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ABSTRACT
Random walks form a critical foundation in many social net-
work based security systems and applications. Currently,
the design of such social security mechanisms is limited to
the classical paradigm of using fixed-length random walks
for all nodes on a social graph. However, the fixed-length
walk paradigm induces a poor trade-off between security and
other desirable properties.

In this paper, we propose SmartWalk, a security enhanc-
ing system which incorporates adaptive random walks in so-
cial network security applications. We utilize a set of su-
pervised machine learning techniques to predict the neces-
sary random walk length based on the structural charac-
teristics of a social graph. Using experiments on multiple
real world topologies, we show that the desired walk length
starting from a specific node can be well predicted given the
local features of the node, and limited knowledge for a small
set of training nodes. We describe node-adaptive and path-
adaptive random walk usage models, where the walk length
adaptively changes based on the starting node and the inter-
mediate nodes on the path, respectively. We experimentally
demonstrate the applicability of adaptive random walks on
a number of social network based security and privacy sys-
tems, including Sybil defenses, anonymous communication
and link privacy preserving systems, and show up to two
orders of magnitude improvement in performance.

1. INTRODUCTION
Random walks in security applications. Nowadays,

many applications leverage the trust relationships in social
networks to improve their system security and privacy, such
as Sybil defenses [51, 52, 35, 24, 13, 44, 43], anonymous
communication [37, 34, 12, 15], secure routing [31, 24, 32],
censorship resilience [41, 1, 2] and secure reputation sys-
tems [44, 17]. An important approach used in the design
of these systems is to perform random walks on social net-
works. Random walk is a random sequence of nodes where
successive nodes are neighbors. Many algorithms based on
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random walks are gaining increasing popularity since they
are simple to implement and can be used in both centralized
and distributed systems to probe structural properties of the
whole network [30, 40, 48, 18, 39, 28]. For instance, Pons
et al. in [40] proposed a random walk based algorithm to
capture the community structure in large networks. Since
random walks can help sample and obtain some structural
information of a social network, they play a crucial role in
many social network based security systems. For instance,
Danezis et al. and others [12, 37, 34] proposed decentral-
ized protocols for anonymous communications that leverage
users’ social links and use random walks to build circuits for
onion routing. Mittal et al. in [33] perturbed a social graph
by replacing real edges with edges between starting nodes
and terminal nodes of random walks in order to provide link
privacy. Yu et al. proposed SybilGuard [52] and SybilLimit
[51], two Sybil defense protocols that perform on random
walk based routes and register public keys with the tails to
differentiate Sybil users from benign users.

Designers’ Dilemma: Security vs. Performance.
One important and interesting parameter of random walks
is its length. The choice of random walk length is closely
related to structural properties of networks and has a sig-
nificant impact on the trade-off between system security
and system performance/utility. In existing security mech-
anisms, only the classical paradigm of fixed length random
walks for all nodes is considered, i.e., random walks starting
from each node in the network use the same fixed length.
Since random walk length greatly influences both the se-
curity/privacy and the application utility, the lack of flexi-
bility in the fixed length random walk paradigm can leave
the system design in a dilemma. For example, in Sybil-
Limit [51], unnecessarily long random walks give adversaries
more power to corrupt the region formed by honest users.
However, a small random walk length leads to a high false
positive rate, i.e., a high percentage of misclassified benign
users. For graph privacy [33], strong link privacy relies on
deep perturbation to the original graph, indicating a large
random walk length. However, as the fixed random walk
length increases, the perturbed graph gradually approaches
to a random graph, incurring a significant loss of utility.
In social network based anonymous systems [34], the ex-
pected anonymity is a function of the random walk length
and longer random walks enhance the anonymity at the cost
of extra latency. These challenges are difficult to address in
the case of fixed length random walks.

Contributions. To address the above challenges, we de-
velop SmartWalk, which introduces the concept of adaptive
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random walks across nodes in the network; our approach
uses heterogeneous walk lengths across nodes in the net-
work to enhance the trade-off between system security and
performance.

1. We introduce the concept of local mixing time, which
measures the minimum random walk length for a certain
starting node to be within a given distance 1 to stationar-
ity (see Section 3 for formal definitions). We show that in
real-world social graphs, the local mixing time across nodes
exhibits a heterogeneous and long-tail distribution.

2. We present a local mixing time prediction algorithm,
which employs supervised machine-learning methods to ef-
fectively predict the local mixing time for a node according
to its local topological features and limited global knowledge
of the graph (directly computing the local mixing time re-
quires the knowledge of the entire social graph and can be
expensive). Our prediction performance is evaluated using
Facebook friendship and interaction graphs and a Twitter
graph. We show that with a small subset of training sam-
ples (around 1% of all nodes) and local characteristics (about
3-hop neighbourhood), we can get satisfiable prediction of a
node’s local mixing time.

3. Compared to conventional security mechanisms, which
leverage the same walk length for all nodes, we propose
two novel algorithms which produce adaptive random walks
based on the underlying heterogeneity of the local mixing
time in social networks. The node-adaptive algorithm de-
termines the length of random walks by the starting node.
The path-adaptive algorithm automatically adjusts the re-
maining random walk length according to the intermediate
nodes along the walk path.

4. We test the applicability of these two algorithms in a
set of random walk based security and privacy applications
including Sybil defense, anonymous communication and link
privacy preserving systems. Using real-world social net-
work topologies, we show that both the node-adaptive and
path-adaptive algorithms significantly outperform the exist-
ing fixed length algorithms for any given expected random
walk length. The improvement can be up to two orders of
magnitude. By properly adjusting walk lengths to nodes
and paths, our algorithms are able to offer fine-grained con-
trol over the trade-off between security/privacy and other
metrics for these systems.

To the best of our knowledge, all the existing random
walk-based security and privacy mechanisms [29, 3, 14, 11,
36, 6, 4] use a uniform walk length, while our work is the first
to adapt the random walk length depending on the struc-
tural characteristics of nodes. Looking ahead, our approach
has broad potential to impact security-performance trade-
offs in applications even outside the context of social net-
works; this includes graph-theoretic detection mechanisms
for P2P botnets, spamming botnets, malicious online com-
munities, and malware [38, 42, 22, 53].

2. SYSTEM OVERVIEW
Motivating Applications. In this paper, our objective

is to enhance the security of social network based systems
by leveraging adaptive random walks. Existing security sys-
tems [12, 37, 34, 33, 52, 51] all adopt a fixed-length random
walk scheme, where the random walk length is set as the

1The distance to stationarity is a tunable parameter to sat-
isfy different application requirements.

same sufficiently large value (typically the mixing time of
the entire graph [25, 36]) for all walks to meet some system
requirements. However, the downside of the fixed-length
based schemes is that a poor security-utility trade-off is in-
duced. Our key insight is that for large-scale social graphs,
the required random walk length to achieve a certain dis-
tance to stationarity has a heterogeneous and long-tail distri-
bution over different starting nodes. By predicting an adap-
tive walk length for different nodes, we are able to achieve
a better trade-off between the security and other properties
of social network based systems.

We mainly consider three social network based security
and privacy systems, including Sybil defense, anonymous
communication and link privacy preserving systems.

a) Sybil defenses. A Sybil attack is an attack wherein
a malicious user subverts the system by forging multiple
distinct identities. With a large number of fake identities
inserted by malicious users, the security of the system can be
severely sabotaged. To defend against Sybil attacks, many
defense mechanisms have been proposed by leveraging the
trust relationships in social networks [51, 52, 35, 24, 13, 44,
43, 5, 26]. For instance, SybilLimit [51] is a Sybil defense
protocol that performs random walk based routes on social
graphs and examines some conditions to detect Sybil users.
In SybilLimit, random walk is set as the mixing time [51] to
ensure that most benign users can be correctly verified, i.e.,
low false positives.

b) Anonymous communication. Anonymous commu-
nication systems such as Tor preserve user privacy by ob-
fuscating the correspondence between the user and the des-
tination communicating entity. Many anonymous system
designs [37, 34, 12, 15] that have been proposed in recent
years are built upon leveraging users’ trusted relationships,
and a typical one of them is the Pisces protocol [34]. Similar
to the Tor protocol, Pisces [34] provides low-latency anony-
mous communication by proxy servers and onion routing.
Random walks are performed on a social graph as the relay
selection method to create onion routing paths. An impor-
tant metric to quantify the level of provided anonymity is
the Shannon entropy, which can be significantly influenced
by the length of random walks.

c) Link privacy. Social trust has been playing a crucial
role in various applications in many fields. To avoid reveal-
ing the sensitive information about users’ social relation-
ships, link privacy preserving systems provide a delicately
perturbed social graph to these applications by adding ex-
tra noise to the local structure of a social network. Mittal
et al. in [33] protected link privacy by replacing a real link
between two users with a fake link generated by a random
walk. The noise introduced to the graph increases as the
random walk length gets larger, ensuring stronger privacy.

Pitfalls of fixed-length random walks. To achieve se-
curity/privacy guarantees, the length of random walks in the
above systems is required to be sufficiently large. However,
long random walks enhance the security at the cost of sac-
rificing other desirable properties of these applications. For
SybilLimit, the maximum number of Sybil users that can
be possibly misclassified as honest users increases propor-
tionally to the random walk length, indicating that longer
random walks result in a growing false negative rate. For
Pisces, extra latency is incurred for performing long random
walks, which degrades the performance of anonomous com-
munication. For a link privacy preserving system, the length



of random walks reflects the degree of introduced random-
ness to perturb the original graph. As the walk length in-
creases, the perturbed graph gets closer to a random graph,
resulting in the failure of utility guarantees.

For a fixed-length random walk scheme, the length is typ-
ically set as the graph mixing time, which is the minimum
length for walks from every possible starting node to ap-
proach the stationarity. However, Mohaisen et al. showed
that the mixing time of social graphs is much larger than
anticipated [36], which implies that setting the walk length
globally as the same mixing time actually induces weaker
utility guarantees or less efficiency in these systems. Hence,
we develop SmartWalk to avoid unnecessarily long random
walks by properly adjusting the walk length for each node.
We demonstrate the applicability of SmartWalk in the above
three security systems by showing that up to two orders of
magnitude performance improvement can be achieved.

Formalizing local mixing time. We define the local
mixing time as a measure of the random walk length for a
specific node to achieve a certain distance to stationarity.
Using real-world large-scale social graphs, we observe that
it only takes a few hops for random walks starting from a
majority of nodes to approach the stationary distribution,
whereas there also exists a small group of nodes with a longer
local mixing time. This is due to the fact that random walk
length is closely related to the community structure within a
social network. Most of the communities are well-connected
to each other in a social network, resulting in a mostly ho-
mogeneous random walk length. However, the existence of
some small communities that are poorly connected to the
rest of the network can greatly prolong the time to approach
stationarity. This heterogeneity property is not fully utilized
in the design of current social network based security sys-
tems. Hence, by adaptively choosing the walk length for
different nodes, we are able to significantly reduce the num-
ber of uncessarily long random walks and improve system
security.

System architecture. Fig. 1 shows the overall ar-
chitecture of the SmartWalk system, which reads a social
graph and produces adaptive random walks upon requests
from social network based security systems. Specifically, the
SmartWalk system consists of two components: the local
mixing time prediction algorithm and the random walk us-
age model. Given a node index, the prediction algorithm
employs supervised learning techniques to predict the local
mixing time of the given node based on its local features and
some limited global knowledge of the graph. The random
walk usage model is responsible for generating adaptive ran-
dom walks, which are later leveraged in the security systems,
based on the results from the prediction algorithm.

The usage model implements either the node-adaptive al-
gorithm or the path-adaptive algorithm. In other words, we
can simply make the walk length specific to a starting node,
or alternatively, modify the walk length every time a follow-
up hop is taken as the path is extended. The node-adaptive
scheme only needs the predicted length of the starting node,
but fail to take into account the structrual features of the
intermidate nodes. The path-adaptive scheme significantly
reduces unnecessarily long walks by dynamically updating
the number of remaining hops every time the walk reaches a
new node, but consequently requires more prediction inputs.

The SmartWalk system substitutes the fixed-length ran-
dom walks in the security applications with adaptive ran-

Figure 1: SmartWalk system architecture.

dom walks to achieve fine-grained control over the trade-off
between security/privacy and other metrics.

3. LOCAL MIXING TIME
Network model. We model a social network by a finite

undirected connected graph G with node set V and edge
set E 2. In pratice, the nodes in V can be the users of
a Facebook social graph, and the edges in E can be the
frienship relationships between Facebook users represented
by the endpoints of these edges. The size of the graph G is
n = |V | and the number of edges in G is m = |E|.

Consider a random walk of length k on G: it starts from
node v0

3, and if it is at some node vt at the t-th hop, the
probability of moving to each neighbor of vt is 1/deg(vt),
where deg(·) is the node degree. After k hops, it arrives at
the terminal node vk. The sequence of random walk nodes
{vt}kt=0 forms a Markov chain with a transition probability
matrix P = [pij ], where i, j ∈ V and the (i, j)th entry in P
is given by

pij =

{ 1
deg(i)

, if (i, j) ∈ E,
0, otherwise.

Denote the probability distribution of the t-th node with the
starting node i by πi(t), which is a row vector in Rn. The
random walk is thus characterized by πi(t+1) = πi(t) ·P . It
follows that πi(t) = πi(0) · P t. For a random walk of length
k starting from node i, it finally reaches the distribution
πi(k). For irreducible and aperiodic graphs, the correspond-
ing Markov chain is ergodic. In this case, for any starting
node i, as walk length k → ∞, the distribution πi(k) con-
verges to a unique stationary distribution π, which satisfies
π = πP .

For undirected and connected graphs, it has been proven

that the distribution [ deg(i)
2m

]ni=1 satisfies π = πP , and is the
unique stationary distribution of random walks [25].

Local mixing time. Below we introduce a new concept
local mixing time (parameterized by ε) which measures the
minimal length required for a random walk starting from
node i to be within an ε-distance to the stationarity.

Definition 1 (Local Mixing Time). The local mix-
ing time (parameterized by ε) of a Markov chain with an
initial distribution concentrated at node i is defined as

Ti(ε) = min{t : |π − πi(0)P t|1 < ε},
2We presented our analysis in terms of undirected graphs
for illustration simplicity.
3We use vt to denote the t-th node on a random walk, which
can take a value from {0, 1, ..., n− 1}.



where π is the stationary distribution, πi(0) is the initial
distribution concentrated at node i, P is the transition ma-
trix, t is a non-negative integer, ε > 0 is an arbitrary small
constant value, and | · |1 is the total variation distance. 4

ε is an application-specific parameter, and smaller ε indi-
cates stronger convergence. Then the conventional mixing
time T (ε) of graph G can be obtained by finding the max-
imum local mixing time over all nodes in G, i.e., T (ε) =
max{Ti(ε), i ∈ V } [36]. Note that even for a single node,
the computation of its local mixing time requires the knowl-
edge of the entire social graph.

Given a node i, denote the set of its neighboring nodes as
N(i). It can be proven that the local mixing time of node
i atisfies Ti(ε) ≤ max{Tj(ε), j ∈ N(i)} + 1. The proof is
deferred in Appendix A.
Evaluation: local mixing time in social graphs. We
use 10 various large-scale real-world social network topolo-
gies that mainly come from the Stanford Large Network
Dataset Collection [23] and other sources [45] to evaluate
the local mixing time for nodes in social graphs. The used
datasets are listed in Table 1. Since the local mixing time is
defined for undirected and connected graphs, we first convert
the directed graphs to undirected by preserving only bidirec-
tional edges 5. Then, we extract the largest connected com-
ponent from each graph to compute the local mixing time.
In Table 1 we show some statistics of the social datasets
6 including the numbers of nodes and edges, average node
degree d̄ and the average clustering coefficient c̄c.

Fig. 2a depicts the Cumulative Distribution Function
(CDF) of local mixing time for every node in the Facebook1,
Facebook2, Twitter, Epinions and DBLP datasets, with pa-
rameter ε = 0.25 7. The local mixing time is computed for
every node in a social dataset, using brute force. From Fig.
2a, we can see that over 80% Facebook1 nodes have a small
local mixing time (less than 20), whereas the rest nodes (less
than 20%) have a larger local mixing time (with the maxi-
mum value around 90). For Twitter, over 80% of its nodes
have a local mixing time below 100 while the rest nodes
may reach 400. Similar results are observed for other three
datasets. Based on Fig. 2a, we conclude that the distri-
bution of local mixing time over nodes has a heterogeneous
and long-tail property.

Fig. 2b illustrates the CDF of the local mixing time for
a random sample of 5% nodes in each of the ten datasets
in Table 1. For Facebook1, Facebook2, Twitter, Epinions
and DBLP, they have similar results in Fig. 2a and Fig. 2b,
which implies that a random sample of 5% nodes are suffi-
cient to demonstrate the basic property of the local mixing
time CDF for all nodes. Hence, the heterogeneous and long-
tail property exists for all the ten datasets – a large portion
of their nodes have much faster local mixing time than the

4The total variation distance between two probability mea-
sures θ1 and θ2 on a sigma-algebra F of subsets of the sample
space Ω is defined via |θ1, θ2)|1 = supA∈F |θ1(A)− θ2(A)|
[10].
5In most security and privacy systems that leverage social
trust, bidirectional links between users are considered as an
indicator for stronger trust than unidirectional ones.
6Facebook1 is a Facebook friendship (user-to-user link) net-
work at the New Orleans area and Facebook2 is a Facebook
interaction (wall post) network at the New Orleans area.
7The variation distance parameter ε is typically set as 0.25
[25]. Setting ε to be other values gives similar results.

Table 1: Datasets and their properties
Datasets Nodes Edges d̄ c̄c
Facebook1[45] 63,392 816,886 25.8 0.22
Facebook2[45] 43,953 182,384 8.5 0.11
Google+[23] 107,614 12,238,285 227.4 0.5
Twitter[23] 81,306 1,342,296 33.0 0.6
Epinions[23] 75,877 405,739 10.7 0.14
LiveJournal[23] 4,843,953 42,845,684 17.8 0.27
Pokec[23] 1,632,803 22,301,964 27.3 0.11
DBLP[23] 317,080 1,049,866 6.6 0.63
Youtube[23] 1,134,890 2,987,624 5.3 0.08
Flickr[23] 80,513 5,899,882 146.6 0.16

rest, which implies that the required length of random walks
to approach the stationarity is heterogeneous across nodes.
Even though a small number of nodes may need a long ran-
dom walk, most nodes only need a relatively small random
walk length to reach the stationary distribution. However,
the classical paradigm only considers random walks of a fixed
length for all nodes. As a result, every node performs long
random walks to meet the application requirement, which is
in fact unnecessary and inefficient for a majority of nodes
based on our observation. Furthermore, the mixing time of
the datasets in Table 1 is generally greater than O(logn),
validating the observation of Mohaisen et al. [36]: the worst-
case mixing time of real-world social networks is much larger
than expected and being used in literature. Hence, we are
interested in predicting the local mixing time for any given
node in social graphs and proposing usage models of adap-
tive random walks to utilize the heterogeneity.

4. SMARTWALK: PREDICTION
In this section, we apply a set of supervised machine learn-

ing techniques to predict the local mixing time for any given
node in a social graph.

Goals. Since it requires the global information of a so-
cial network to compute the exact local mixing time for a
given node (recall Definition 1), it is infeasible for decentral-
ized social network based systems such as SybilLimit [51]
to get the metric directly (for all nodes). Even for the case
with global information accessible, it is computationally ex-
pensive and time consuming for large-scale networks to cal-
culate the exact local mixing time (with the complexity of
O(n2.3729T (ε))) [46]. Therefore, we are interested in propos-
ing a fast and distributed algorithm to estimate the local
mixing time given a specific node. Based on supervised ma-
chine learning techniques, our algorithm only leverages local
characteristics of nodes and limited knowledge of the local
mixing time for a small subset of nodes. Specifically, we first
compute the local mixing time for a small subset of nodes
and use it as training labels to fit a regression model. Then,
the model is used to predict the local mixing time for any
given node in a social graph.

Features & Prediction. Given node i, we aim to pre-
dict its local mixing time only based on the local charac-
teristics within its k-hop neighborhood (k is relatively small
compared to T (ε)). We show the prediction algorithm in
Algorithm 1. In Algorithm 1, we choose the probability dis-
tribution of a k-hop random walk from node i, denoted by
πi(k), as the features. The intuition is that the random walk
length of a node is mainly determined by its neighbors, and
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Figure 2: (a) The CDF of local mixing time for every node in Facebook1, Facebook2, Twitter, Epinions and
DBLP (x-axis is in the logarithmic scale). (b) The CDF of local mixing time for a sample of 5% nodes in each
of the ten datasets in Table 1 (x-axis is in the logarithmic scale). (c) Illustration of the relationship between
the community structure and local mixing time using the Facebook1 graph.

hence the probabilities over neighbors could be used as fea-
tures for estimation (see Remark 1). In centralized systems,
πi(k) can be obtained by πi(k) = πi(0) · P k. In distributed
systems, πi(k) can be approximated by the terminal node
distribution after performing a sufficiently large number of
k-hop random walks starting from node i. Each node uses
its local mixing time as the label.

We randomly select a subset of M nodes as the training
set (M is relatively small compared to n). After collect-
ing the training feature matrix and training labels, we use
them to fit a Random Forest regression model [7]. We also
compare the results with those under a k-Nearest Neighbors
(KNN) regression model [9]. Random Forest fits a number
of decision trees on sub-samples of the dataset and then av-
erages the obtained labels. KNN finds a set of the closest
training samples to the target point and predicts the label
by assigning weights to the set’s labels. Then we predict the
local mixing time for the target node using structural fea-
tures associated with the node. In the evaluation part, we
show that when k is carefully chosen, we can obtain a good
estimation of the local mixing time only using characteris-
tics within the local neighborhood and a training set with a
relatively small size M .

Remark 1. The intuition behind our prediction algorithm
can be illustrated by the Facebook1 graph in Fig. 2c, where
nodes belonging to the same community are marked by the
same color, and the size of each node is proportional to its
local mixing time. We can see that the local mixing time for
nodes residing in the same community does not vary greatly.
The transitional change of local mixing time between differ-
ent communities usually occurs at marginal nodes that con-
nect two communities. Note that most nodes in the same
community tend to share similar local neighborhood char-
acteristics. For marginal nodes, their local characteristics
result from a combination of several communities. Since the
number of communities is small, a small number of training
nodes are sufficient to map each node to its community and
give a good prediction of its local mixing time.

Evaluation. To evaluate the fitness of a regression model
for a dataset, we employ two metrics. Given a dataset
of n values denoted by {xi|i = 1, 2, , n}, each associated
with a predicted value yi, the first metric is Root Mean
Squared Error (RMSE), which is defined as RMSE =

Algorithm 1 Local Mixing Time Prediction Algorithm

Step 1. Randomly select M nodes as training samples from
graph G.
Step 2. (a) Starting from each training (target) node i,
perform k-hop random walks and get the probability distri-
bution πi(k) as the training (target) feature vector.
(b) Form the M -by-n training feature matrix Ftrain(k) and
the target feature martrix Ftarget(k).
Step 3. (a) For each training node i, compute its local mix-
ing time Ti(ε) as the training label.
(b) Form the M -by-1 training label vector Ttrain(ε).
Step 4. Fit a Random Forest regression model M =
RF (Ftrain(k), Ttrain(ε)).
Step 5. For each target nodes, predict the local mixing time
via the regression model, i.e., T̃target(ε) =M(Ftarget(k)).

√
1
n

∑n
i=1 (yi − xi)2. It is the total root average squared

difference between the predicted and the true response val-
ues. Lower RMSE indicates a better prediction. The sec-
ond metric is the coefficient of determination (r2), defined

as r2 = 1−
∑n

i=1 (yi−xi)
2∑n

i=1 (yi− 1
n

∑n
i=1 yi)2

. It characterizes the correla-

tion between the predicted and true response values. Higher
r2 indicates a better prediction.

In the following, we present experimental results on Face-
book1, Facebook2 and Twitter, and show that based merely
on the local characteristics (i.e., features) and limited global
information of the graph (i.e., training labels), it is possible
to give a good estimation of the local mixing time for each
node in the graph. Hence, we can estimate the approximate
local mixing time for any user in distributed systems pro-
vided that the local mixing time of a small subset of nodes
is broadcast to other users.

To evaluate our prediction algorithm, we set ε = 0.25,
k = 1, 2, 3, 4 and M = 10, 50, 125, 250, 500, 1000, 2000. We
compare the results using two supervised learning methods,
i.e., Random Forest regression and KNN regression. In our
experiments, the number of estimators in Random Forest is
set to 20, and the number of neighbors in KNN is set to 10.

Fig. 3a to Fig. 3f depict RMSE and r2 averaged over
100 iterations, respectively, using features within the k-hop
neighborhood (k = 1, 2, 3, 4) at M=500. It can be seen that
using Random Forest regression, RMSE decreases and r2
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Figure 3: (a) - (f) RMSE and r2 using features within k-hop neighborhood (M=500, averaged over 100 iter-
ations) in Facebook1, Facebook2 and Twitter. (g) - (h) RMSE and r2 versus the size of the training set M
(k=3, averaged over 100 iterations) in Facebook1 and Facebook2.

increases explicitly as k gets larger. This is because that
using a wider neighborhood around node i gives a better
match among the training nodes, which consequently results
in the considerable improvement of the prediction perfor-
mance. In contrast, RMSE and r2 using KNN regression
do not vary significantly as k grows. For Facebook1 and
Facebook2 graphs, the increase of k produces slightly better
RMSE and r2. However, this observation does not hold for
the Twitter graph. The weak impact of k on KNN can be
explained by KNN’s dependence upon the distance between
feature vectors. Since the distance between the set of closest
training samples to the new point almost remains unchanged
with respect to k, we get similar prediction results. In gen-
eral, Random Forest outperforms KNN from the perspective
of both RMSE and r2, and its advantage gets more obvious
with a larger value of k.

Fig. 3g and Fig. 3h depicts RMSE and r2 averaged
over 100 iterations versus the number of training samples
using Facebook1 and Facebook2 graphs at k = 3. It can be
seen that RMSE decreases and r2 increases sharply when
M grows from 10 to 125. This is because that a larger
number of training samples implies more global knowledge
of the graph. The resulting improvement gets slower when
M exceeds 125. The choice of parameters k and M is de-
pendent on the application requirement and varies among
different datasets. According to the results in Section 3, we
know that the mixing time is 90 for Facebook1, 179 for Face-
book2, and 638 for Twitter. For these three social graphs,
with k = 3 and M = 500, our prediction method produces
acceptable performance with relatively small RMSE and
large r2. In this case, M is approximately one-hundredth of
the size of these three datasets, and k is about one-tenth or
one-hundredth of the mixing time.
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Figure 4: Illustration of (a) Node-adaptive Random
Walks and (b) Path-adaptive Random Walks.

5. SMARTWALK: USAGE MODEL
In this section, based on the results of the prediction algo-

rithm in Section 4, we propose two usage models of adaptive
random walks.

Adaptive across nodes. Given a random walk start-
ing from node v0, its local mixing time Tv0(ε) measures the
length required to converge to the stationary distribution.
Hence, it is fairly straightforward to take the prediction
value T̃v0(ε) as the random walk length when starting from
node v0. The parameter ε indicates the closeness between
the terminus distribution and stationarity, and can be de-
termined by the requirement of applications. Algorithm 2
determines the random walk length by the predicted T̃v0(ε),
and thus is adaptive to v0 (node-adaptive). As illustrated
in Fig. 4a, the local mixing time of vertex v0 (marked by 0
in Fig. 4a) is predicted as T = 5. Thus, any random walk
starting from v0 is a 5-hop random node sequence with suc-
cessive nodes being neighbors. In this usage model, the walk
length l only relys on the starting node, and is independent
of any intermediate node along the path.



Algorithm 2 Node-adaptive Random Walks

Input: G, Ftrain(k), Ttrain(ε), v0
Output: W
Step 1. fit a Random Forest regression model M =
RF (Ftrain(k), Ttrain(ε)).
Step 2. compute Fv0(k), a vector of features within the
k-hop neightborhod of the initial node v0.
Step 3. predict the local mixing time of v0 via the regres-
sion model, i.e., T̃v0(ε) =M(Fv0(k)).

Step 4. W = {v0}, t = T̃v0(ε), vp = v0.
Step 5. while t > 0
select a neighboring node vp+1 of vp with probability 1

deg(vp)
.

add vp+1 to the set W.
vp = vp+1, t = t− 1.
end while

Algorithm 3 Path-adaptive Random Walks

Input: G, Ftrain(k), Ttrain(ε), v0
Output: W
Step 1. fit a Random Forest regression model M =
RF (Ftrain(k), Ttrain(ε)).
Step 2. compute Fv0(k), a vector of features within the
k-hop neightborhod of the initial node v0.
Step 3. predict the local mixing time of v0 via the regres-
sion model, i.e., T̃v0(ε) =M(Fv0(k)).

Step 4. W = {v0}, t = T̃v0(ε), vp = v0.
Step 5. while t > 0
select a neighboring node vp+1 of vp with probability 1

deg(vp)
.

add vp+1 to the set W.
repeat Steps 2 & 3 for node vp+1, and get T̃vp+1(ε) =
M(Fvp+1(k)).

vp = vp+1, t = min{T̃vp+1(ε), t− 1}.
end while

Adaptive across nodes and paths. For node-adaptive
random walks, the length of random walks starting from
node v0 is set as the predicted local mixing time of node
v0, i.e., T̃v0(ε). However, for a random walk initiated from
the same node v0, the remaining random walk length re-
quired to approach stationarity also depends on the path
it has already covered. Specifically, if the random walk ar-
rives at some intermediate node vp, it might take no more
than Tvp(ε) additional hops to be within the ε-distance to
the stationary distribution. Hence, to make the usage model
adaptive both across nodes and across paths, each time an
intermediate node vp is reached, we update the value of the
remaining random walk length if it is greater than the pre-
dicted local mixing time T̃vp(ε) of node vp. The improved
path-adaptive usage model is given in Algorithm 3. Fig.
4b illustrates an example of a path adaptive walk. At the
beginning, the local mixing time of the initial vertex v0 is
predicted to be T = 5. After one hop, we arrive at node
v1 with its local mixing time T = 3. According to the new
information provided by v1, the remaining necessary walk
length l is updated to 3 instead of 5 − 1 = 4. The second
hop takes us to node v2 with T = 6, which is greater than
the number of remaining hops. Thus we keep l = 2. Repeat
this process, and eventually we terminate at node v4. The
total walk length is 4, which is determined by considering
all the nodes along the walk.
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Figure 5: CDF of local mixing time with respect to
ε.

6. SECURITY APPLICATIONS
In this section, we demonstrate the applicability of our

two usage models to social network based security systems,
including Sybil defense, anonymous communication and link
privacy preserving systems..

6.1 Sybil defense
A Sybil attack is an attack wherein a single user forges a

large number of pseudonymous identities. Recent work has
proposed Sybil defense mechanisms by leveraging the trust
relationships in social networks [51, 52, 35, 24, 13, 44, 43].
The key insight is that it is difficult for an adversary to es-
tablish trust relationships with honest users (attack edges),
particularly when interaction networks are used to incur a
higher cost for adversaries to set up an attack edge [47, 16].
SybilLimit [51] is a Sybil defense protocol that performs ran-
dom walk based routes on social graphs and registers public
keys with the tails (terminus points of random routes) to
differentiate Sybil users from benign users.

Security/false positive rate trade-off. (1) We evalu-
ate the security performance of SybilLimit in terms of the
number of Sybils that an adversary can insert in the hon-
est region (false negatives). Note that the expected number
of Sybil nodes that an adversary can insert in the honest
region is given by E[S] = E[g · W ] = g · E[W ], where g
is the number of attack edges and W is the random walk
length. Then the false negatives per attack edge is E[W ].
(2) Another critical metric to evaluate the accuracy of Sybil-
Limit is the false positive rate (percentage of benign users
misclassified as Sybils). In SybilLimit, only random walks
of fixed length are performed, i.e., W = w for all walks,
and the value of w is usually chosen to be the graph mixing
time to ensure a low false postive rate [51], which is unnec-
essarily large for most nodes and only severely degrades the
security performance. Hence, we are interested in apply-
ing adaptive random walks when generating random routes
in SybilLimit. We compare the security/false positive rate
trade-off when generating random routes based on three dif-
ferent random walks, i.e., fixed-length random walks (nor-
mal random walks), node-adapative random walks and path-
adaptive random walks. We show that among these three
usage models, our node-adaptive and path-adaptive random
walks guarantee stronger system security by decreasing false
negatives for any desired false positive rate.

Evaluation. We use the Facebook wall post dataset in
[34] (with 29,060 nodes and 169,752 edges) and the Twitter
dataset in Table 1 (with 81,306 nodes and 1,342,296 edges).
8 Using two adaptive random walk models, Fig. 6a and Fig.

8The Facebook wall post dataset is an interaction network
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Figure 6: (a) - (b) false negatives per attack edge as a function of ε; (c) - (d) false positive rate as a function
of false negatives per attack edge.

6b depict the false negatives per attack edge as a function of
ε for the Facebook wall post graph and the Twitter graph,
respectively. Thus, false negatives are tunable by setting
the variation distance parameter ε to various values from
0 to 1 (from strong to weak convergence). Also note that
to achieve a certain distance ε, adaptive models result in a
significantly smaller false negatives per attack edge than the
mixing time w = T (ε) used by fixed-length systems. For
instance, in Fig. 6a, at ε = 0.25, the false negatives (≈ 15)
are reduced by a factor of 3.7 compared to the mixing time
(≈ 56) in Fig. 5a.

Fig. 6c and Fig. 6d illustrate the false positive rate versus
false negatives per attack edge (E[W ]) using three random
walk models for the Facebook wall post graph and the Twit-
ter graph, respectively. It can be seen that the path-adaptive
random walks achieve the best security/false positive rate
trade-off among the three, while the node-adaptive random
walks come to be the second best. Specifically, for the Face-
book wall post graph (Fig. 6c), the false positive rate after
the adoption of path-adaptive walks shows a decline from
1.3% to 0.2% at E[w] = 6 and from 0.2% to 0.015% at
E[W ] = 8, i.e., the false positive rate is reduced by an
order of magnitude compared to the classical fixed-length
walks (y-axis is in log-scale). In other words, the accuracy
of classifying benign users is considerably improved. For the
Twitter graph, we observe that the false positive rate can be
reduced by up to two orders of magnitude (at false negatives
= 30) using the path-adaptive walks.

We conclude that both path-adaptive and node-adaptive
random walk models outperform the classical fixed-length
model. This is because our adaptive walk algorithms re-
duce the walk length of most nodes to a large extent while
still ensuring that their distance to stationarity is sufficiently
close. The path-adaptive walk model works better than the
node-adaptive one since it leverages the information of nodes
along the path to further decrease the number of unneces-
sary hops. As discussed above, the path-adaptive random
walk model results in significant improvements in accuracy
and security trade-offs (by up to two orders of magnitude).

6.2 Anonymous systems
Anonymous communication systems preserve users’ pri-

vacy by hiding the communication link between the user and
the remote communicating entity. Nagaraja et al. and oth-

and thus implies stronger social ties than the Facebook link
dataset. For the Twitter dataset, we only preserve a link
between two users if they follow each other such that a link
indicates a close relationship between the two users.

ers [37, 34, 12, 15] proposed several anonymous system de-
signs that enhance the security properties by leveraging trust
relationships to select proxies which are more likely to be
honest. The Pisces protocol [34] is a low-latency anonymity
system that leverages social links. Similar to the Tor proto-
col, users in Pisces rely on proxy servers and onion routing
for anonymous communication. Specifically, the relays in-
volved in the onion routing path are chosen by performing a
random walk on a trusted social network topology. In [34],
the anonymity performance is evaluated based on the Shan-
non entropy, which considers the probability distribution of
nodes being possible initiators as computed by the attackers.

Anonymity/latency trade-off. Both shannon entropy
and latency are significantly influenced by the length of ran-
dom walks l. Given a node i, as the random walk gets longer,
the node’s entropy increases and eventually converges to
some value (indicating stronger system anonymity), mean-
while the latency gets larger. Since latency is roughly pro-
portional to the walk length, we use the expected random
walk length as the latency metric. In prior works, all ran-
dom walks have the same length. Specifically, in [34], the
random walk length l is set to a fixed value such that the
expected entropy of a random sample of 5% nodes is above a
threshold. We first show that nodes with greater local mix-
ing time usually require a longer random walk to achieve
the same level of anonymity as other nodes. As a result, us-
ing Jain’s fairness index [21], we show that the fixed length
method used in [34] has poor fairness of anonymity due
to its ignorance of a minority of nodes that needs larger l.
Then we demonstrate that using an adaptive length method
instead enhances the fairness for any given expected random
walk length.

Evaluation. We use the Facebook wall post dataset in
[34], along with the Facebook link (Facebook1) and Twit-
ter datasets in Table 1. We rank the nodes according to
their local mixing time in a descending order, and compare
the anonymity (entropy) averaged over the top 5% nodes
(hard nodes), the last 5% nodes (easy nodes) and random
5% nodes, as illustrated in Fig. 7. It can be seen that
the convergence rate of easy nodes’ anonymity to the upper
bound is much faster than that of hard nodes. However, in a
normal random walk scheme, l is set to be identical for every
node. Note that in social graphs, a majority of nodes are
easy nodes while hard nodes take only a small portion (see
Fig. 5a and Fig. 5b). Consequently, as illustrated in Fig. 7,
the expected anonymity/entropy for a random sample only
reflects the behaviour of most easy nodes rather than that
of hard nodes. In Fig. 7a, if we set the threshold as 14, we
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Figure 7: Anonymity as a function of random walk length.
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Figure 8: CDF of anonymity for the hard nodes.

will choose l = 10 for all nodes, which is in fact insufficient
for over 5% of the nodes (i.e., hard nodes) that need l to
be at least 13. The approach for determining a fixed walk
length based on average anonymity can lead to a more se-
vere anonymity loss for hard nodes in larger social graphs,
as indicated in Fig. 7b and Fig. 7c.

To illustrate the anonymity loss of hard nodes, Fig. 8
depicts the CDF of anonymity over the hard nodes, using
different random walk schemes. For the Facebook wall post
graph, in the case of normal random walks, we choose l = 10
based on Fig. 7a so that the expected anonymity reaches 14.
Then about 90% of hard nodes fail to reach 13.5, and their
minimum anonymity even drops to 6. To ensure that more
than 99% nodes meet the threshold requirement, we have
to assign an unnecessarily large value to l (around 20 in
this case), which incurs long latency. For adaptive random
walks 9, we are able to adaptively perform short random
walks for the majority of nodes and relatively long walks
for the rest. Using the prediction algorithm, we can de-
tect the existence of hard nodes. In the Facebook wall post
graph, the necessary walk length is predicted for a set of
different ε’s. We choose ε = 0.65, which produces an av-
erage walk length that is close to the fixed length used in
normal walks, i.e., 10. From Fig. 8a, we can see that af-
ter the adaptive walk model is applied, the percentage of
hard nodes with anonymity greater than 13.5 rises to 90%,
whereas the expected length E[l] is still small (≈ 10). Our
adaptive random walk algorithm also results in a significant
increase of the minimum anonymity from 6 to 13. Note
that the entropy metric characterizes the anonymity using a
logarithmic scale; thus an increase of entropy from 6 to 13
results in 2 orders of magnitude larger anonymity set size.

To quantify the fairness of anonymity among nodes, we in-
troduce the Jain’s fairness index [21] given by F(x1, x2, ..., xn) =

9We mainly consider applying node-adaptive random walks
to the anonymous communication systems.

(
∑n

i=1 xi)
2

n·
∑n

i=1 xi)(xi)2
, which measures the fairness of a set of values

where there are n users with each assigned with the through-
put xi. The fairness metric ranges from 1

n
(the worst case)

to 1 (the best case), with the maximum value obtained at the
uniform allocation over all users. In the scenario of anony-
mous communications, we take xi as the anonymity set of
each node vi. Fig. 9 illustrates the fairness versus the aver-
age walk length in two random walk models. We conclude
that the adaptive walk scheme significantly strengthens the
anonymity of hard nodes and thus enhances the fairness.

6.3 Link Privacy
Extensive research has been carried out to protect the

privacy of trust relationships between any pair of users (link
privacy) [19, 20, 50, 54, 33, 27]. The challenge of preserving
link privacy lies in causing no significant losses on the utility
of applications that leverage the social trust relationships.
Specifically, link privacy is preserved by adding extra noise
to the local structure of a social network. At the same time,
global structural characteristics are maintained to ensure
that the utility of the social network is not severely reduced.
This can be implemented by replacing a real link between
two users with a fake link generated by a random walk[33].

Link privacy/utility trade-off. Mittal et al. in [33]
considered that the length of random walks for all nodes
has a fixed value. As the length increases (more noise), the
perturbed social graph converges to a random graph and its
utility declines drastically. Our key insight is that instead of
adding identical amount of noise to all users, perturbation
can be unevenly distributed according to the local mixing
time such that privacy can be protected with less pertur-
bation on average. In other words, we can perform node-
adaptive random walks rather than random walks with a
fixed length for every user when generating fake links.

To evaluate different perturbation algorithms, we use the
definitions of utility and link privacy in [33], which are based
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Figure 9: Fairness versus average random walk length.

Link privacy
0 0.2 0.4 0.6 0.8 1

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fixed t=2
fixed t=4
fixed t=6
fixed t=8
node adaptive E(t)≈ 8
path adaptive E(t)≈ 8

(a) Link privacy

Transient random walk length
10 20 30 40 50 60

M
e

a
n

 u
ti
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fixed t=2
fixed t=4
fixed t=6
fixed t=8
node adaptive E[t]≈ 8
path adaptive E[t]≈ 8

(b) Mean utility

Transient random walk length
10 20 30 40 50 60

M
a

x
 u

ti
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fixed t=2
fixed t=4
fixed t=6
fixed t=8
node adaptive E[t]≈ 8
path adaptive E[t]≈ 8

(c) Max utility

Figure 10: (a) CDF of link privacy; (b) Mean utility and (c) max utility of the perturbed graph G′ versus
transient random walk length.

on the transition matrices and the Bayesian inference, re-
spectively.

Definition 2. The overall mean utility of a perturbed
graph G′ with respect to the original graph G and an ap-
plication parameter l is defined as the mean utility for all
nodes in G, i.e., Umean(G,G′, l) = 1

|V |
∑

i∈V |πi(0)(P l(G)−
P l(G′))|1. Similarly, the maximum utility (worst case) of a
perturbed graph G′ is defined by computing the maximum
of the utility over all nodes in G, i.e., Umax(G,G′, l) =
maxi∈V {|πi(0)(P l(G)− P l(G′))|1}.

Definition 3. The link privacy of a link L is defined as
the probability of the existence of the link in the original
graph G under the assumption that the adversary has ac-
cess to the perturbed graph G′ and prior information H, i.e.,
LP (L,G′, H) = Pr[L = 1|G′, H].

Note that smaller distances indicate higher utility perfor-
mance, and smaller probabilities provide higher privacy pro-
tection. We consider the worst-case link privacy by assuming
that the adversary has the information of the entire original
graph without the link L, i.e., H = G− L.

Evaluation. We use the Facebook link graph. Fig. 10a
illustrates the CDF of link privacy Pr[L|G′, H] under the
worst case prior H = G−L. From Fig. 10a, we can see that
as the perturbation t gets larger, the percentage of links with
lower link privacy increases, indicating higher privacy. By
making t adaptive to different nodes (ranging from 5 to 36
with E(t) ≈ 8), a larger portion of nodes have low probabil-
ities compared to the fixed perturbation algorithm at t = 8,
which indicates that privacy is better preserved. This is be-
cause we make every node get its minimum required pertur-
bation using our adaptive random walk models, which offer

a higher level of privacy for a given expected walk length.
Fig. 10b and Fig. 10c illustrate the mean utility and the
max utility of the perturbed graph G′ versus the transient
random walk length, respectively. We can see that by mak-
ing t adaptive to different nodes (ranging from 5 to 36) with
the average value around 8, the utility degradation is min-
imal compared to t = 8. Combining Fig. 10a, Fig. 10b
and Fig. 10c, our adaptive perturbation algorithms improve
the privacy performance at the cost of slight degradation in
utility.

7. FURTHER DISCUSSION
We leverage supervised machine learning techniques to

predict the local mixing time of a given node, which requires
the knowledge of k-hop neighborhood features. In central-
ized systems where the graph is globally known, features
can be directly computed and the total computation time
is O(Γ(k)), where Γ(k) is the number of k-hop neighbors.
We benchmark the computational overhead on a machine
running a Linux 2.6.32 kernel with a 2.5 GHz Intel Xeon
core. The average computational time for 3-hop features
is about 100 milliseconds using Facebook1, 30 milliseconds
using Facebook2 and 170 miliseconds using Twitter. For
distributed systems and a given node i, its k-hop features
can approximated by performing a sufficiently large number
of k-hop random walks from i and obtaining the frequency
of different terminus nodes.

Random walks are naturally resilient to Sybil attacks [51,
52], since the Sybil users have limited power in corrupting
the close neighborhood of honest users. However, the ef-
fect of poisoning attacks [26] on the probe method is still
an interesting research question. Possible defenses against
poisoning attacks are to provide more robust training node



selection by performing short random walks from prior trust
seeds, or to develop detection methods for nodes to examine
potentially poisoned features and labels. We will leave the
safe adoption of machine learning techniques in adversarial
settings to future work.

8. RELATED WORK
Random Walks in Security Systems. Danezis et al.

[12] proposed Drac, a decentralized protocol for anonymous
communications that leverages users’ social links. Random
walks are used in the circuit creation process. Mittal et al.
[33] presented a random walk based perturbation algorithm,
which anonymizes the social trust relationships by replac-
ing real edges with edges between initial and terminal nodes
of random walks. Many Sybil defense mechanisms leverage
random walks to detect Sybil users from benign users, such
as SybilLimit [51], SybilGuard [52], SybilRank [8], SybilInfer
[13] and Criminal account Inference Algorithm [49]. Integro
[5] changes the transition probabilities associated with ran-
dom walks, but still uses fixed-length random walks. Using
multiple real world social network datasets, we experimen-
tally verify the applicability of adaptive random walk models
in Sybil defense, anonymous systems and link privacy pre-
serving systems. We show that our proposal has the poten-
tial to improve the security and privacy of these applications
by an order of magnitude. We note that our approach has
broad potential to impact security-performance trade-offs
in applications even outside the context of social networks;
this includes graph-theoretic detection mechanisms for P2P
botnets [38], spamming botnets [53], malicious online com-
munities [42], and malware [22].

Random Walks in Networked Systems. Lovász et
al. [29] describes the connection of mixing time to the sec-
ond largest eigenvalue modulus (SLEM) of graphs. A lot of
works have studied the impact of network topology on the
mixing times of random walks experimentally [11, 37, 36].
To the best of our knowledge, all previous works use uniform
length random walks, and our work is the first to adapt the
random walk length depending on structural characteristics
of nodes, and apply the concept to improve system security
and privacy. Even though our analysis was presented from
the perspective of undirected graphs, our idea can be ex-
tended to both weighted and directed networks, and such a
quantitative study would be an interesting direction of fu-
ture work.

9. CONCLUSIONS
In this paper, we observe that in various social topologies,

the walk length required to converge to stationarity has a
heterogeneous and long-tail property across nodes. Using a
set of supervised machine learning techniques, we show that
the walk length for a specific node can be well predicted
given the local characteristics and limited knowledge for a
small set of training nodes. Based on the heterogeneous
property and prediction algorithm, we propose two usage
models of random walks that can adaptively change the ran-
dom walk length, i.e., node-adaptive and path-adaptive ran-
dom walks. Finally, we present experimental results using
two usage models in real world social network based secu-
rity applications, and show up to two orders of magnitude
improvement in performance.
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APPENDIX
A. PROOF OF INEQUALITY

Proof. Given node i, the probability distribution at time
t is given by πi(t) = πi(0)P t. Assume t > 1. πi(t) =

1
deg(i)

∑
j∈N(i) πj(0)P t−1. Let Tmax = maxj∈N(i) Tj(ε). De-

note the total variation distance to stationarity at time t
as ∆i(t). Then for any neighbouring node j of node i,
∆j(Tmax) < ε. Thus, we have ∆i(Tmax + 1) = |π−

1
deg(i)

∑
j∈N(i) πj(0)PTmax |1 = | 1

deg(i)

∑
j∈N(i) (π − πj(0)PTmax)|1

≤ 1
deg(i)

∑
j∈N(i) ∆j(Tmax) < ε. Since ∆i(Tmax +1) < ε, the

local mixing time of node i must not exceed Tmax + 1. The
proof is completed.
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