) + (1 − α)ℓ̃д(xOOD,yb ) (3)

where xin ∈ P inX , xOOD ∈ PoutX , y is true label for sample xin and
yb is the background class. ℓ̃д(·, ·) refers to the robust loss used in
adversarial training (Eq. 2).

The question now arises: to what extent does this formulation
satisfy the two desired properties from a robust open-world learn-
ing system? In particular, we examine if the following goals are
feasible using small subsets of OOD data: i) robust classification of
a single OOD dataset? ii) generalization of robustness to multiple
OOD datasets while training with a single one? iii) simultaneous



robustness to multiple OOD datasets while training with data from
all of them? Again, we emphasize that these must be achieved while
maintaining high accuracy on in-distribution data.

Our evaluation in Section 6 answers these questions in the affir-
mative. For example, we observe that a subset as small as 0.5% of
the total number of samples from an OOD dataset can significantly
enhance robustness against OOD adversarial examples.

4 DESIGN CHOICES FOR OPEN-WORLD
EVASION ATTACKS

In this section, we present and examine the design choices we make
to carry out our experiments on both evaluation and training of
classifiers in the open-world model. In particular, we discuss the
types of datasets, models, attack methods, and metrics we consider.
All our code and links to the data is available on https://github.
com/ inspire-group/OOD-Attacks for the purposes of reproducible
research.

4.1 Datasets
We consider 3 publicly available datasets for image classification
as sources of in-distribution data for training (P inX ,Y ): MNIST [41],
CIFAR-10 [39], and ImageNet [19]. When one of the above datasets
is used for training, the other two datasets are used as sources of
OOD data. We consider the following two types of OOD data.
Semantically meaningful OOD data: Datasets such as MNIST,
CIFAR-10 and ImageNet are semantically meaningful as the images
they contain generally have concepts recognizable to humans. To
further explore the space of semantically meaningful OOD data,
we also consider the VOC12 [22] dataset as a source of OOD data.
Furthermore, we construct an Internet Photographs dataset by
gathering 10,000 natural images from the internet using the Picsum
service [2]. To avoid any ambiguity over examples from different
datasets that contain similar semantic information, we ensure the
label set for semantically meaningful OOD examples is distinct
from that of the in-distribution dataset.
Noise OOD data: By definition, OOD data does not have to contain
recognizable concepts. Thus, we construct a Gaussian Noise dataset
consisting of 10,000 images for each of which the pixel values are
sampled from a Gaussian distribution with the mean value equal to
127, and the standard deviation equal to 50. In settings where inputs
to an ML classifier are not checked for any sort of semantics, this
dataset is a viable input and thus must be analyzed when checking
for robustness.

4.2 Models
We experiment with three robust training defenses (Iterative ad-
versarial training [46], Adversarial logit pairing [37], and robust
training with convex outer polytope [38]), two adversarial example
detectors (Feature Squeezing [68] and MagNet [48]), and two OOD
detectors (ODIN [44] and Confidence calibrated classifiers [42]). The
details about model architectures and classification performance
are described in Table 2. Following the convention in previous work
[11, 38, 46], we report the perturbation budget for models trained
on MNIST dataset using [0,1] scale instead of [0,255].

Table 2: Deep neural networks used for each dataset in this
work. The top-1 accuracy and confidence values are calcu-
lated using the test set of the respective datasets.

Dataset Model Classification
accuracy (%)

Mean
confidence

MNIST [41]
4-layer CNN(M1) [46] 98.8 0.98
4-layer CNN (M2) [38] 98.2 0.98
7-layer CNN (M3) [11] 99.4 0.99

CIFAR-10 [39]

Wide Residual net
(WRN-28-10) [69] 95.1 0.98

WRN-28-10-A [46, 69] 87.2 0.93
WRN-28-1 [65] 66.2 0.57
DenseNet [33] 95.2 0.98
VGG13 [57] 80.1 0.94

All Convolution Net [59] 85.7 0.96

ImageNet [19] MobileNet [32] 70.4 0.71
ResNet-v2-50 [28, 37]
(for 64×64 size images) 60.5 0.28

4.3 OOD Evasion Attack Methods
4.3.1 Targeted adversarial attacks. We only consider targeted at-
tacks for two reasons. First, they are strictly harder than non-
targeted attacks for the adversary [11]. Second, unmodified OOD
examples have no ground truth labels, which raises difficulties
in defining non-targeted attacks and comparing them to the in-
distribution case. We select the target label randomly for each input
image from the set of possible output classes excluding the current
predicted class.

4.3.2 Distance constraints. In this paper, we use the L∞ perturba-
tion constraint for most of our attacks, except for the attack on
feature squeezing [68], where the L∞ metric cannot be used due to
bit depth reduction and thus the L2 perturbation is adopted instead.
These metrics are widely used to generate in-distribution adversar-
ial examples because examples x and x̃ that are ϵ-close in the these
distance metrics, can have similar visual semantics [11, 26, 62].
Whyuse distance constraints forOODadversarial examples?
There are two main reasons why we use distance constraints to
generate OOD adversarial examples. The first reason, which ap-
plies only to semantically meaningful OOD data, is to model the
content in the input that the adversary wishes to preserve, in spite
of it being OOD. In other words, the starting point itself models
a constraint on the adversary, which may arise from the environ-
ment (see Section 5.4.2 for an example for traffic sign recognition
systems) or to prevent the OOD adversarial example from having
undesirable artifacts, e.g. turning a non-objectionable image into
an objectionable one (see Section 5.4.1).

The second reason, which applies to both semantically meaning-
ful and noise OOD data, stems from the need to measure the spread
of successful OOD adversarial examples in the input space. Previous
work has measured the spread of adversarial examples around the
training and test data, in terms of Lp distance constraints and found
that for undefended models adversarial examples are present close
to their starting points. While the use of robust training defenses
makes it challenging to find adversarial examples within a given
constraint set, we show for OOD data, successful OOD adversarial

https://github.com/inspire-group/OOD-Attacks
https://github.com/inspire-group/OOD-Attacks


examples can be found in small Lp balls around unmodified starting
points for both undefended and defended models. We note that for
noise OOD data it is possible to relax distance constraints to gen-
erate OOD adversarial examples which will lead to higher attack
success rates. In Section 5.4.2, we demonstrate open-world evasion
attacks using custom signs on traffic sign recognition systems that
do not restrict the perturbation budget as well.

4.3.3 Attack algorithm. For an OOD input xOOD with a target
label T , we choose Projected Gradient Descent (PGD) algorithm
to generate OOD adversarial examples, since it presents state-of-
the-art adversarial attack performance. PGD algorithm iteratively
minimizes the target prediction loss ℓд(·,T ) and then project onto
the constraint setH to follow the Lp perturbation constraint, which
can be expressed as

x̃tOOD = ΠH(x̃t−1OOD − α · sign(∇x̃t−1ℓ
adv
д (x̃t−1OOD,T ))), (4)

where t is the total number of steps, Π is a projection operator,
x̃0OOD = xOOD and x̃tOOD is the final adversarial example. In our
experiments, t is usually set to be 100-1000, and we choose an ap-
propriate step size α based on adversarial perturbation constraint
to obtain the attack performance. For the target prediction loss
ℓд(·,T ), we use the standard cross-entropy [25] loss function. As
described in Section 3.1.1, the OOD detectors [42, 44] considered
in our paper compare prediction confidence with a threshold to
detect OOD inputs. Since the attack algorithm in Equation (4) iter-
atively increases prediction confidence by decreasing the targeted
prediction loss, it automatically bypasses the OOD detectors.
Note. While most of our experiments are for adaptive white-box
adversaries, in Section 5.4 we use query-based black-box attacks
which rely on PGD but due to a lack of access to the true gradient,
we use estimated gradients instead.

4.4 Evaluation Metrics
We consider the following metrics to measure the performance and
robustness of OOD detectors and image classifiers:
Classification accuracy: This is the percentage of in-distribution
test data for which the predicted label matches the ground-truth
label. It is not reported for OOD data as they have no ground truth
labels.
False negative rate: This is the percentage of OOD examples by-
passing OOD detectors in the open-world learning framework,
which measures the performance of detectors.
Target success rate: This is the percentage of adversarial examples
classified as the desired target, which measures model robustness.
Mean classification confidence: This is the mean value of the
output probability corresponding to the predicted label of the clas-
sifier on correctly classified inputs from in-distribution data. For
adversarial examples, both in-distribution and OOD, it is the mean
value of the output probability corresponding to the target label for
successful adversarial examples. The confidence values lie in [0, 1].

5 RESULTS
In this section, we present the experimental results. We first eval-
uate the robustness of OOD detectors to OOD adversarial exam-
ples. Next, we analyze the performance of state-of-the-art defenses
against adversarial examples in the open-world learning model. We

Table 3: False Negative rate (FNR) of ODIN [44] and confi-
dence calibrated classifier [42] approaches for OOD adver-
sarial examples. The results are reported with the respec-
tive models for each detector trained on CIFAR-10 dataset.
The TNR of each detector with in-distribution dataset is 95%.
These results show that a high percentage of OOD adversar-
ial examples can evade OOD detectors.

OOD dataset ODIN [44]
Confidence-calibrated

classifier [42]
ϵ = 8.0 ϵ = 16.0 ϵ = 8.0 ϵ = 16.0

ImageNet 68.8 97.4 46.4 47.5
VOC12 74.4 97.4 47.1 47.2
Internet

Photographs
81.6 98.7 42.5 45.4

MNIST 72.6 99.8 4.6 5.2
Gaussian
Noise

0 4.2 20.9 21.9

also evaluate adversarial detectors and secondary defenses in this
setup. Finally, we demonstrate two open-world evasion attack cases
with real-world attacks using OOD adversarial examples.

5.1 OOD detectors are not robust
In this section, we evaluate the robustness of two OOD detectors,
ODIN [44] and confidence calibrated classification [42], to OOD
adversarial examples with models trained on CIFAR-10 dataset.
OOD detector setup. The success of OOD adversarial examples
against an OOD detector is measured by False Negative Rate (FNR),
which represents the fraction of OOD inputs the detector fails to
detect. The threshold values reported in [42, 44] are calibrated such
that the True Negative Rate (TNR) i.e., the fraction of in-distribution
inputs the detector classifies as non-OOD, is equal to 95%.

5.1.1 Effect of OOD attacks on ODIN. We use the code and the
pre-trained DenseNet [33] model on CIFAR-10 dataset from Liang
et al. [44]. For consistency, we follow Liang et al. [44] and use
the temperature scaling and perturbation budget for input pre-
processing equal to 1000 and 0.0014 respectively.
OOD adversarial examples can evade the ODIN detector suc-
cessfully. We first test the performance of ODIN with multiple
unmodified OOD datasets. As expected, ODIN achieves more than
78% detection accuracy for all unmodified OOD datasets. However,
the detection rate of ODIN drastically decreases with OOD adversarial
examples (Table 3). Except for Gaussian Noise, the mean attack
success rate is 98.3% for other OOD datasets with ϵ = 16.

5.1.2 Effect of OOD attacks on confidence calibrated classifiers. For
consistency with prior work of Lee et al. [42], we use a similar
model (VGG13) and training procedure. We also validate the results
from Lee et al. [42] by evaluating it on unmodified OOD datasets.
Up to 47.5% OOD adversarial examples could bypass the de-
tection approach based on confidence calibrated classifiers.
We first found that the confidence-calibrated classifier has good
detection performance on unmodified OOD data. For example, un-
modified ImageNet and VOC12 dataset are correctly detected with



accuracy higher than 80%. However, the detection performance de-
grades significantly for adversarial examples generated from OOD
datasets except MNIST (Table 3). When ϵ equals to 16, more than
45% adversarial examples generated from ImageNet, VOC12, and
Internet Photographs datasets are missed by the detector.

However, in comparison to ODIN [44], the gradient-based attacks
for this detector fail to achieve close to 100% FNR. We observe that
even with an unconstrained adversarial attack, the FNR doesn’t
approach 100%. We speculate that this behavior might be due to
non-informative gradients presented by the model at the input.
It should be noted that first-order attack approaches which can
succeed in presence of obfuscated gradients [3] aren’t applicable
here. This is because instead of any additional input-processing
step the gradients are obfuscated by the model itself.

5.2 Fooling robustly trained models
In this section, we first evaluate the robustness of baseline, unde-
fended models (trained with natural training) to OOD adversarial
examples. Next, we evaluate models that are robustly trained using
the two state-of-the-art approaches discussed in Section 2.3.2. This
novel examination is critical because once the adversary manages
to bypass the OOD detector, the open-world learning framework
will pass that input to the relevant classifier. Our results highlight
vulnerability of these approaches to OOD adversarial examples.

5.2.1 Baseline models are highly vulnerable to OOD adversarial
examples. Fig. 2a shows the target success rate with adversarial
examples generated from different OOD datasets for the Wide
ResNet model trained on the CIFAR-10 dataset. The results show
that similar to adversarial examples generated from in-distribution
images, OOD adversarial examples also achieve a high target success
rate. For example, the target success rate increases rapidly to 100%
for both in- and out-of-distribution data.

5.2.2 OOD attacks on adversarially trained models. Previous work
[26, 37, 46, 64] has shown that adversarial training can significantly
increase the model robustness against adversarial examples gen-
erated from in-distribution data. For example, for the WRN-28-10
network trained on CIFAR-10, adversarial training reduces the tar-
get success rate from 100% to 22.9% for ϵ equal to 8, (Figure 2b).
Experimental details:Models corresponding toMNIST, CIFAR-10
datasets in this experiment areM1, WRN-28-10-A (Table 2) respec-
tively. Each model is trained using iterative adversarial training [46]
with an L∞ perturbation budget (ϵ) equal to 0.3, 8 respectively.
OODadversarial examples generated fromOODdatasets (ex-
cept MNIST) achieve high target success rates for multiple
adversarially trained models and datasets: As highlighted in
Fig. 2b for the CIFAR-10 classifier, although adversarial training
improves robustness for in-distribution dataset (CIFAR-10), OOD
adversarial examples achieve up to 4× higher target success rate
compared to in-distribution adversarial examples.

Table 4 presents the detailed results for different datasets. We
can see the improvement in target success rate with OOD adver-
sarial examples. When using the VOC12 dataset to generate OOD
adversarial examples, we can achieve around 66.7× and 2.4× im-
provement in target success rate compared to in-distribution attacks
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(b) Lack of robustness of iterative adversarial training [46].

Figure 2: Target success rate of adversarial examples gener-
ated from different datasets for the state-of-the-art WRN-
28-10 [69] model trained on CIFAR-10 [39]. The PGD attack
is used (Section 4.3) with ϵ (l∞ perturbation budget) up to 8.
Though iterative adversarial training [46] (with ϵ = 8) im-
proves robustness for in-distribution data (CIFAR-10), OOD
adversarial examples are up to 4× as successful as those gen-
erated from in-distribution data.

for MNIST and CIFAR-10 models respectively. The mean classifica-
tion confidence for OOD adversarial examples is also competitive
with adversarial examples generated from in-distribution data and
typically higher than unmodified OOD data.

5.2.3 OOD attacks on robust training with the convex polytope relax-
ation. Robust training using convex polytope relaxation fromWong
et al. [38, 65] provides a provable upper bound on the adversarial
error and thus on target success rate.
Experiment Details:We use the models fromWong et al. [38, 65]
for MNIST and CIFAR-10 dataset. The corresponding Models are
M2 and WRN-28-1 respectively (Table 2). Given that this defense
approach cannot simultaneously maintain high benign accuracy
for CIFAR-10 while using a more realistic ϵ equals to 8, we make a
design choice of ϵ equals to 2 in training the CIFAR-10 model and ϵ
equals to 8 for adversarial example generation. On the other hand,
for simpler dataset such as MNIST, we continue to use the same ϵ
equals to 0.1 for both training and adversarial example generation.



Table 4: Target success rate of adversarial examples generated from different datasets for models trained with iterative adver-
sarial training [46], adversarial logit pairing (ALP) [37], and convex polytope relaxation [38]. The l∞ norm used to generate
adversarial examples is listed along with the training dataset. The maximum target success by the adversarial examples for
every model is highlighted in bold. The results for in-distribution data are highlighted in italics.

Iterative adversarial
training [46]

Adversarial
logits pairing [37]

Provable
Defenses [38]

Test (↓) \ Train (→)
dataset

MNIST (ϵ = 0.3) CIFAR-10 (ϵ = 8) ImageNet (ϵ = 16) MNIST (ϵ = 0.1) CIFAR-10 (ϵ = 8)

success
rate (%)

confidence success
rate (%)

confidence success
rate (%)

confidence success
rate (%)

confidence success
rate(%)

confidence

clean adv clean adv clean adv clean adv clean adv

MNIST 1.5 0.98 0.76 5.1 0.81 0.60 98.8 0.27 0.96 0.6 0.97 0.64 3.9 0.48 0.37

CIFAR-10 97.6 0.77 0.99 22.9 0.93 0.81 100.0 0.14 0.99 67.2 0.88 0.97 15.1 0.27 0.41

ImageNet 97.2 0.79 0.99 44.9 0.74 0.78 99.4 0.30 0.98 72.1 0.88 0.97 23.4 0.40 0.36

VOC12 99.3 0.76 0.99 54.9 0.75 0.79 99.9 0.19 0.99 68.7 0.89 0.97 26.4 0.38 0.36

Internet Photographs 95.4 0.74 0.99 46.3 0.74 0.80 100.0 0.17 0.99 58.4 0.89 0.97 19.8 0.43 0.35

Gaussian Noise 100.0 0.92 1.00 87.9 0.52 0.86 48.5 0.41 0.45 79.0 0.91 0.99 29.1 0.31 0.32

Robust training with convex polytope relaxation lacks ro-
bustness to OOD adversarial examples: Although this defense
significantly improves the robustness for in-distribution adversarial
examples, it lacks robustness to OOD adversarial examples (Table 4).
For the MNIST classifier, the target success rate increases from 0.6%
to 72.1% by using ImageNet as a source of OOD data with ϵ = 0.1. For
the CIFAR-10 classifier, the target success rate increases from 15.1%
to 29.1% with OOD adversarial examples generated from Gaussian
noise. The relatively poor performance of adversarial examples
for the CIFAR-10 classifier could be due to the poor classification
accuracy of this model, where it achieves only 66.2% classification
accuracy on the CIFAR-10 images. We argue that the principle be-
hind this defense is not robust as demonstrated by success of OOD
attacks on the provably trained MNIST model.

5.2.4 Discussion: Impact of OOD dataset. In this subsection, we
further discuss the influence of dataset selection and robust learning
on the success of evasion attacks. We observe in Table 4 that the
target success rate is affected by the choice of the OOD dataset.
In particular, we observe that the target success rate for MNIST
dataset is significantly lower than both in-distribution and other
OOD datasets. We speculate that this behavior could arise due to
the specific semantic structure of MNIST images. Nevertheless,
we emphasize that the threat posed by OOD adversarial examples
still persists, since adversarial examples from multiple other OOD
datasets achieve high target success rates.

5.3 Evading Adversarial Example Detectors
and Secondary Defenses

5.3.1 Adversarial example detectors. Previous work [10, 29] has
shown that both adversarial detectors based on Feature Squeez-
ing [68] or MagNet [48] approach can be evaded with adaptive

white-box attacks accounting for the detector mechanism to gen-
erate adversarial examples from in-distribution data. Our results
(in the Appendix) show that similar to in-distribution data, these
adversarial detectors don’t provide robustness to adversarial examples
generated from OOD data. For feature squeezing, we also observe
that OOD adversarial examples requires a smaller L2 perturbation
budget than in-distribution adversarial attacks for a similar target
success rate. We further show that OOD adversarial examples can
achieve up to 97.3% target success rate in presence of MagNet on a
CIFAR-10 classifier.

5.3.2 Adversarial logit pairing. Adversarial logit pairing [37] was
the first technique to extend iterative adversarial training to Ima-
geNet scale dataset. However, ALP suffers from loss of robustness
for in-distribution adversarial examples when the number of attack
iterations is increased [21]. We show that this vulnerability also
exists for OOD adversarial examples (Table 4).

5.4 Towards real-world attacks
5.4.1 Attacking Content Moderation systems. To achieve low false
positive rate (FPR), ML classifiers deployed in the real-world are
also expected to detect OOD inputs. The is because a high FPR
can significantly affect the performance [49] and cost [1] of the
service provided by the these models. For example, the London
police are attempting to use computer vision to detect nudity in
photographs, but a high FPR is occurring due to the prevalence of
desert scenes as wallpapers etc. [49]. This example represents an
inadvertent denial-of-service (DoS) attack, where a large number of
false positives affects the effectiveness of the automated content
moderation system. We use OOD adversarial examples to carry
out a similar DoS attack on Clarifai’s content moderation model
[17], by classifying clearly unobjectionable content as objectionable
with high confidence. In a real deployment, a deluge of such data



Figure 3: OOD adversarial examples against Clarifai’s Con-
tent Moderation model. Left: original image, classified as
‘safe’ with a confidence of 0.96. Right: adversarial example
with ϵ = 16, classified as ‘explicit’ with a confidence of 0.9.
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Figure 4: OOD adversarial examples for an open-world
traffic-sign recognition pipeline. These adversarial exam-
ples are classified as the desired target traffic sign with
high confidence under a variety of physical conditions when
printed out.

will force human content moderators to spend time reviewing safe
content. Sybil attacks [18] enable attackers to create fake accounts
to upload large amounts of OOD adversarial examples.
Fooling the Clarifai model: Using the query-based black-box
attacks proposed by Bhagoji et al. [7], we construct OOD adversar-
ial examples for Clarifai’s content moderation model. It provides
confidence scores for the input image belonging the 5 classes ‘safe’,
‘suggestive’, ‘explicit’, ‘gore’ and ‘drugs’, and is accessible through
an API. We use 10 images each from the MNIST, Fashion-MNIST
[66] and Gaussian Noise datasets to generate OOD adversarial ex-
amples. All of these images are initially classified as ‘safe’ by the
model. In Figure 3, we show a representative attack example. Our
attack is able to successfully generate OOD adversarial examples
for the 4 classes apart from ‘safe’ for all 30 images with 3000 queries
on average and a mean target confidence of 0.7.

5.4.2 Physically-realizable attacks on traffic signs. We demonstrate
success of physical OOD adversarial examples using both imper-
ceptible perturbations in a OOD logo attack and unconstrained
perturbations within a mask in a custom sign attack. OOD adver-
sarial examples in Figure 4 are undetected and classified with high
confidence as traffic signs (by an open-world system comprising
a CNN with 98.5% accuracy on test data and the ODIN detector
[44]) over a range of physical conditions when printed out. The
targeted attack success rate is 95.2% for the custom sign attack.
Further details and results are in the full version of this paper [58].

6 TOWARDS ROBUST OPEN-WORLD DEEP
LEARNING

In this section, we present experimental results for our proposed
hybrid combination of iterative adversarial training and selective

prediction to enhance classifier robustness against OOD adversar-
ial examples. We experiment with image classification task with
CIFAR-10 dataset as in-distribution and multiple other datasets as
the source of out-of-distribution images. To train the background
class, we include 5,000 out-of-distribution images along with 50,000
in-distribution images of CIFAR-10 dataset. Further details on ex-
perimental setup can be found in Appendix A.
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Figure 5: Target success rate of OOD adversarial examples
(lower is better). The classifier is adversarially trained on in-
distribution inputs along with a small subset of OOD data.
It shows that datasets such as VOC12 and ImageNet provide
a high inter-dataset and intra-dataset generalization for de-
tection of adversarial OOD inputs.

Small subset of OOD data can enable robust detection. With
each of the OOD dataset, we observe that using only 5,000 training
images leads to significant decrease in the success of adversarial
attacks from these datasets (Fig. 5). For example, after adversarial
training with only 5,000 training images (out of 1.2 million) from
ImageNet, the target success of OOD adversarial examples from
ImageNet dataset decreases from 44.9% to 7.4%.
Robust trainingwith oneOODdataset can generalize tomul-
tiple other OOD datasets. Figure 5 shows that adversarial train-
ing with one dataset decreases the attack success of OOD adver-
sarial examples from other datasets. This effect is significant for
feature-rich datasets such as ImageNet and VOC12, supported by
the negative-bias property highlighted by Torralba et al. [63]. For
example, using VOC12 for training reduces the target success rate
of OOD adversarial examples from ImageNet from 44.9% to 15.8%.
MultipleOODdatasets can be combined for robust detection:
By including 5,000 images from each of the four OOD datasets in
robust training, we demonstrate that a single network can learn
robust detection for each of them. We observe that the combination
of all datasets is constructive as the best results are achieved when
multiple datasets are used in training.
Small impact on in-distribution performance: Robust training
with OOD data has a small impact on classifier performance for
in-distribution data. The maximum decrease in benign classifica-
tion accuracy is 1% (for single OOD dataset) and 3.1% (for all four
OOD datasets). The robust accuracy remains largely unchanged.
Discussion and limitations. Our results highlight that it is feasi-
ble to robustly classify one or multiple OOD datasets along with



in-distribution data using a semi-supervised learning approach.
However, the key challenge is to achieve robustness against all
OOD inputs. As a first step, our approach and results motivate the
design of robust unsupervised OOD detectors for deep learning. It
was recently shown that using some unlabeled data during train-
ing can also improve robustness against in-distribution adversarial
attacks [12, 60]. Our results also highlight the need for rigorous
evaluation methods to determine the robustness of open-world
learning systems against all possible adversarial examples.

7 CONCLUSION
In this paper, we investigated evasion attacks in the open-world
learning framework and defined OOD adversarial examples, which
represent a new attack vector on machine learning models used in
practice. We found that existing OOD detectors are insufficient to
deal with this threat. Analyzing the robustness of alternative OOD
detection mechanisms, such as autoencoders [14], and distance
comparisons in feature space [36, 43], would be an interesting
direction of future work.

Further, assumptions regarding the source of adversarial exam-
ples, namely, in-distribution data, have led to tailored defenses.
We showed that these state-of-the-art defenses exhibit increased
vulnerability to OOD adversarial examples, which makes their de-
ployment challenging. With these findings in mind, we took a
first step at countering OOD adversarial examples using adversar-
ial training with background class augmented classifiers. We now
urge the community to consider the exploration of strong defenses
against open-world evasion attacks.
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A ADDITIONAL RESULTS
Table 5: Target success rate for adversarial examples with
random target labels from different datasets in presence of
adversarial detectors, including feature squeezing [68] and
MagNet [48]. Similar to in-distribution adversarial exam-
ples, OOD adversarial examples are also able to evade the
adversarial detectors with a high success rate.

Feature squeezing [68] MagNet [48]
Test (↓) \ Train (→)

dataset MNIST CIFAR-10 ImageNet MNIST
(ϵ = 0.3)

CIFAR-10
(ϵ = 8)

MNIST 98.1 100.0 3.12 32.3 18.0
CIFAR-10 99.2 100.0 96.1 0.7 90.1
ImageNet 99.3 100.0 85.1 0.8 92.5
VOC12 99.3 100.0 96.0 0.8 96.9
Internet

Photographs 98.1 100.0 85.1 1.2 97.3

Gaussian
Noise

100.0 100.0 25.0 0.0 93.9

Adversarial Example Detectors:We present the results for OOD
attacks (Table 5) against the state-of-art adversarial example detec-
tors feature squeezing [68] and MagNet [48] (recall Section 2.3.3).
Target success rate in presence of these detectors refers to the per-
centage of adversarial examples which both evade the detectors
and achieve target label after classification.
Robust open-world machine learning: To train the classifier
in presence of background class, we use 5,000 images from one
of the datasets from MNIST, ImageNet, VOC12, and Random Pho-
tographs. The reason to include only 5,000 images is to avoid data
bias when each class in the CIFAR-10 dataset has 5,000 images.
To include multiple OOD datasets, we add one background class
for each. Figure 6 represent the success of the classifier in reject-
ing the out-of-distribution inputs. It shows that datasets such as
VOC12 and ImageNet provide a high inter-dataset and intra-dataset
generalization for detection of unmodified OOD inputs.
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Figure 6: Classification accuracy of unmodified OOD inputs,
which is the percentage of OOD inputs classified to the back-
ground class.
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