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Abstract—Power grids have just recently been shown to be vulnerable to MAnipulation of Demand (MAD) attacks using high-wattage IoT
devices. In this paper, we introduce two forms of defenses against line failures caused by these attacks: (1) we develop two algorithms
named SAFE and IMMUNE for finding efficient operating points for generators during the normal operation of the grid such that no lines
are overloaded instantly after any potential MAD attacks, and (2) assuming lines can temporarily tolerate overloads, we develop efficient
methods to verify in advance if such overloads can quickly be cleared by changing the operating points of the generators after any
attacks. We then define the novel notion of αD-robustness for a grid indicating that line overloads can either be prevented or cleared
after any attacks based on the two forms of introduced defenses if an adversary can increase/decrease the demands by at most α
fraction. We demonstrate that practical upper and lower bounds on the maximum α for which a grid is αD-robust can be found efficiently
in polynomial time. Finally, we evaluate the performance of the developed algorithms and methods on realistic power grid test cases.

Index Terms—Power grid, IoT, cyber attacks, demand manipulation, control

F

1 INTRODUCTION

POWER grids, as one of the most essential infrastructure
networks, have been repeatedly shown in the past

couple of years to be vulnerable to cyber attacks. The most
infamous example of these attacks was on Ukrainian grid
that affected about 225,000 people in December 2015 [1].
However, smaller scale attacks on regional power grids
have been shown in a recent report to be more common
and pervasive [2]. As indicated in the report, “Hackers are
developing a penchant for attacks on energy infrastructure because
of the impact the sector has on people’s lives” [2].

Because of this ever-growing threat, there has been a
significant effort by researchers in recent years to protect the
grid against cyber attacks. These efforts have been mainly
focused on potential attacks that directly affect different
components of power grids’ Supervisory Control And Data
Acquisition (SCADA) systems. Many system operators pre-
fer to completely disconnect their SCADA systems from the
Internet in the hope that their systems remain unreachable
to hackers.

Despite these efforts, the power demand side of the grid
operation which is not controlled by SCADA has been
neglected to be directly susceptible to attacks in security
assessments due to their predictable nature. However, as
we [3] and Dabrowski et al. [4] have recently revealed,
the universality and growth in the number of high-wattage
Internet of Things (IoT) devices, such as air conditioners and
water heaters, have provided a unique way for adversaries
to disrupt the normal operation of power grid, without any access
to the SCADA system [5], [6]. In particular, an adversary with
access to sufficiently many of such high-wattage devices
(i.e., a botnet), can abruptly increase or decrease the total de-
mand in the system by synchronously turning these devices
on or off, respectively. We call these attacks MAnipulation
of Demand (MAD) attacks (see Fig. 1).

An abrupt increase/decrease in the total demand re-
sults in abrupt drop/rise in the system’s frequency. If this
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Fig. 1: The MAD attack. An adversary with access to an
IoT botnet of high-wattage devices can remotely and syn-
chronously switch on/off these devices in order to change
power flows on the lines in power transmission network
and cause line overloads and failures.

drop/rise is significant, generators will be automatically
disconnected from the grid and a large scale blackout occurs
within seconds [3], [4]. If the drop/rise in the frequency is
not significant, the extra demand/generation can automat-
ically be compensated by generators’ primary controllers,
and the frequency of the system will be stabilized. As a
result of this automatic change in the generation–and de-
mand by the adversary–the power flows in the transmission
network change based on power flow equations. Since the
power flows are not controlled by the grid operator at this
stage, this change in the power flows may result in line
overloads and consequent line-trippings. These initial line
failures can initiate a cascading line failure and result in a
large scale blackout in the grid [3]. For example, it has been
demonstrated that only a 1% increase in the demands at
certain scenarios may initiate a cascading failure leading to
86% power outage in the system.

The grid operator can protect the grid against initial
drop/rise in the system’s frequency caused by a MAD attack
by ensuring that the system has enough inertia (mostly
through rotating generators) and there is enough available
spinning reserve (i.e., generators have enough extra gener-
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ation capacity) [3]. However, protecting the grid against
possible line overloads and failures after a MAD attack,
which is the main focus of this paper, is more analytically
and computationally challenging. Such defenses require the
grid operator to analyze all possible MAD attacks and
their consequences on the power flows and select operat-
ing points for the generators (i.e., their power generation
output) to satisfy the power demands such that no lines are
overloaded after any MAD attacks.

We first focus on finding operating points (namely robust
operating points) with the minimum cost for the genera-
tors such that no lines are overloaded after the automatic
primary response of the generators to any MAD attacks.
Since changes in power flows after a MAD attack directly
depend on generators’ operating points, finding the opti-
mal operating points for the generators requires solving a
nonconvex and nonlinear optimization problem which is
hard in general. Despite this hardness, we develop two
algorithms named Securing Additional margin For genera-
tors in Economic dispatch (SAFE) Algorithm and Iteratively
MiniMize and boUNd Economic dispatch (IMMUNE) Al-
gorithm for finding suboptimal yet robust operating points
for the generators efficiently. The SAFE Algorithm provides
robust operating points for the generators by solving a
single Linear Program (LP). The IMMUNE Algorithm, on
the other hand, requires a few iterations until it converges,
but it provides robust operating points with lower costs than
the ones obtained by the SAFE Algorithm.

In situations that the operating cost of the grid in a robust
state is costly (or no robust operating points exists due to
lack of enough resources), the grid operator may decide to
allow temporary line overloads–by increasing thresholds on
circuit breakers–in the case of a MAD attack, and clear the
overloads during the secondary control. During the secondary
control, which comes right after the automatic primary con-
trol, the grid operator can directly change generators’ oper-
ating points in order to bring back the system’s frequency to
its nominal value and clear any line overloads. To make sure
that line overloads can be cleared during the secondary con-
trol, the grid operator needs to verify in advance whether
for any potential MAD attack, there exist operating points
for the generators satisfying demands such that no lines
are overloaded (namely, the grid is secondary controllable).
However, due to the extent of the attack space, checking all
possible attack scenarios is numerically impossible. Hence,
we develop several predetermined control policies that can
be used to verify the secondary controllability of the grid in
most scenarios with no false positives.

We then evaluate the robustness of grids against MAD at-
tacks with different magnitudes. The magnitude of an attack
can be determined by the fraction of demand (denoted by α)
that the adversary can increase or decrease at each location.
We call a grid αD-robust if either line overloads can be
prevented (i.e., robust operating points exists for generators)
or they can be cleared during the secondary control (i.e.,
grid is secondary controllable) after any MAD attacks by an
adversary that can change the demands by at most α fraction.
In general, finding the maximum α such that a given grid is
αD-robust, is hard. However, by focusing on grid secondary
controllability and the developed predetermined control
policies, we provide efficient methods to compute practical

upper and lower bounds for the maximum α in polynomial
time.

Finally, we numerically evaluate the performance of
the developed algorithms and controllers. For example,
in New England 39-bus system, we show that the SAFE
and IMMUNE Algorithms find operating points for the
generators with at most 6 and 2 percent increase in the
total operating cost such that the grid is robust against
MAD attacks of magnitude α = 0.08. We also evaluate the
performance of the developed methods for approximating
the maximum α that grid is αD-robust and show that for
example in New England 39-bus system, the provided lower
and upper bounds are tight and are equal to the maximum
αmax = 0.0962.

To the best of knowledge, our work is the first to study
the effects of potential MAD attacks on the power flows
in the grid and provide efficient preventive algorithms to
avoid line failures after the primary control response, and
also efficient methods to verify if the line overloads can be
cleared during the secondary control. These algorithms and
methods can be adopted by grid operators to protect their
systems against MAD attacks now and in the near future.

The rest of this paper is organized as follows: Section 2
provides related work and Section 3 presents a brief in-
troduction to the power system’s operation and control.
In Section 4, we introduce the MAD attacks and provide
their basic properties. In Section 5, we present the SAFE and
IMMUNE algorithms and in Section 6, we provide efficient
methods for verifying secondary controllability of a grid.
Section 7 provides methods to evaluate the robustness of
grids against MAD attacks and Section 8 presents numerical
results. Finally, Section 9 provides concluding remarks and
future directions. To improve the readability of the paper,
some of the proofs are moved to Section 10.

2 RELATED WORK

Power systems’ vulnerability to failures and attacks has
been widely studied in the past few years [7], [8], [9], [10],
[11], [12]. In a recent work [13], Garcia et al. introduced
Harvey malware that affects power grid control systems and
can execute malicious commands. Theoretical methods for
detecting cyber attacks on power grids and recovering in-
formation after such attacks have also been developed [14],
[15], [16], [17], [18], [19], [20], [21], [22]. Another related type
of cyber attacks called load redistribution attacks has been
studied by Yuan et al. [23]. However, these type of attacks
change only the measurements at the loads in order to force
the grid operator into problematic corrective actions rather
than actually changing the loads as have been studied in
our work. Overall, most of the previous work on protecting
the grid against attacks have focused on attacks that directly
target the power grid’s physical infrastructure or its control
system.

The possibility of load altering attacks on smart meters
and large cloud servers has been first introduced by Mohse-
nian et al. [24]. Their work was mostly focused on minimiz-
ing the total cost of protecting the loads (which is not always
possible, especially for distributed IoT devices) against such
attacks. Amini et al. [25] have also recently studied the
effects of load altering attacks on the system’s dynamics
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and ways to use the system’s frequency as a feedback to
improve an attack. However, until very recently, practical
ways to perform such attacks in a large-scale and their
consequences on power flows were not fully studied [3].
Hence, little attention has been given to protecting the grid
against line failures caused by these type of attacks.

In three very recent papers, Dvorkin and Sang [26],
Dabrowski et al. [4], and our work [3] revealed the possi-
bility of exploiting compromised IoT devices to manipulate
the demands and to disrupt the normal operation of the
power grid. Dvorkin and Sang [26] modeled their attack as
an optimization problem for the adversary—with complete
knowledge of the grid—to cause circuit breakers to trip in
the distribution network. Dabrowski et al. [4] studied the
effect of demand increases caused by remote activation of
CPUs, GPUs, hard disks, screen brightness, and printers
on the frequency of the European power grid. In [3], we
analyzed the effects of sudden increase and decrease in
the demand via an IoT botnet of high-wattage devices
from various operational perspectives and demonstrated
that besides frequency instability, such attacks can also
result in widespread cascading line failures in the transmis-
sion network leading to large-scale blackouts. Nevertheless,
practical preventive defenses against possible line failures
caused by these attacks have not been developed yet.

Finally, while there have been extensive efforts in re-
cent years to develop efficient algorithms for solving the
Optimal Power Flow (OPF) problem [27], [28], [29] and its
different variations including Security Constrained OPF (SC-
OPF) [30] (which considers grid robustness against possible
line outages) and Chance Constrained OPF (CC-OPF) [31]
(which considers uncertainty in the output of the renewable
resources), since these works do not consider grid robust-
ness against adversarial changes in the demands, our work
is different from previously studied variations of the OPF
problem. Moreover, the second part of this work deals with
secondary controllability of the grid after an attack which is
a totally different problem from the OPF and its variations.

3 MODEL AND DEFINITIONS

In this section, we provide a brief introduction to power
systems’ operation and control. Our focus is on the power
transmission network.

Throughout this paper, we use bold uppercase characters
to denote matrices (e.g., A), italic uppercase characters to
denote sets (e.g., V ), and italic lowercase characters and
overline arrow to denote column vectors (e.g., ~θ). For a
matrix Q, Qi denotes its ith row, qij denotes its (i, j)th entry,
and QT denotes its transpose. For a column vector ~y, ~yT

denotes its transpose, and ‖~y‖1 :=
∑n
i=1 |yi| is its l1-norm.

For a variable x, sgn(x) denotes its sign, and x and x denote
its upper and lower limits, respectively. For a vector ~y, for
simplicity of notation, we drop the vector sign ~ in denoting
vectors of upper and lower limits on the entries of ~y as y and
y, respectively. Finally, ~e1, . . . , ~en denote the fundamental
basis of Rn and ~1 =

∑n
i=1 ~ei denotes the all ones vector.

3.1 Power Flows
Power flows are governed by a set of differential equa-
tions. In the steady-state, using phasors, these differential

equations can be reduced to a set of algebraic equations
on complex numbers known as Alternating Current (AC)
power flow model. Due to the nonlinearity of AC power
flow equations and the computational complexity of solving
these equations, in practice and in day-ahead power grid
contingency analysis and planning, the linearized version
of these equations known as Direct Current (DC) power flow
model is widely being used [27]. Hence, in this work, we
also use the DC power flow model for our analysis. This
allows us to focus on the complexities of MAD attacks
instead of nonlinearity of AC power flows. Nevertheless,
the main ideas of the algorithms developed in this work can
be extended to the AC power flow model as well (e.g.,
by combining them with the recently introduced convex
relaxation methods for solving the AC Optimal Power Flow
(ACOPF) problem [28]), albeit not effortlessly.

We represent the power grid by a connected directed
graph G = (V,E) where V = {1, 2, . . . , n} and E =
{e1, . . . , em} are the set of nodes and edges corresponding
to the buses and transmission lines, respectively (the definition
implies |V | = n and |E| = m). Each edge e is a set of
two nodes e = (i, j). (Direction of the edges are arbitrary.)
~pd ≥ 0 and ~pg ≥ 0 denote the vector of power demand and
supply values, respectively. Accordingly, ~p = ~pg− ~pd denotes
the vector of total supply and demand values. Since the sum
of supply should be equal to the sum of demand,

~1T ~p = 0, (1)

in which ~1 is an all ones vector. In the DC model, lines are
also assumed to be purely reactive, implying that each edge
e = (i, j) ∈ E is characterized by its reactance xe = xij > 0.

Given the power supply/demand vector ~p ∈ Rn×1 and
the reactance values, the vector of power flows on the lines
~f ∈ Rm×1 can be computed by solving the following linear
equations:

A~θ = ~p, (2)

YDT ~θ = ~f, (3)

where ~θ ∈ Rn×1 is the vector of voltage phase angles
at nodes, D ∈ {−1, 0, 1}n×m is the incidence matrix of G
defined as,

dik =


0 if ek is not incident to node i,
1 if ek is coming out of node i,
−1 if ek is going into node i,

Y := diag([1/xe1 , 1/xe2 , . . . , 1/xem ]) is a diagonal matrix
with diagonal entries equal to the inverse of the reactance
values, and A = DYDT is the admittance matrix of G.1

Since A is not a full-rank matrix, we follow [8] and use
the pseudo-inverse of A, denoted by A+ to solve (2) as ~θ =
A+~p. Once ~θ is computed, ~f can be computed from (3) as
~f = YDTA+~p. For the convenience of notation, we define
B := YDTA+. Hence, ~f = B~p.

3.2 Power Grid Operation
Stable operation of the power grid relies on the persistent
balance between the power supply and demand. In order

1. The admittance matrix A is also known as the weighted Laplacian
matrix of the graph [32] in graph theory.
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to keep the balance between the power supply and the
demand, power system operators use weather data as well
as historical power consumption data to predict the power
demand on a daily and hourly basis [33]. This allows
the system operators to plan in advance and only deploy
enough generators to meet the demand in the hours ahead
without overloading any power lines. This planning ahead
consists of two parts: unit commitment and economic dispatch.

In unit commitment which is mainly performed daily,
the grid operator selects a set of generators to commit their
availability during the day-ahead operation of the grid. But
the actual operating points of the generators (i.e., generation
outputs) are determined by the operator during the day and
in the process known as economic dispatch. The main goal of
the operator during economic dispatch is to ensure reliable
operation of the grid with minimum power generation cost.
When feasibility of the power flows is also considered dur-
ing economic dispatch, the process is also known as Optimal
Power Flow (OPF) problem. Since in practice feasibility of
power flows is always being considered, these two terms
can be used interchangeably most of the times.

In this work, we mainly focus on ensuring the robustness
of the grid during the economic dispatch. Extending our
methods to the unit commitment process is beyond the
scope of this paper and is part of the future work. Hence,
here we assume that the set of available generators are
given. The main challenge is to obtain a favorable operating
point for these generators.

3.2.1 Optimal Power Flow
In the OPF problem, given the vector of predicted demand
values ~pd, the grid operator needs to find the operating
point vector ~pg for the generators such that supply matches
the demand (i.e., ~1T ( ~pg − ~pd) = 0), the operating and
physical constraints are satisfied, and the operating cost of
the generators are minimized.

In particular, each line fij has a thermal power flow
limit fij limiting the amount of power that a line can safely
carry. If the power flow on a line goes above this limit
(i.e., overloads), in most of the cases, it will be tripped by
a circuit breaker in order to keep the line from breaking due
to overheating. Hence, during the normal operation of the
grid

|fij | ≤ fij , ∀(i, j) ∈ E. (4)

The amount of power that each generator pgi is generating is
also limited by a maximum (pgi) and a minimum (pgi) value.
If there are no generators at node i, then pgi = pgi = 0.
Hence,

pg ≤ ~pg ≤ pg. (5)

The generation cost at each generator is a given by a cost
function ci(x) in $/hr. Given these cost functions, the OPF
problem can be formulated as follows:

min
~θ,~f, ~pg

n∑
l=1

cl(pgl), (6)

s.t. (1), (2), (3), (4), (5),

~p = ~pg − ~pd.

Several methods for finding an optimal solution to (6)
depending on the cost functions exist in the literature [27].

Here, we assume that the cost functions are convex and
therefore the OPF problem can be solved optimally in
polynomial time. Our main focus in Section 5 is on how to
add additional constraints to the OPF problem to ensure grid
robustness against MAD attacks without making the problem
nonconvex.

3.3 Frequency control
In power systems, the rotating speed of generators corre-
sponds to the frequency. When demand becomes greater
than supply, the rotating speeds of turbine generators’ rotors
decelerate, and the kinetic energy of the rotors is released
into the system in response to the extra demand. Corre-
spondingly, this causes a drop in the system’s frequency.
This behavior of turbine generators corresponds to New-
ton’s first law of motion and is calculated by the inertia of
the generators. Similarly, the supply being greater than the
demand results in acceleration of the generators’ rotors and
a rise in the system’s frequency.

This decrease/increase in the frequency of the system
cannot be tolerated for a long time since frequencies lower
than their nominal value severely damage the generators.
If the frequency goes above or below a threshold value,
protection relays turn off or disconnect the generators
completely. Hence, in case of a demand increase, within
seconds of the first signs of a decrease in the frequency,
the primary controllers at generators activate and increase
the mechanical input to the generators which increase the
speed of the generator’s rotor and correspondingly the gen-
erator’s output and frequency of the system [34]. The rate
of decrease/increase in the frequency of the system, before
activation of the primary controllers, directly depends on
the total inertia of the system. Systems with a higher number
of rotating generators have higher inertia and therefore are
more robust against sudden demand changes or generation
losses.

The rate of increase in the output generation of generator
i during the primary control is determined by its governor
droop characteristic denoted by Ri [35, Chapter 9]. In particu-
lar, after a change in the total demand by S∆pd , the primary
controller of each generator i increases its output with rate
1/Ri until the total generation is equal to the demand
again. In particular, if none of the generators reach their
generation limit, each generator iwill increase its generation
by 1/Ri × S∆pd/(

∑n
l=1 1/Rl). The amount of power that

generators can provide during the primary control is called
the spinning reserve of the generators.

Despite the stability of the system’s frequency after
the primary controllers’ response, it may not return to
its nominal value (since generators generating more than
their generating set points). Hence, the secondary controller
starts within minutes to restore the system’s frequency. The
secondary controller modifies the power set points and de-
ploys available extra generators and controllable demands
to restore the nominal frequency and permanently stabilizes
the system.2 Fig. 2 presents an example of the way frequency
of the system changes after a sudden increase in the demand
(or loss of generation) at time 0.

2. Part of these controls can be done during the tertiary control.
However, for simplicity and without loss of generality we refer to them
as the secondary control.
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Fig. 2: A sample frequency response of the power grid to a
sudden increase in the demand (or loss of generation).

4 MAD ATTACKS

In this work, we follow the threat model that we have
initially introduced in [3]. In particular, we assume that
an adversary has already gained access to an IoT botnet
of many high-wattage smart appliances within a city, a
country, or a continent. Such access can potentially allow the
adversary to increase or decrease the demand at different
locations remotely and synchronously at a certain time. We call
the attacks under this threat model the MAnipulation of the
Demand (MAD) attacks.

Since the focus of this work is to develop defenses
against MAD attacks rather than dealing with complexities
of performing such an attack (as extensively studied in [3]),
we abstract the threat model by the adversary’s power to
manipulate the demands at each node. In particular, we
assume the demand changes at node l by an adversary
are bounded by −∆pdl ≤ ∆pdl ≤ ∆pdl. Notice that from
defensive point of view, there are no differences between
an adversary with the total knowledge of the system (a.k.a
white-box attacks) and an adversary with no knowledge of
the system (a.k.a black-box attacks), since the operator needs
to make sure that the grid is robust against any possible
attacks.

The initial effect of a MAD attack, as described in
Section 3.3 is on the frequency of the system. However,
the system operator can make the system robust against
frequency disturbances caused by MAD attacks by ensuring
that enough generators with inertia and spinning reserve
are committed to operate during the unit commitment pro-
cess [3]. The minimum required inertia and spinning reserve
should be computed based on the potential attack size and
the properties of the grid. Devices that provide virtual
inertia such as batteries, super-capacitors, and flywheels
can also be integrated into the system to increase the total
inertia [36].

Hence, the main challenge in protecting the grid against
the initial effects of MAD attacks is at the hardware level.
However, the effects of MAD attacks are not limited to
frequency disturbances. Recall from Section 3.1 that the
power flows in power grids are determined uniquely given
supply and demand values. Therefore, most of the time, the
grid operator does not have any control over the power
flows from generators to loads. Once an adversary causes
a sudden increase in the loads all around the grid, assuming
that the frequency drop is not significant, the extra de-
mand is satisfied automatically by generators through their

primary controllers as described in Section 3.3. Since the
power flows are not controlled by the grid operator at this
stage, this change in supply and demand may result in line
overloads and consequent line-trippings [3].

If the primary controllers’ response results in line over-
loads, assuming that these overloads can barely be tolerated
for a short period of time, these line overloads can be cleared
during the secondary control. However, the system operator
needs to ensure in advance that possible line overloads can
indeed be cleared during the secondary control after any
MAD attacks.

In this work, we focus on the effects of MAD attacks on
the power flow changes on the lines which are more challenging
from the system planning perspective. Our objectives are: (i) to
develop algorithms for finding efficient operating points for the
generators during the economic dispatch such that no lines are
overloaded after the primary control response to any potential
MAD attacks, and (ii) to design methods to efficiently examine
if line overloads after the primary control–if any–can be cleared
during the secondary control.

Notice that we assume the system have enough inertia
and reaches a steady-state after the primary controllers’ re-
sponse to a MAD attack (as in Fig. 2). Moreover, since power
lines can normally withstand sudden but momentary power
surges, in analyzing power flows after a contingency, the
transient power flows are usually neglected [27]. Therefore,
it is reasonable to use the steady-state power flow equations
as described in Section 3.1 for our analysis.

5 POWER FLOWS: PRIMARY CONTROL

In this section, we provide two algorithms for finding oper-
ating points for the generators during the economic dispatch
process such that no lines are overloaded after the automatic
response of the primary controllers to any MAD attacks. We
call such operating points, robust operating points.

5.1 Power Flow Changes

In this subsection, we present a couple of examples in order
to demonstrate the complexity of power flow analysis after
the primary controller’s response to a MAD attack.

First, as can be seen in Fig. 3 the relationship between the
power flow changes on the lines and the demand changes is
not intuitive. For example, flow on line (2, 3) is maximized
when only the demand at node 3 increases (Fig. 3(c)),
whereas when demands at both nodes 1 and 3 increase, flow
on line (2, 3) increases less (Fig. 3(d)).

Another important factor affecting the amount of power
flow changes on the lines is the amount of spinning reserve
at each generator. For example, as can be seen in Fig. 4, an
increase in the demand at node 1 by 3 units may result in
power flow decrease on line (2, 3) if all the generators have
enough spinning reserves (Fig. 4(a)). The same scenario,
however, results in power flow increase on line (2, 3), if only
generators 2 and 4 have spinning reserves (Fig. 4(b)).

Fig. 5 presents the relationship between power flow
changes on lines (2, 3) and (5, 3) versus power demand
increase at node 1 during two different spinning reserve
availability scenarios in the grid shown in Fig. 3(a). As can
be seen in Fig. 5(a), if all generators have enough spinning
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Fig. 3: An example demonstrating that increasing all demands may not necessarily result in the maximum flow on the
lines. (a-b) Initial setting and power flows, (c) power flows if demand at bus 3 increases, and (d) power flows if demand at
both buses 1 and 3 increases. All generators have the same droop characteristic and they all have enough spinning reserve.
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spinning reserves then demand increase at bus 1 results
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0 1 2 3 4 5 6 7 8 9

∆pd1

5

5.5

6

6.5

7

P
o
w
e
r
F
lo
w

f53
f23

(a)

0 1 2 3 4 5 6 7 8 9

∆pd1

4.5

5

5.5

6

6.5

7

7.5

P
o
w
e
r
F
lo
w

f53
f23

(b)

Fig. 5: Power flows on lines (5, 3) and (2, 3) in the grid
shown in Fig. 3(a) as demand at bus 1 increases. (a) If all
the generators have enough spinning reserve, and (b) if
generator 5 has only 1 unit of spinning reserve.

reserve the power flows change monotonically with the
demand change. However, as can be seen in Fig. 5(b),
limited spinning reserve at generator 5 results in a nonlinear
relationship between the power flows and the demand
change.

Following the examples provided in this subsection, it
is clear that power flow changes on the lines after a MAD
attack highly depend on the initial operating point of the
grid and is a nonlinear problem in most cases. Despite
the difficulties, however, in the next two subsections, we
provide efficient algorithms for finding efficient and robust
operating points for the generators.

5.2 SAFE Algorithm
In order to avoid line overloads after the primary control
response to a potential MAD attack, the grid operator needs

to compute the maximum possible power flow changes on
the lines following an attack (based on ∆pdl values) and
enforce the power flows on the lines in OPF to be below their
capacity minus the maximum possible changes. As shown
in the previous subsection, however, the maximum power
flow changes on the lines depend on the operating point
of the generators and their spinning reserve. Therefore, one
cannot compute the maximum power flow changes on the
lines independent of the operating points to be used in the
OPF problem.

One way to circumvent this problem, is to enforce all
the generators to have enough spinning reserves to keep
the relationship between the power flow changes and de-
mand changes linear (as in Fig. 5(a)), and use this linear
relationship to compute the maximum power flow changes
on the lines based on the operating point of the generators.
These values can then be added to the OPF problem without
making the problem nonlinear and nonconvex. Recall that
since here we use DC power flows with convex cost func-
tions, the OPF problem is convex. Hence, when we mention
the nonconvexity of the problem, it is due to additional
constraints on the power flows.

For each load i, define ~vi = [vi1, vi2, . . . , vin]T to de-
note the primary controllers’ response to a unit demand
increase at load i. If all generators have enough spinning
reserve, each generator j will increase its generation by
vij := (1/Rj)/(

∑n
l=1 1/Rl) to compensate for a unit de-

mand increase at node i (as described in Section 3.3). Hence,
by defining ~wi := ~vi − ~ei (recall from Section 3 that ~ei is the
ith fundamental basis of Rn) one can compute the change in
the flow of line e = (i, j) solely in terms of changes in the
demands (∆pdis):

∆fij = 1/xij(A+
i −A+

j )
n∑
l=1

∆pdl ~wl. (7)

Recall that −∆pdl ≤ ∆pdl ≤ ∆pdl based on the grid
operator’s estimation of the adversary’s power. Hence, the
maximum flow change on line (i, j) can be computed using
(7) as:

∆fmax
ij = 1/xij

n∑
l=1

∆pdl|(A+
i −A+

j )~wl|, (8)

since for each l, ∆pdl can be selected by the adversary to
be equal to −∆pdl, if (A+

i − A+
j )T ~wl < 0, and equal to

∆pdl, if (A+
i − A+

j )~wl ≥ 0. Now, to ensure that no lines
are overloaded after a MAD attack, all the system operator
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needs to do is to replace the capacity of each line (i, j) in the
OPF problem by fij−∆fmax

ij . The only other constraint that
needs to be added to the OPF problem is to make sure that
each generator iwith 0 < 1/Ri has enough spinning reserve
to increase its generation according to its governor droop.
For this, define S∆pd :=

∑n
l=1 ∆pdl. Hence, each generator’s

operating point should be within the following limits:

∀1 ≤ i ≤ n :

pgi +
1/Ri∑n
l=1 1/Rl

S∆pd ≤ pgi ≤ pgi −
1/Ri∑n
l=1 1/Rl

S∆pd . (9)

Therefore, the robust OPF problem can be written as
follows:

min
~θ,~f, ~pg

n∑
l=1

cl(pgl), (10)

s.t. (1), (2), (3), (8), (9),

|fij | ≤ fij −∆fmax
ij , ∀(i, j) ∈ E

~p = ~pg − ~pd.

We call the algorithm for finding a robust operating
point for generators by limiting their operating points—to
be able to analytically compute ∆fmax

ij s—and solving (10),
the Securing Additional margin For generators in Economic
dispatch (SAFE) Algorithm. Since this algorithm limits the
operating points of the generators by adding conditions (9)
to the OPF problem, it is obvious that it may not obtain the
minimum cost robust operating points for the generators. In
the next subsection, we provide an algorithm, albeit com-
putationally more expensive, for finding robust operating
points for the generators without limiting their operating
points—as in (9).

5.3 IMMUNE Algorithm
In (7), we assumed that none of the generators reach their
maximum/minimum capacity as they increase/decrease
their generation according to their droop characteristics.
However, by allowing some generators to reach their max-
imum/minimum capacity, one may find robust operating
points for the generators with a lower cost.

In this subsection, for brevity and to avoid repetition, we
assume that the total demand change S∆pd :=

∑n
i=1 ∆pdi

can only be positive. Hence, we focus mainly on the genera-
tors’ maximum capacity. However, the same set of equations
can similarly be derived for the case S∆pd < 0 which should
also be considered separately in computing the maximum
power flow changes on the lines. In particular, whenever
there is a minimization/maximization problem with S∆pd ≥
0 constraint, one should also solve a similar optimization
problem with S∆pd < 0 and take the minimum/maximum
of the optimal value of the two optimization problems. In
Section 8, we consider both cases for numerical evaluations.

Once a generator reaches its maximum capacity, it can-
not increase its generation anymore, and therefore other
generators should generate more to compensate for the
extra demand. The following lemma provides the amount
each generator generates based on its spinning reserve and
governor droop characteristic to compensate for the extra
demand after a MAD attack.

Lemma 1. Suppose generators are ordered such that if i < j,
Ri(pgi− pgi) ≤ Rj(pgj − pgj). Define ti := Ri(pgi− pgi) and
Si :=

∑i
l=1 tl/Rl +

∑n
l=i+1 ti/Rl. If Si < S∆pd ≤ Si+1,

to compensate for the extra demand, generators 1 to i reach
their maximum capacity and each generator j > i generates

1/Rj∑n
l=i+1 1/Rl

(
S∆pd −

∑i
l=1(pgl − pgl)

)
.

In general, as demonstrated in Figs. 4 and 5, due to
power generation limits, power flow on a line may not
change monotonically as demand changes in a specific
node–as in (7). Hence, the maximum change in the power
flows cannot be found in a closed form as in (8). However,
one may be able to find an upper bound on the maximum
power flow change on a line.

Upper bounds on the maximum power flow changes
after a MAD attack can be computed by assuming the
worst case initial operating points and also assuming that
generators can be arbitrarily assigned to provide extra re-
quired generation. In particular, an upper bound ∆̂fij for
the power flow changes on line (i, j) can be computed by
finding the worst initial operating points for the generators
~pg and the worst possible way to increase the power gener-
ations ∆ ~pg (in oppose to the automatic primary controller’s
response) in response to the worst possible way to increase
the demands by an adversary ∆ ~pd as follows:

∆̂fij := max
~pg, ~∆pd, ~∆pg

∣∣∣1/xij(A+
i −A+

j )( ~∆pg − ~∆pd)
∣∣∣ (11)

s.t. ~1T ( ~pg − ~pd) = 0,

~1T ( ~∆pg − ~∆pd) = 0,

−∆pdl ≤ ∆pdl ≤ ∆pdl, 1 ≤ l ≤ n
pg ≤ ~pg ≤ pg,
0 ≤ ∆pgl ≤ pgl − pgl, 1 ≤ l ≤ n,
S∆pd ≥ 0.

Optimization (11) is a Linear Program (LP) that can be
solved efficiently for each line (i, j). Using these upper
bounds, we can limit the power flows on the lines in the OPF
problem (6) as |fij | ≤ fij− ∆̂fij to leave enough margin for
the lines in case of a MAD attack. Hence, the solution to the
following modified OPF problem provides robust operating
points for the generators:

min
~θ,~f, ~pg

n∑
l=1

cl(pgl), (12)

s.t. (1), (2), (3), (5),

|fij | ≤ fij − ∆̂fij , ∀(i, j) ∈ E
~p = ~pg − ~pd.

Enforcing the power flows on all the lines, such as (i, j),
to be less than fij − ∆̂fij as in (12) ensures that none of the
lines will be overloaded after a potential MAD attack. How-
ever, the solution to (12) may not provide the optimal robust
operating points for the generators since ∆̂fijs only provide
an upper bound on the maximum power flow changes on
the lines. To achieve more efficient robust operating points,
we introduce an iterative algorithm that solves the OPF
problem and updates the lines’ required safety margins to
ensure that none of the lines get overloaded after a MAD
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attack. We will then use the upper bounds ∆̂fijs to prove
that the algorithm will converge to a local optimal solution.

First, given the operating points pg1, . . . , pgn to the OPF
problem, the maximum power flow change on line (i, j)
(denoted by ∆fmax

ij ) after an attack can be computed based
on the power flow solution ~f = YDTA+~p by solving the
following optimization problem:

∆fmax
ij = max

~∆pd

sgn(fij)
(

1/xij

n∑
l=1

−∆pdl(a
+
il − a

+
jl)

(13)

+ 1/xij

n∑
l=1

fl(S∆pd)(a+
il − a

+
jl)
)

s.t. −∆pdl ≤ ∆pdl ≤ ∆pdl, 1 ≤ l ≤ n
S∆pd ≥ 0.

in which fl(·)s denote piecewise linear functions that deter-
mine the extra output of the generators based on the total
demand change S∆pd . Since we assumed that pg1, . . . , pgn
are given, functions fl(·) can be uniquely determined using
Lemma 1. sgn(fij) in the objective of (13) is to ensure that
the maximum changes are in the direction of increase in the
power flow on line (i, j). Hence, for all lines ∆fmax

ij ≥ 0.3

Lemma 2. Optimization (13) can be solved in polynomial time
for each (i, j) ∈ E.

Proof: Without loss of generality, assume that gener-
ators are ordered such that t1 ≤ t2 ≤ · · · ≤ tn as defined
in Lemma 1. It is easy to see that by using Lemma 1 and
defining S0 := 0, one can solve (13) in different linear
regions of fl(·)s by considering additional conditions for
S∆pd (for 0 ≤ z < n):

Sz ≤ S∆pd < Sz+1. (14)

Under condition (14), fl(·)s can be determined as follows:

fl(S∆pd) =

pl − pl l ≤ z,
1/Rl

(
S∆pd

−
∑z

w=1(pw−pw)
)

∑n
w=z+1 1/Rw

l > z.
(15)

Hence, all the fl(·) are either constant or linear functions
in (13) and therefore (13) can be solved efficiently using LP.
Hence, by solving (13) at most n times (once for every condi-
tion (14) for different z) ∆fmax

ij can be found in polynomial
time.

After computing ∆fmax
ij values, one can use them to

verify if any of the lines will be overloaded after an attack
(e.g., by checking if fij < |fij |+∆fmax

ij ). If yes, then update
the required margins for the lines that may get overloaded
in the OPF problem to ensure that those lines will not be
overloaded. The OPF problem can then be solved again
with new power flow margins for the lines and the process
continues until no additional updates for the line margins
are required at the obtained operating point (which means
that the obtained operating point is robust). We call this
algorithm Iteratively MiniMize and boUNd Economic dis-
patch (IMMUNE) Algorithm (summarized in Algorithm 1).

3. Notice that for computing the maximum power flow changes on
the lines, the S∆pd < 0 case should also be considered separately to see
if it results in a larger power flow change than the one obtained from
(13). However, as we mentioned at the beginning of the subsection, here
we only consider S∆pd ≥ 0 for the brevity of presentation.

Algorithm 1: Iteratively MiniMize and boUNd
Economic dispatch (IMMUNE)

Input: G

1: flag = 1
2: Define cij := fij for all (i, j) ∈ E
3: while flag do
4: Solve the OPF problem (6) such that

∀(i, j) ∈ E : |fij | ≤ cij
5: if OPF is not feasible then
6: return none
7: Compute ∆fmax

ij by solving (13) for all (i, j) ∈ E
8: flag = 0
9: for (i, j) ∈ E do

10: if fij < |fij |+ ∆fmax
ij then

11: cij = fij −∆fmax
ij

12: flag = 1
13: return pg1, pg2, . . . , pgn

Lemma 3. If (12) is feasible, then the IMMUNE Algorithm
converges to a local optimum solution.

Lemma 3 provides a sufficient condition such that the
IMMUNE Algorithm converges to a local optimum. How-
ever, even if (12) is not feasible, the system operator can still
run the IMMUNE Algorithm to obtain a local optimum so-
lution if the OPF problem remains feasible at each iteration
of the algorithm.

We can also provide an upper bound on the number of
iterations that IMMUNE algorithm requires to converge. For
this reason, the algorithm needs to change discrete changes
to the capacities at each iteration.

Lemma 4. If the IMMUNE Algorithm changes cij at each
iteration by a discrete amount such as cij = max{bfij −
∆fmax

ij c, fij − ∆̂fij}, then it terminates in at most
O(
∑

(i,j)∈Ed∆̂fije) iterations.

Corollary 1. If generators’ cost functions are linear and F(n)
indicates the running time of the LP solver of choice with n
variables (e.g., simplex or ellipsoid algorithms), the IMMUNE
Algorithm terminates in O(mF(n)(

∑
(i,j)∈Ed∆̂fije)).

Following a similar idea, one can decrease the run-
ning time of the IMMUNE algorithm by applying more
aggressive update rules for the capacities in line 11 of
the algorithm. For example, line 11 can be replaced by
cij = 0.9(fij −∆fmax

ij ) or cij = 0.95(fij −∆fmax
ij ). We call

these variations of the IMMUNE Algorithm, IMMUNE-0.9,
and IMMUNE-0.95. In Section 8.2, we numerically evalu-
ate and compare the performance of these algorithms and
demonstrate that more aggressive update rules result in
faster convergence.

One favorable property of the IMMUNE Algorithm is
that it can be easily parallelized. This parallelization can be
used to simultaneously compute ∆fmax

ij for all the lines at
each iteration in order to expedite the algorithm.

If the OPF problem becomes infeasible in any iteration of
the IMMUNE Algorithm, there are two ways to circumvent
the issue: (i) By considering higher temporary limits for the
lines (e.g., 1.1fij) which is a common practice in power
systems operation, but the operator needs to ensure that
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Fig. 6: Complexity of secondary controller problem. (a)
Secondary controller problem setting, (b) an attack that
maximizes the demand, and (c) an attack that minimizes the
demand at one node and maximizes the demand at another
node.

line overloads can be cleared during the secondary control,
or (ii) by returning to the unit commitment problem and
change the list of committed generators to make sure (12)
is feasible. We will address the first approach in the next
section in detail. However, the second approach is beyond
the scope of this paper and is part of our future work.

6 POWER FLOWS: SECONDARY CONTROL

In cases that primary control cannot prevent line overloads,
the system operator has to clear these overloads during the
secondary control instead. In such cases, the operator needs
to make sure in advance that after the primary control’s
response to a MAD attack, there are operating points for
the generators such that the demand can be supplied with
no line overloads (i.e., the secondary controller can clear
the overloads). Assuming that the maximum and minimum
reachable demands at node i by an adversary are pdi and
pdi, respectively, this problem can be defined as the secondary
controller problem:

Secondary controller problem: For any pd1, pd2, . . . , pdn that
∀1 ≤ i ≤ n : pdi ≤ pdi ≤ pdi, are there operating points
pg1, . . . , pgn for the generators such that ∀1 ≤ i ≤ n : pgi ≤
pgi ≤ pgi, ~1T ( ~pg − ~pd) = 0, and no lines are overloaded?

Definition 1. A grid is called secondary controllable if the
answer to the secondary controller problem is yes.

Notice that operating cost of the generators are not important
during the secondary control since the secondary controller
activates only after a potential attack and the operator needs
to bring back the grid to its normal state as soon as possible
at any cost. Fig. 6 provides an example of the secondary
controller problem. As can be seen in Fig. 6(b), when the
demands are all equal to their maximum level after a MAD
attack, the demand can be supplied by generators with no
line overloads. However, as presented in Fig. 6(c), when
the demand is increased to its maximum level at one node
and decreased to its minimum at another one, there is no
possible way to supply the demand such that no lines are
overloaded. This example clearly evinces that the secondary
controller problem is not intuitive.

In the following subsections, we study the secondary
controller problem in detail and provide efficient algorithms
to verify the secondary controllability of a power system.

6.1 Maxmin Formulation

One way of verifying the secondary controllability of a
power system is by exploiting linear bilevel programs [37],
[38]. The secondary controller problem can be written in the
form of a max-min linear problem which is a special form
of linear bilevel programs as follows:

max
~pd

min
~pg,~q,~f,~θ

~1T ~q (16)

s.t. (1), (2), (3), (4), (5),

~p = ~pg − ~pd + ~q,

qi ≥ 0, 1 ≤ i ≤ n
pdi ≤ pdi ≤ pdi, 1 ≤ i ≤ n.

In optimization problem (16), vector ~pd should be selected
such that for the best possible selection of vector ~pg and
positive auxiliary vector ~q, the objective value is maximized.
The following proposition relates the solution of (16) to the
secondary controller problem.

Proposition 1. The optimal solution of (16) is 0 if, and only if,
the grid is secondary controllable.

Proof: If the optimal solution to (16) is 0, then for
any demand vector ~pd, the vector of generation values ~pg
can be selected such that ~1T ( ~pg − ~pd) = 0 and no lines are
overloaded. Hence, the grid is secondary controllable. Now
if the grid is secondary controllable, then for all demand
vectors ~pd, there exists a vector of generation ~pg such that
~1T ( ~pd − ~pd) = 0 and no lines are overloaded. Hence, the
auxiliary vector ~q can be selected to be equal to 0 by the
minimization part of (16) for any vector ~pd. Therefore, the
optimal solution to (16) would be 0.

Proposition 1 clearly demonstrates that solving (16) can
determine secondary controllability of a power system.
Moreover, when the optimal solution of (16) is greater than
0, the nonzero entries of the optimal vector ~q can reveal
the minimum extra generation required to ensure secondary
controllability of the system.

Despite many advantages of the formulation (16), the
max-min linear program is nonconvex [39] and proved
to be NP-hard [40]. Therefore existing efficient algorithms
for solving (16) only obtain local optimal solutions [38].
However, a local optimal solution of (16) with value 0 does
not guarantee the secondary controllability of the system
since the optimal solution may not be zero.

One way of solving (16) optimally, albeit in exponen-
tial running time, is through brute force search. Following
lemma demonstrates that to solve the secondary controller
problem, one needs to check only the extreme demand
points due to the convexity of the space of all possible
demand values and linearity of power flow equations.

Lemma 5. The grid is secondary controllable, if and only if for
all pd1, . . . , pdn such that pdi ∈ {pdi, pdi} there exist operating
points pg1, . . . , pgn for the generators such that ∀1 ≤ i ≤ n :
pgi ≤ pgi ≤ pgi, ~1T ( ~pg − ~pd) = 0, and no lines are overloaded.

On the other hand, for a given demand vector ~pd, it can
be verified in polynomial time whether there exist oper-
ating points for the generators that satisfy the secondary
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controller problem by solving the minimization part of (16)
using LP:

min
~pg,~q,~f,~θ

~1T ~q (17)

s.t. (1), (2), (3), (4), (5),

~p = ~pg − ~pd + ~q

qi ≥ 0, 1 ≤ i ≤ n.

If the optimum solution to (17) is not 0, then the op-
timal vector ~q can be used by the operator to make more
generators online for controllability of the grid. Hence by
solving (17) for all extreme demand vectors, one can verify
secondary controllability of a system in exponential running
time and also find how to make it controllable–if it is not–
based on obtained vectors ~q.

By focusing only on nodes with the largest demands, one
can approximately verify if for a subset of extreme points
there exist operating points for the generators satisfying
the secondary controller problem. In general, however, such
an approach may not be able to guarantee the secondary
controllability of a grid. Hence, in the next subsection, we
provide sufficient conditions to ensure secondary controllabil-
ity of a grid in polynomial time.

6.2 Predetermined Secondary Controllers

Despite the difficulty in exact determination of secondary
controllability of a grid, in this subsection, we introduce
and exploit suboptimal predetermined controllers to verify
controllability of a grid with no false positives (i.e., presented
methods cannot determine uncontrollability of a system).

In order to verify secondary controllability of the grid,
one can find the best predetermined way to set the genera-
tion values given a demand vector ~pd such that the maxi-
mum power flows over all demand vectors is minimized. In
particular, we define the ~β-determined controller as follows.

Definition 2 (~β-determined controller). For any demand vec-
tor ~pd, set ~pg = (

∑n
i=1 pdi)× ~β, for a vector ~β satisfying:

(i) ~β ≥ 0, (ii) ~1T ~β = 1, (iii) (
∑n
i=1 pdi)× ~β ≤ pg ,

(iv) (
∑n
i=1 pdi)× ~β ≥ pg .

Definition 3. A controller is called reliable, if for all feasible
demand vectors ~pd, it provides a vector of operating points for the
generators like ~pg such that |~f | = |B( ~pg − ~pd)| ≤ f .

Proposition 2. If there exists a vector ~β such that the ~β-
determined controller is reliable, then the grid is secondary con-
trollable.

For a vector ~β satisfying conditions (i-iv) in Definition 2,
define vectors ~wi

(β) := −~ei + ~β for 1 ≤ i ≤ n (as in
Section 5.2). The following lemma proves that maximum
flow on the lines over all feasible demand vectors, given a
~β-determined controller, can deterministically be computed.

Lemma 6. Given a ~β-determined controller, the maximum power
flow on each line ek over all possible demand vectors is:

max
pd≤ ~pd≤pd

|fk| =
∣∣∣∣∣
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(β)

∣∣∣∣∣ (18)

+
n∑
i=1

(pdi − pdi)
2

|Bk ~wi(β)|.

The main question is now whether there exists a vector
~β such that the maximum power flows as determined in
(18) are less than their capacities? We prove that one can
examine this efficiently and in polynomial time by solving
the following optimization:

min
η,~β,~f

η (19)

s.t. (i-iv) in Definition 2,
~f = |BW(β)(pd + pd)/2|+ |BW(β)|(pd − pd)/2,
~f ≤ ηf,

in which matrix W(β) := [ ~w1
(β), . . . , ~wn

(β)]. The following
proposition demonstrates that (19) can be solved using LP
in polynomial time. Moreover, it indicates that the opti-
mal solution to (19) can provide the best vector ~β for
deterministically controlling the grid and its optimal value
demonstrates if the corresponding ~β-determined controller
is reliable.

Proposition 3. Optimization (19) can be solved using LP. More-
over, if the optimal value η∗ to (19) is less than or equal to 1, then
the ~β∗-determined controller obtained from the corresponding
solution is reliable, and therefore the grid is secondary controllable.

From (18), it can be seen that the formula for comput-
ing maximum flow on the lines consists of two separate
sums which can be controlled by different vectors and
obtained a better controller. Hence, one can define the (~γ, ~β)-
determined controller as follows.

Definition 4 ((~γ, ~β)-determined controller). For any demand
vector ~pd, set ~pg = (

∑n
i=1(pdi + pdi)/2) × ~γ + (

∑n
i=1(pdi −

pdi/2− pdi/2))× ~β, for vectors ~γ and ~β satisfying:

(i) ~β,~γ ≥ 0, (ii) ~1T~γ = ~1T ~β = 1,
(iii) (

∑n
i=1(pdi+pdi)/2)×~γ+(

∑n
i=1(pdi−pdi)/2)× ~β ≤

pg ,
(iv) (

∑n
i=1(pdi+pdi)/2)×~γ+(

∑n
i=1(−pdi+pdi)/2)×~β ≥

pg .

The (~γ, ~β)-determined controller generalizes the ~β-
determined controller (just set ~γ = ~β) and it is easy to
see that the maximum power flow on the lines over all
demand vectors, given a (~γ, ~β)-determined controller can
be computed similarly to (18) as follows:

max
pd≤ ~pd≤pd

|fk| =
∣∣∣∣∣
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(γ)

∣∣∣∣∣ (20)

+
n∑
i=1

(pdi − pdi)
2

|Bk ~wi(β)|.
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Optimal (~γ, ~β)-determined controller can be found sim-
ilar to the optimal ~β-determined controller using an opti-
mization similar to (19) with a few small changes:

min
η,~γ,~β,~f

η (21)

s.t. (i-iv) in Definition 4,
~f = |BW(γ)(pd + pd)/2|+ |BW(β)|(pd − pd)/2,
~f ≤ ηf.

Again, as in the ~β-determined controller case, the
optimal value of (21) determines if the optimal (~γ, ~β)-
determined controller is reliable or not. Hence, the grid
operator can use (21) to efficiently determine the secondary
controllability of the grid, albeit obtaining false negatives in
some cases.

In Section 8, we numerically evaluate the performance
of the controllers introduced in this section. Before that,
however, we demonstrate that these controllers can be used
to efficiently provide lower bounds on the maximum scale
of a MAD attack for which the grid remains secondary
controllable.

7 αD-ROBUSTNESS

Power grids are required to withstand single equipment
failures (e.g., lines, generators, and transformers) with no
interruptions in their operation (a.k.a. N − 1 standard) [27].
Following N−1 standard, we define a new standard for the
grid operation to ensure its robustness against MAD attacks
called αD standard. It requires grid operators to either
prevent line overloads (as in Section 5) or be able to clear
them (as in Section 6) after a MAD attack by an adversary
that can change the demands by at most α fraction at each
node.4 We call a grid that conforms with this standard, αD-
robust.

In this section, for a given grid, we are interested in
finding the maximum α such that the grid is αD-robust.
We denote this value by αmax. Since ensuring that line
overloads can be cleared during the secondary control is less
restrictive than preventing them after the primary control,
we mainly focus on finding the maximum α such that the grid
is αD-robust based on its ability to clear line overloads after the
secondary control (i.e., grid’s secondary controllability).

As we described in the previous section, verifying the
secondary controllability of the grid for a given upper and
lower limits on the demands is hard. Hence, we cannot
expect to find the αmax efficiently. Nevertheless, in the next
two subsections, we develop efficient methods for obtaining
upper and lower bounds on αmax.

7.1 Upper Bound
Assume ~pd

† denotes the vector of predicted demand values.
For a given α, the demand vector ~pd resulted by a MAD
attack will be bounded by (1 − α) ~pd

† ≤ ~pd ≤ (1 + α) ~pd
†.

Now if a grid is αD-robust, it should particularly be robust
against the maximum demand attack. Hence, finding the

4. This is based on the assumption that the IoT bots are uniformly
distributed in an area. Therefore, an adversary’s ability to change the
demands is determined by the initial demand at each node.

maximum α for which the grid can handle the maximum
demand attack provides an upper bound for αmax. Such α
can be found efficiently by an LP:

max
α, ~pd, ~pg, ~f,~θ

α (22)

s.t. (1), (2), (3), (4), (5),

~pd = (1 + α)p†d,

~p = ~pg − ~pd.

Proposition 4. Assume α̂ denotes the optimal value of (22), then
αmax ≤ α̂.

The optimal value of (22) provides a good upper bound
for αmax and can be computed efficiently. One can also
consider ~pd = (1 − α)p†d to obtain another upper bound.
However, if we set ~pd = (1 − α)p†d in (22) instead of
~pd = (1 +α)p†d, it is easy to see that its optimal solution will
be α = 1. Hence, the case of ~pd = (1− α)p†d only provides a
trivial upper bound of αmax ≤ 1 (assuming pg = 0).

In the next subsection, we provide algorithms to find
lower bounds for α based on the controllers developed in
Section 6.2.

7.2 Lower Bound
To find a lower bound for αmax, we use the controllers
in Section 6.2 to limit the secondary controller’s ability
to change the generators’ operating points. Limiting the
secondary controller’s ability allows us to efficiently approx-
imate the maximum α, but because of this limitation, we
only obtain lower bounds for αmax.

First, assume that we limit the secondary controller to
the ~β-controller for a fixed ~β. We show that in this case the
maximum α can be found by solving a single LP. Assume
~pg
∗ is the optimal solution to (22) with value α̂ and set

~β = ~pg
∗/‖ ~pg∗‖1 (i.e., the controller only scales down the

generation compared to the maximum demand case). Using
(18), we show that the optimal value of the following LP
gives a lower bound for αmax:

max
α,~f

α (23)

s.t. (1 + α)(
n∑
i=1

p†di)× ~β ≤ pg,

(1− α)(
n∑
i=1

p†di)× ~β ≥ pg,

~β = ~pg
∗/‖ ~pg∗‖1,

~f = |BW(β) ~pd
†|+ |BW(β)|(α~pd†),

|fij | ≤ fij , ∀(i, j) ∈ E.

Proposition 5. The optimal solution α∗ of (23) can be found in
polynomial time using LP. Moreover, α∗ ≤ αmax.

Optimization (23) allows us to efficiently compute a
lower bound for αmax. However, similar to Section 6.2,
instead of fixing ~β, we can compute a ~β that results in
the largest possible lower bound. Due to the nonlinearity
of the problem, however, we cannot optimize ~β and found
maximum α in (23) simultaneously. The idea is to fix α,
compute the optimal ~β and η using (19), then update α
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Module 1: Lower Bound on αmax using (~γ, ~β)-
determined Controllers

Input: G, λ

1: α(0) = α̂
2: flag = 1
3: i = 0
4: while flag do
5: flag = 0
6: Compute the optimal value η, ~γ, and ~β of (21) for

pd = (1 + α(i)) ~pd
† and pd = (1− α(i)) ~pd

†

7: Set α(i+1) = α(i) + λ(1− η)
8: if |α(i+1) − α(i)| > 0.001 then
9: flag = 1

10: i = i+ 1
11: return α(γ,β) := α(i), ~γ, and ~β

using η and repeat the process until α does not change by
much. As in Section 6.2, we can use the (~γ, ~β)-determined
controller instead of the ~β-determined controller to improve
the obtained lower bound. The method is summarized in
Module 1. When γ = β, Module 1 provides a lower bound
on αmax like α(β) based on ~β-determined controllers.

Notice that λ in Module 1 should be set such that
updates to α at each iteration are neither too large that the
module falls into a loop, nor are too small that it takes a long
time to converge.

Proposition 6. When γ = β, for a good λ, Module 1 converges
to an α(β) value such that α(β) ≤ αmax. Moreover, α∗ ≤ α(β).
(Recall that α∗ is the optimal solution of (23).)

Proposition 7. For a good λ, Module 1 converges to an α(γ,β)

value such that α(γ,β) ≤ αmax. Moreover, α(β) ≤ α(γ,β).

In the next section, we numerically compare the upper
bound α̂, and lower bounds α∗, α(β), and α(γ,β) with αmax

in order to demonstrate the tightness of these bounds in
approximating αmax.

8 NUMERICAL RESULTS

In this section, we first numerically evaluate the perfor-
mance of SAFE and IMMUNE Algorithms developed in
Section 5. Then, we numerically evaluate the accuracy of
the upper and lower bounds developed in Section 7 in
approximating the maximum α such that the grid is αD-
robust (i.e., αmax).

8.1 Simulations Setup

For solving LP, we use CVX, a package for specifying
and solving convex programs [41], [42]. For computing the
optimal power flow part of the IMMUNE Algorithm, we
use MATPOWER [43] which is a MATLAB based library for
computing the power flows. We also exploit the power sys-
tem test cases available with this library for our simulations.
In particular, we use the IEEE 14-bus, 30-bus, and 57-bus test
systems, and the New England 39-bus system.

The line capacities are only provided for the IEEE 30-
bus and New England 39-bus systems. Hence, for the
other two systems, we set the capacities ourselves in two-
different ways: (i) following [9] for each line we set fi =

TABLE 1: Performance Evaluation of SAFE and IMMUNE
Algorithms on the New England 39-bus system. Cost values
are in $/hr. Numbers in parenthesis indicate the number of
iterations took the IMMUNE Algorithm to converge.
α OPF SAFE IMMUNE IMMUNE-0.95 IMMUNE-0.9

0.09 41264 - 43434 (7) 43805 (4) 43859 (3)
0.08 41264 43628 42394 (8) 42431 (3) 42982 (3)
0.07 41264 42665 41773 (5) 41991 (3) 42405 (3)
0.06 41264 42050 41492 (4) 41698 (3) 41534 (2)
0.05 41264 41668 41339 (10) 41421 (3) 41419 (2)
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Fig. 7: Percentage increase in operating cost of the grid in
order to make it robust against MAD attacks obtained by
SAFE and IMMUNE Algorithms versus the magnitude of
the attack (α) in New England 39-bus system.

max{1.2|f†i |,median(|~f†|)}, and (ii) set fi = 1.1 max(|~f†|),
in which ~f† are the power flows given the default supply
and demand values in the test systems. When the first
method is used for determining the capacities, it is indicated
by (f) in front of the grid name, and when the second
method is used, it is indicated by (u) (e.g., see Table 3).

8.2 Primary Control

In this subsection, we evaluate the performance of SAFE
and IMMUNE Algorithms on NEW England 39-bus and
IEEE 30-bus systems. We assume that (1 − α)p†di ≤ pdi ≤
(1+α)p†di and consider different α values to capture attacks
with different magnitudes (which depends on the number
of controlled bots by an adversary).

Table 1 compares the performance of SAFE and three
variations of the IMMUNE Algorithm for different α values.
Recall from Section 5.2 that IMMUNE-0.95 and IMMUNE-
0.9 are similar to the IMMUNE Algorithm but apply more
aggressive updates on the capacities in each iteration of the
algorithm. This, as mentioned in Section 5.2 and demon-
strated numerically here in Table 1, results in faster con-
vergence of the algorithm. Since the OPF problem does not
consider the robustness of the grid against MAD attacks, its
value is independent of the magnitude of an expected attack
(α).

As can be seen in Table 1 and as we expected, the
grid needs to be operated in a non-optimal operating point
in order to be robust against MAD attacks. The required
percentage increase in the operating cost of the grid ob-
tained by the SAFE and IMMUNE Algorithms versus α
are presented in Fig. 7. IMMUNE Algorithm results in the
least amount of increase in the operating cost. However,
since as demonstrated in Table 1, IMMUNE Algorithm takes
longer that IMMUNE-0.95 and IMMUNE-0.9 Algorithms to
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TABLE 2: Performance Evaluation of SAFE and IMMUNE
Algorithms on the IEEE 30-bus system. Cost values are
in $/hr. Numbers in parenthesis indicate the number of
iterations took the algorithm to converge.

α OPF SAFE IMMUNE
0.31 565.2 - - (3)
0.3 565.2 614.8 - (4)
0.28 565.2 571.6 569.6 (3)
0.26 565.2 565.32 565.22 (2)
0.22 565.2 565.2 565.2 (1)

converge, the system operator may prefer to use IMMUNE-
0.95 which performs approximately as well as the IMMUNE
Algorithm but converges faster. Notice that due to noncon-
vexity of the problem, a more aggressive update rule may
not necessarily result in a costlier operating point, as we see
here that IMMUNE-0.9 results in a lower operating cost than
IMMUNE-0.95 for α = 0.06.

It can also be seen that SAFE Algorithm performs rela-
tively well in finding a robust operating point of the grid
much faster than all variations of IMMUNE Algorithm
(recall from Section 5.3 that SAFE Algorithm requires only
to solve a single LP). However, it may become infeasible for
higher magnitude attacks (in this case for α = 0.09).

We repeated the simulations on the IEEE 30-bus system.
The results are presented in Table 2. First, it can be seen
that the IEEE 30-bus system can be protected against much
stronger attacks (α = 0.3) which demonstrates that different
grids may have different levels of robustness against MAD
attacks (we will make a similar observation in the secondary
control case in the next subsection). Unlike the New England
39-bus case, here the IMMUNE Algorithm does not con-
verge for the strongest attack (α = 0.3) rather than the SAFE
Algorithm. This demonstrates that each of these algorithms
may be useful in finding a robust operating point for the
grid in different scenarios–besides their running time and
optimality.

As can be seen in Table 2, in this case also, if the
IMMUNE Algorithm converges, it converges to a lower cost
operating point than the one obtained by the SAFE Algo-
rithm. Here, the IMMUNE Algorithm converged within a
few iterations. Therefore, there was no need to consider a
faster variation of the IMMUNE Algorithm as in the New
England 39-bus case.

Finally, it can be seen that for α = 0.31, none of the
algorithms can obtain a robust operating point for the grid.
We show in the next subsection that this case can be handled
by the secondary controller instead (assuming that lines can
handle temporary overloads).

8.3 Secondary Control
In order to evaluate the performance of the controllers
developed in Section 6.2, in this subsection, we focus on
their performance in approximating αmax as described in
Section 7.

Table 3 compares the maximum α obtained by different
methods in several test cases. As can be seen and proved
in Section 7, in all cases, α∗ ≤ α(β) ≤ α(γ,β) ≤ αmax ≤ α̂.
Notice that for the IEEE 57-bus system, since the brute force
search algorithm needs to solve (17) about 242 times for each
given α to determine the secondary controllability of the
grid, we could not exactly determine αmax. However, in the

TABLE 3: Lower and upper bounds for αmax.
Test case α∗ α(β) α(γ,β) αmax α̂
IEEE 14-bus(f) 0.058 0.1649 0.1906 0.2117 0.2117
IEEE 14-bus(u) 0.950 1.0243 1.1454 1.1479 1.1479
IEEE 30-bus 0.214 0.2851 0.3126 0.37 0.3717
NE 39-bus 0.039 0.0796 0.0962 0.0962 0.0962
IEEE 57-bus(f) 0.024 0.0307 0.0311 < 0.09 0.2
IEEE 57-bus(u) 0.128 0.2396 0.2864 - 0.3468
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Fig. 8: Number of iterations in Module 1 before it converges
versus its update step size λ in the IEEE 30-bus system.

case of IEEE 57-bus (f), after initial iterations of the brute
force search algorithm, we could determine that the grid is
not secondary controllable for 0.09 ≤ α as presented in the
table.

It can be seen that α̂ provides a very close upper bound
for αmax most of the time (except in IEEE 57-bus (f)). And
since it can be computed by a single LP, the numerical
results suggest that it is an efficient and reliable way to find
an upper bound for αmax. On the other hand, α∗ that can
also be computed efficiently by a single LP does not provide
a very close lower bound in the test systems that we studied
here. However, α(β) and α(γ,β) that require more time to be
computed, provide much better lower bounds. In particular,
in the case of New England 39-bus system α(γ,β) = α̂ which
implies that αmax = α(γ,β) = α̂.

Although finding α(β) and α(γ,β) requires solving an
LP in several iterations (as summarized in Module 1),
the number of iterations can be minimized by selecting a
good step size λ. For example, the number of iterations of
Module 1 versus λ is presented in Fig. 8 in the IEEE 30-
bus system. As can be seen, for the optimal λ (in this case
λ = 1.1), the module converges in 3 iterations. Hence, it can
find a good lower bound for α, as shown in Table 3, very
efficiently and in polynomial time (since it solves a single
LP at each iteration). A good λ can be found in practice
heuristically after the first few iterations and observing the
rate of changes.

Finally, as mentioned in Section 6, the secondary con-
trollability becomes more important when the primary con-
troller cannot prevent line overloads, but the overloads can
be tolerated for a short period of time. An example of such
scenario happens in IEEE 30-bus system and when α = 0.31.
As can be seen in Table 2, none of the SAFE and IMMUNE
Algorithms can find a robust operating point for the grid in
this case. However, as can be seen in Table 3, since this value
is less that αmax = 0.37, any line overloads can be cleared
by the secondary controller.
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8.4 Open Questions

As we observed in the previous two subsections, differ-
ent test systems demonstrate different levels of robustness
against MAD attacks. For example, as can be seen in Table 3,
the αmax for the IEEE 30-bus system is 0.37, whereas this
value for the New England 39-bus system is only 0.0962.
This difference in robustness can be due to the structure of
the network as well as the location of the generators and
loads. Analytically studying such features and developing
efficient algorithms to improve grid robustness by adding
extra lines to a system or build future generators at certain
locations would be interesting future research directions.

Another important observation from the numerical re-
sults is that the performance of the proposed algorithms
varies in different test systems. For example, in the New
England 39-bus system, the IMMUNE Algorithm success-
fully finds robust operating points for the generators for
different α values, whereas in the IEEE 30-bus system
the IMMUNE Algorithm may not converge for α = 0.3.
Moreover, as can be seen in Table 3, the approximation
algorithms for estimating αmax provide tight bounds for the
New England 39-bus system, whereas the bounds are not
tight for the IEEE 30-bus system. Hence, finding sufficient
conditions on the structure and properties of a test case
under which the approximation bounds are tight and the
IMMUNE Algorithm is guaranteed to converge to a locally
optimal solution would be important future research direc-
tions.

9 CONCLUSIONS

In this paper, we analyzed the effect of MAD attacks on
power flows in detail and presented SAFE and IMMUNE
algorithms for finding robust operating points for the gen-
erators during economic dispatch such that no lines are
overloaded after automatic primary control response to any
MAD attacks. Moreover, we demonstrated that in cases that
temporary overloads can be tolerated, the system operator
can approximately but efficiently verify in advance if line
overloads can be cleared during the secondary control after
any MAD attacks. Based on these two forms of defenses,
we defined αD-robustness notion and demonstrated that
upper and lower bounds on the maximum α for which the
grid is αD-robust can be found efficiently and in polynomial
time. We finally evaluated the performance of the developed
algorithms and methods, and showed that they perform
very well in practical test cases.

We believe that with universality and growth in the
number of high-wattage IoT devices and smart thermostats,
the probability of MAD attacks is increasing and there is an
urgent need for more studies on the potential effects of these
attacks and developing tools for grid protection. Our work
provides the first methods for protecting the grid against
potential line failures caused by newly discovered MAD
attacks via IoT devices. However, our work can be extended
in several directions. A natural direction is to extend the
developed results to the AC power flow model. A more
challenging research direction is to extend the methods to
unit commitment phase of the grid operation. Since regular
unit commitment problem is already a combinatorial prob-

lem, incorporating security constraints into that problem
will be a challenging task and part of our future work.

In the worst-case scenario that the scale of a MAD attack
is greater than grid robustness (i.e., adversary manipulates
the demands by greater than αmax factor), the grid operator
may not be able to clear the possible line overloads in a
timely manner. This can consequently force the overloaded
lines to trip leading to more line overloads and a cascading
failure in the system [3]. To prevent cascading failures in
such scenarios, the grid operator may apply common con-
trol algorithms such as optimal load-shedding [44] or power
grid intentional islanding [45]. However, since an adversary
can suddenly decrease the demands after an initial increase
in the demands, these control algorithms may not be effec-
tive in their classical form (e.g., sudden decrease in the de-
mands after load-shedding may result in a critical increase
in the frequency of the system). Hence, investigating ways to
improve these control algorithms to protect the grid against
MAD attacks in the worst-case scenarios is also part of our
future work.

10 OMITTED PROOFS

Proof of Lemma 1: First, notice that 1/Ri is the rate
with which generator i increases its generation to com-
pensate for the extra demand. Hence, ti denotes the time
that generator i reaches its maximum capacity if the total
supply does not meet the demand before ti. Accordingly,
generators reach their maximum capacity in the order of
their ti values from smallest to largest. Using this, it is
easy to see that Si is the total change in the generation
at time ti. Therefore, if Si < S∆pd , then generators 1 to i
will reach their maximum capacities before supply meets
the total demand. Moreover, since S∆pd ≤ Si+1, generators
i+1, . . . , n do not reach their capacities and each contribute
according to their droop characteristic to compensate for the
remaining S∆pd −

∑i
l=1(pgl − pgl).

Proof of Lemma 3: First, notice that for each line
(i, j) ∈ E and in each iteration of the IMMUNE Algorithm,
cij is not increasing. To see this, assume cij changes in the lth

iteration, and cold
ij and cnew

ij denote the value of cij before and
after the change, respectively. Since cij is changed, it means
that fij < |fij | + ∆fmax

ij . On the other hand, |fij | ≤ cold
ij .

Hence, fij < cold
ij + ∆fmax

ij or fij − ∆fmax
ij < cold

ij . Since
cnew
ij = fij −∆fmax

ij , therefore cnew
ij < cold

ij .
On the other hand, from (11), it is easy to verify that

after each iteration fij − ∆̂fij ≤ cij . Hence, cijs cannot
get smaller than the fixed values fij − ∆̂fij and since (12)
is feasible, the OPF problem remains feasible after each
iteration of the IMMUNE algorithm. Now since cijs are
non-increasing and limited by lower bounds, the algorithm
is guaranteed to remain feasible and converge to a local
optimum solution.

Proof of Lemma 4: In each iteration of the IMMUNE
algorithm, at least for a single line (i, j), the cij will be
updated. Otherwise, the algorithm should terminate (either
converges or become infeasible). On the other hand, since
∆̂fij is the maximum possible flow change on line (i, j),
the cij cannot get smaller than fij − ∆̂fij . Hence, since the
updates are discrete, in the worst case that only a single
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capacity is updated by a single unit at each iteration, the
algorithm can take at most

∑
(i,j)∈Ed∆̂fije iterations to

terminate.
Proof of Lemma 5: Assume ~pd

(1), ~pd
(2), . . . , ~pd

(2n) de-
note all possible extreme demand vectors. Now assume that
for each extreme demand vector ~pd

(i), there exists an oper-
ating vector ~pg

(i) for generators that satisfies the secondary
control conditions. We prove that for all demand vectors
~pd within the upper and lower limits also there exists an
operating vector ~pg that satisfies all the secondary controller
conditions. Since the space of all the demand vectors is
convex, each demand vector ~pd within the upper and lower
limits can be written as a convex combination of the extreme
points such as ~pd =

∑2n

i=1 βi ~pd
(i) in which ∀i : βi ≥ 0

and
∑2n

i=1 βi = 1. We show that ~pg =
∑2n

i=1 βi ~pg
(i) satisfies

all the secondary controller conditions. First, since ~pg is a
convex combination of ~pg

(i)s and they are within generators
upper and lower limits, so is ~pg . Second, it is easy to see that
~1T ( ~pg − ~pd) =

∑2n

i=1 βi~1
T ( ~pg

(i)− ~pd
(i)) =

∑2n

i=1 βi0 = 0. Fi-
nally, based on our assumptions, for each i: −f ≤ B( ~pg

(i) −
~pd

(i)) ≤ f . Hence, B( ~pg − ~pd) =
∑2n

i=1 βiB( ~pg
(i) − ~pd

(i)) ≤∑2n

i=1 βif = f . Similarly, −f ≤ B( ~pg − ~pd). Therefore,
~pg satisfies all the constraints of the secondary controller
problem. The reverse can also be similarly proved using
contradiction method.

Proof of Proposition 2: If there exists a vector ~β
that the ~β-determined controller is reliable, then for any
feasible demand vector ~pd, vector of operating points ~pg =

(
∑n
i=1 pdi)× ~β satisfies the demands (i.e., ~1T ( ~pg − ~pd) = 0)

and |~f | = |B( ~pg − ~pd)| ≤ f . Therefore, the grid is secondary
controllable.

Proof of Lemma 6: From the definition of ~wi
(β) vectors,

it is easy to verify that for a demand vector ~pd, the power
flow on line ek can be computed as fk =

∑n
i=1 pdiBk ~wi

(β).
For |fk| to be maximized, each pid should be either equal to
pdi or pdi based on signs of Bk ~wi

(β) and fk. On the other

hand, it is easy to see that pdi =
(pdi+pdi)

2 − (pdi−pdi)
2 and

pdi =
(pdi+pdi)

2 +
(pdi−pdi)

2 . So by considering only pdi ∈
{pdi, pdi}, fk can be computed as follows:

fk =
n∑
i=1

pdiBk ~wi
(β) =

n∑
i=1

( (pdi + pdi)

2
±

(pdi − pdi)
2

)
Bk ~wi

(β)

=
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(β) +
n∑
i=1

(
±

(pdi − pdi)
2

)
Bk ~wi

(β).

From the equation above, it can be seen that the first part is
fixed but the second part can be selected based on the sign
of the first part in order to maximize |fk|. Hence, it is easy
to see that maximum value of |fk| is:

max
pd≤ ~pd≤pd

|fk| =
∣∣∣∣∣
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(γ)

∣∣∣∣∣
+

n∑
i=1

(pdi − pdi)
2

|Bk ~wi(β)|.

Proof of Proposition 3: In order to solve (19) using LP,
one can define auxiliary vector ~u and matrix Q and replace

the constraint ~f = |BW(β)(pd + pd)/2|+ |BW(β)|(pd− pd)/2
in (19) with following set of inequalities:

~f = ~u+ Q(pd − pd)/2,
~u ≥ BW(β)(pd + pd)/2,

~u ≥ −BW(β)(pd + pd)/2,

Q ≥ BW(β), Q ≥ −BW(β),

in which the matrix inequalities are entry by entry. Now
it is easy to verify that since the optimization minimize η
and ~f ≤ ηf , in the optimal solution ~f will be minimized
and therefore ~u and Q will be equal to |BW(β)(pd + pd)/2|
and |BW(β)|, respectively. Hence using the above transfor-
mation, (19) can be solved using LP. It can be seen that if
the optimal solution η∗ to (19) is less than or equal to 1,
then since ~f is equal to the maximum power flow on the
lines over all possible demand vectors (and corresponding
generation operating points obtained by the ~β∗-determined
controller) and ~f ≤ η∗f ≤ f , the ~β∗-controller is reliable.
Hence, the grid is secondary controllable.

Proof of Proposition 4: Since in optimization (22) only
the maximum demand case (i.e., ~pd = (1 + α) ~pd

†) is being
verified to be satisfiable by the generators with no line
overloads, the optimal solution of (22) only provides an
upper bound for αmax.

Proof of Proposition 5: Using (18), it can be verified
that the maximum power flow on a line (i, j) over all
the demand vectors and corresponding generation vector
determined by the ~β-determined controller is equal to
|BW(β) ~pd

†|+ |BW(β)|(α~pd†). Hence, optimization (23) max-
imizes α such that the grid is αD-robust using the specified
~β-determined controller. On the other hand, since the oper-
ating points of the generators are limited to the operating
points obtained by the specified ~β-determined controller, it
is obvious that demand vectors that are controllable by this
controller are a subset of all controllable vectors. Hence, α∗

only provides a lower bound for αmax. Finally, it is also easy
to see that similar to the technique presented in the proof of
Proposition 3, optimization (23) can be solved using LP and
therefore α∗ can be computed in polynomial time.

Proof of Proposition 6: At each iteration, if α(i) > αmax,
then the solution η to (19) would be greater than 1. Hence,
if λ is small enough, 0 ≤ α(i+1) = α(i) + λ(1 − η) ≤ α(i).
Similarly, it can be shown that if α(i) < αmax, then α(i+1) >
α(i). On the other hand, for α(i) = αmax, the solution η
to (19) would be zero and α(i) = α(i+1) = αmax. Hence,
αmax is the only absorbing point for this algorithm which it
converges to (if λ is small enough).

Proof of Proposition 7: The convergence proof is sim-
ilar to the proof of Proposition 6. It is also easy to see that
since ~β-determined controllers are a special case of (~γ, ~β)-
determined controllers, α(β) ≤ α(γ,β).
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