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Abstract—Sybil attacks are becoming increasingly widespread
and pose a significant threat to online social systems; a single
adversary can inject multiple colluding identities in the system to
compromise security and privacy. Recent works have leveraged
social network-based trust relationships to defend against Sybil
attacks. However, existing defenses are based on oversimplified
assumptions about network structure, which do not necessarily
hold in real-world social networks. Recognizing these limita-
tions, we propose SYBILFUSE, a defense-in-depth framework for
Sybil detection when the oversimplified assumptions are relaxed.
SYBILFUSE adopts a collective classification approach by first
training local classifiers to compute local trust scores for nodes
and edges, and then propagating the local scores through the
global network structure via weighted random walk and loopy
belief propagation mechanisms. We evaluate our framework
on both synthetic and real-world network topologies, including
a large-scale, labeled Twitter network comprising 20M nodes
and 265M edges, and demonstrate that SYBILFUSE outperforms
state-of-the-art approaches significantly. In particular, SYBIL-
FUSE achieves 98% of Sybil coverage among top-ranked nodes.

I. INTRODUCTION

Our systems today are vulnerable to Sybil attacks, in
which an attacker injects multiple fake accounts into the
system [1]. Recently, the increasing popularity of online social
networks has made them attractive targets for Sybil attacks.
It is estimated that tens of millions of Sybil accounts exist in
popular social networks such as Facebook and Twitter [2], [3].
The attacker can leverage Sybil accounts to disrupt democratic
election and influence financial market via spreading fake
news [4], [5], as well as compromise system security and
privacy via propagating social malware, disseminating scams,
and learning users’ private data [2], [3], [6]–[10].

Limitations in existing Sybil defenses: An important thread
of research proposes to mitigate Sybil attacks using social
network-based trust relationships. The key insight is that in
a social graph where edges represent strong trust relation-
ships, it is hard for the attacker to set up links to benign
users. As a result, the number of edges between benign
users and Sybil identities (called attack edges) is limited.
Approaches such as SybilGuard [11], SybilLimit [12], Sybil-
Infer [13], SybilRank [14], CIA [15], SybilBelief [16], and
SybilSCAR [17] rely on such strong trust assumption and
separate the benign and Sybil regions by identifying com-
munities [18]. Íntegro [19] extends SybilRank by considering
victim prediction (i.e., benign accounts that connect to Sybils).

While these approaches have pioneered the use of social
network structure for Sybil defenses, the actual deployment

of these ideas in real-world networks remains controversial.
Real-world social networks do not necessarily have strong
trusts. Yang et al. showed that RenRen, the largest social
network in China, does not follow this assumption [20].
Previous work [8], [21] also showed that Sybil nodes could
befriend benign users on Facebook at a large scale. Ghosh et
al. [22] showed that on Twitter, a link farming phenomenon is
widespread, in which certain benign accounts blindly follow
back accounts who follow them. On such weak trust networks,
the number of attack edges can be larger than what is
typically considered in previous works, making it challenging
to separate the benign region from the Sybil region.

SYBILFUSE outperforms state-of-the-art: Complex attack
strategies in real-world social networks make it hard for
methods that are based on single source of information to
succeed. Recognizing the limitations in existing approaches,
we propose SYBILFUSE, a defense-in-depth framework that
leverages heterogeneous sources of information to perform ro-
bust Sybil detection. Different from existing approaches which
assume strong trust networks [11]–[17], [23] or assume strong
victim prediction [19], SYBILFUSE relaxes these limitations
by adopting a collective classification scheme. Given social
network data as input, SYBILFUSE first leverages local at-
tributes to train local classifiers. Local node classifier predicts
a trust score for each node, which indicates the probability
of that node to be benign. Local edge classifier predicts a
trust score for each edge, which indicates the probability of
that edge to be a non-attack edge. These local trust scores
are then combined with the global structure through weighted
trust score propagation. Existing approaches do not leverage
rich local information and treat edges equally, thus do not
work well when the number of attack edges exceeds their
assumption. In contrast, SYBILFUSE captures local account
information in node trust scores, and propagates these scores
through the global structure. During the score propagation,
SYBILFUSE leverages edge trust scores to enforce unequal
weights, so that attack edges will have reduced impacts on the
propagation. After the propagation completes, final trust scores
of accounts are used for Sybil classification and ranking.

Evaluation: We conduct comprehensive evaluations of
SYBILFUSE against state-of-the-art approaches: (1) we exten-
sively evaluate the robustness of SYBILFUSE under different
network settings and observe that SYBILFUSE is robust to
errors in local classifiers (Section IV-B); (2) we evaluate
SYBILFUSE in a real-world, labeled Twitter network in which
the assumptions that existing approaches require are not sat-
isfied (e.g., large number of attack edges (49.5 per Sybil) and
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Fig. 1: Sybil attack scenario

victims (75.4% of benign nodes)). We observe that SYBIL-
FUSE outperforms state-of-the-art approaches significantly in
Sybil ranking and achieves 98% of Sybil coverage among top-
ranked nodes (Section V-D); (3) we evaluate SYBILFUSE in
a real-world, large-scale, labeled Twitter network comprising
over 20 million nodes and 256 million edges. We observe
that SYBILFUSE outperforms state-of-the-art approaches sig-
nificantly in both AUC and Sybil ranking (Section VI-D).

II. BACKGROUND AND RELATED WORK

A. Sybil Attack Scenario

Consider a network topology G = (V,E), comprising a
set V of nodes (i.e., user accounts) and a set E of edges (i.e.,
friendship relationships). To model real-world social networks,
graph G can be either directed or undirected. A directed
graph models the follower-following topology (e.g., Twitter),
in which (u, v) ∈ E denotes that u follows v. An undirected
graph models the mutual relationship topology (e.g., Face-
book), in which (u, v) ∈ E is equivalent to (v, u) ∈ E.

Fig. 1 shows the Sybil attack scenario, in which every node
v ∈ V is associated with a label that indicates its identity
to be benign or Sybil. We denote the subnetwork containing
all benign nodes to be the benign region, and denote the
subnetwork containing all Sybil nodes to be the Sybil region.
The edges that connect the two regions are called attack edges.
Following the established convention in the literature, we do
not impose any constraints on the size or the shape of the
Sybil region. The attacker can create an unlimited number of
Sybil nodes and set up edges between them arbitrarily. The
main goal of Sybil defense research is to design a mechanism
to detect as many Sybil nodes as possible, while minimizing
the number of benign nodes that are misdetected.

B. Limitations in State-of-the-art Sybil Defenses

Local attribute-based approaches: Local attribute-based ap-
proaches seek to detect Sybil accounts by analyzing local
account attributes (e.g., posts, status updates, connections).
These approaches span a large category of schemes, including
blacklisting [24], whitelisting [25], URL filtering [7], as well
as various machine learning methods, such as Bayesian rea-
soning, Support Vector Machines, and clustering [26]–[28]. A
fundamental limitation in these approaches is that Sybils can
easily evade the detection by mimicking the local behaviors of
benign users via manipulating their profiles and connections.

Global structure-based approaches: Recognizing the limi-
tations in local attribute-based approaches, global structure-
based approaches seek to exploit the global graph-theoretic

differences between the benign region and the Sybil region.
Most global structure-based approaches leverage either ran-
dom walks or loopy belief propagation. For instance, ran-
dom walk based approaches include SybilGuard [11], Sybil-
Limit [12], SybilInfer [13], SybilRank [14], CIA [15], and
SybilWalk [23]. Íntegro [19] extends SybilRank by incorpo-
rating victim prediction (i.e., benign accounts that connect
to Sybils) in random walks. Loopy belief propagation based
approaches include SybilBelief [16] and GANG [29]. Fu et
al. [30] extended SybilBelief via considering user carefulness
at establishing social relationships. Wang et al. [17] proposed
a local rule based framework to unify random walk based
and loopy belief propagation based approaches. Based on the
framework, they further proposed SybilSCAR, which can be
viewed as an optimized version of SybilBelief.

Research has shown that [11]–[17], [23] assume a strong
trust network, where the number of attack edges is lim-
ited [18]. [11], [12] further assume that the benign region
is fast mixing [31], which presumes the existence of a well-
connected, giant community structure of benign users. How-
ever, these assumptions oversimplify the network structure and
may not hold well on certain real-world social networks. First,
real-world social networks do not necessarily have strong
trusts. Yang et al. showed that RenRen, the largest social
network in China, does not follow this assumption [20].
Previous work [8], [21] also showed that Sybil nodes could
befriend benign users on Facebook at a large scale. Ghosh et
al. [22] showed that on Twitter, a link farming phenomenon is
widespread, in which certain benign accounts blindly follow
back accounts who follow them. On such weak trust networks,
the number of attack edges can be larger than what is typically
considered in previous works, making it challenging to sepa-
rate the benign region from the Sybil region. Second, benign
users tend to form multiple small communities [18] driven
by different purposes (e.g., geographical location, education,
and career), which introduces a longer mixing time than the
theoretical anticipated value [31]. Third, although Íntegro does
not directly require a small number of attack edges, it relies
on strong assumptions that the number of victims is small and
that the victims are accurately predicted, which may not hold
on real-world social networks like Twitter (Section V-A).

III. THE SYBILFUSE FRAMEWORK

Complex attack strategies in real-world social networks
make it hard for methods that are based on single source
of information to succeed. Recognizing the limitations in
existing approaches, we propose SYBILFUSE, a defense-in-
depth framework that leverages heterogeneous sources of
information to perform robust Sybil detection. Different from
existing approaches which only leverage local attribute infor-
mation [7], [24]–[28], only leverage global structure informa-
tion [11]–[17], [23], or assume strong victim prediction [19],
SYBILFUSE combines local attributes with global structure by
adopting a collective classification scheme.

A. Framework Overview

Fig. 2 shows the SYBILFUSE framework. Given social
network data as input, SYBILFUSE first samples training
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Fig. 2: The SYBILFUSE framework

data and leverages discriminative local attributes (structural or
content) to train local classifiers. Local node classifier predicts
a trust score for each node, which indicates the probability
of that node to be benign. Local edge classifier predicts a
trust score for each edge, which indicates the probability of
that edge to be a non-attack edge. These local scores are
then combined with the global structure through weighted
trust score propagation. Existing approaches [11]–[16] do
not leverage rich local information (i.e., these approaches
propagate manually-set scores from a limited set of labeled
seeds) and treat edges equally, thus do not work well when
the number of attack edges exceeds their assumptions. In
contrast, SYBILFUSE captures local account information in
node trust scores, and propagates these scores through the
global structure. SYBILFUSE furthermore leverages edge trust
scores to enforce unequal weights for the propagation, so that
attack edges will have reduced impacts. Final node scores after
propagation are used for Sybil account prediction and ranking.

B. Local Trust Score Computation

Given a social graph G = (V,E), we denote the trust score
of node v ∈ V by Sv , which quantifies the probability that v
is benign. We denote the trust score of edge (u, v) ∈ E by
Su,v , which quantifies the probability that node u and node v
take the same label (i.e., homophily strength). To compute Sv ,
we leverage local node attributes (e.g., degree, local clustering
coefficient, profile) and train a machine learning classifier that
outputs probabilistic estimates (e.g., SVM, logistic regression).
To compute Su,v , we similarly build an edge classifier. In
addition, we can measure the similarity between node u
and v using various metrics (e.g., Cosine, Jaccard, Adamic-
Adar [32]). The insight is that in social networks where
homophily exists, connected benign nodes tend to be similar
and Sybils might be different from their targeted benign
nodes. As a result, attack edges tend to have low similarity
scores. Note that in practice, we restrict Sv and Su,v to be
within range [0.1, 0.9] through normalization, since scoring
zero would invalidate our weighted score propagation.

C. Weighted Trust Score Propagation

Score propagation is done through either weighted random
walk or weighted loopy belief propagation.

Weighted random walk: Let S(i)(v) denote the score of node
v after i-th power iteration. First, we set the initial score of
every node (excluding the training data) to be the predicted
local node trust score from the local node classifier:

S(0)(v) = Sv (1)

For nodes that belong to the training data, we set score 0.9 to
the benign nodes and score 0.1 to the Sybil nodes.

Next, we set the weight of every edge to be the predicted
local edge trust score from the local edge classifier, and start
weighted random walk using the following update equation:

S(i)(v) =
∑

(u,v)∈E

S(i−1)(u)
Su,v∑

(u,w)∈E Su,w
(2)

Hence, u will distribute more of its round i − 1 trust to a
close friend v (i.e., Su,v is high) rather than an unfamiliar
connection w. In this way, attack edges that have low trust
scores will have reduced impacts on the propagation. After
d = O(log n) steps of power iteration (i.e., early termination),
where n is the number of nodes, we obtain the final score:

SF
v = S(d)(v) (3)

Weighted loopy belief propagation: We model the graph
G as a pairwise Markov Random Field (MRF) [33]. For
each node v, we associate it with a binary random variable
Xv ∈ {1,−1} that represents its label (Xv = 1 for benign
and Xv = −1 for Sybil). To quantify the probability of a
collection of nodes jointly taking a set of labels, we introduce
node potential function ψv(Xv) for node v and edge potential
function ψu,v(Xu, Xv) for edge (u, v), and initialize them
using our predicted trust scores from local classifiers:

ψv(Xv) =

{
Sv if Xv = 1

1− Sv if Xv = −1
(4)

ψu,v(Xu, Xv) =

{
Su,v if XuXv = 1

1− Su,v if XuXv = −1
(5)

Given a pairwise MRF (G,Ψ), we propagate local trust scores
through the global structure using Loopy Belief Propagation



(LBP) [34] with the following message update function:

mu→v(Xv)

=
∑
Xu

ψu(Xu)ψu,v(Xu, Xv)
∏

s∈Neighbors(u)\v

ms→u(Xs)

 (6)

where mu→v(Xv) is initially set to 1 for all edges u → v.
Note that edge potentials enforce unequal contribution of
edges to the propagation. After d = 5 ∼ 10 rounds of iteration
(we validated this empirically), we obtain the belief score of
node v with label Xv = xv:

belv(Xv = xv) ∝ ψv(Xv = xv)
∏

u∈Neighbors(v)

mu→v(Xv = xv) (7)

We then normalize belv(Xv = 1) to obtain the final score:

SF
v =

belv(Xv = 1)

belv(Xv = 1) + belv(Xv = −1)
(8)

Computational complexity: The complexity of weighted
random walk and weighted LBP is both O(md), where m is
the number of edges and d is the number of iterations (recall
that d = O(log n) for weighted random walk and d = 5 ∼ 10
for weighted LBP). For sparse networks, O(md) = O(nd).
Thus, the total computational cost is the addition of execution
time of local classifier training and prediction, and that of
random walk/LBP. In practice, local classifier can be trained
offline and efficient implementations like LIBSVM [35] exist.
Besides, random walk and LBP are easily parallelizable, which
further speeds up the execution.

D. Sybil Account Prediction and Ranking

Sybil account prediction: For a node v, we predict its label
Lv by comparing its final score SF

v with a threshold value:

Lv = sign(SF
v − threshold) (9)

where Lv = 1 indicates a benign label and Lv = −1
indicates a Sybil label. The threshold value can be obtained
by conducting cross-validation on the training data.

Sybil ranking: We can also surface Sybil accounts by ranking
all nodes in an ascending order of their final scores. Sybils
with low scores will be ranked upfront. Security analysts can
then go through the list and surface Sybil accounts manually.

IV. ROBUSTNESS EVALUATION

We evaluate the robustness of SYBILFUSE against different
network structures and different levels of local classifier errors.

A. Evaluation Setup

Network generation: We adopt a similar experimental setting
as [16], in which we use Preferential Attachment [36] model
to generate both the benign region and Sybil region, and
randomly add attack edges between the two regions. In the
basic setup, the network consists of 1,000 benign nodes and
500 Sybil nodes. The average degree of the two regions is 10.
The number of attack edges is 1,000.

We simulate local trust scores from local classifiers by
taking random samples in [0.1, 0.9] with certain false positive
rates and false negative rates (0.5 as threshold). We study the
performance of SYBILFUSE under three factors: (1) different
levels of errors in local classifiers, (2) different number of
attack edges, and (3) different number of Sybil nodes. When
we study one factor, we fix the other factors to be the same
as the basic setup and only vary the studied one.

Evaluation metrics: We measure the accuracy and the Area
Under the Receiver Operating Characteristic (ROC) Curve
(AUC) [37] of SYBILFUSE with weighted random walk (SF-
RW) and SYBILFUSE with weighted LBP (SF-LBP). Given
the ranking of scores of all nodes from the smallest to the
largest, AUC measures the the probability that a randomly
selected Sybil nodes ranks higher than a randomly selected
benign node. A higher AUC indicates better Sybil ranking
performance. For SF-LBP, we use a natural threshold 0.5 to
compute accuracy. For SF-RW, we do not compute accuracy
since the final scores of random walk-based approaches (e.g.,
[14], [15]) are typically very low due to the nature of score
distribution and finding a proper threshold is hard.

B. Evaluation Results

Fig. 3 shows the accuracy and AUC of SYBILFUSE with
local node trust scores. We set the edge trust scores to be the
default value 0.9 to model homophily. For (a), we vary the
FPR and FNR of local node classifier from 0 to 0.4 (i.e.,
from perfect local classifier to better than random guess).
For (b) and (c), we set FPR and FNR to be 0.3 (i.e., noisy
local classifier) and vary the number of attack edges & the
number of Sybil nodes. Fig. 4 shows the accuracy and AUC of
SYBILFUSE with local edge trust scores. We randomly sample
1 benign node and 1 Sybil node as trusted seeds, and set their
node trust scores to be 0.9 and 0.1, correspondingly. For the
rest of nodes, we set their scores to be the default value 0.5.

We observe that: (1) when FPR = FNR ≤ 0.3, SF-
RW and SF-LBP achieve > 0.98 accuracy and AUC under
all evaluated network settings given local node trust scores,
and achieve > 0.92 accuracy and AUC given local edge
trust scores; (2) the performance of both SF-RW and SF-LBP
improves under more accurate local classifiers, less number of
attack edges, and more number of Sybil nodes; (3) SF-LBP
performs better than SF-RW in all settings.

V. LABELED TWITTER EVALUATION

We evaluate SYBILFUSE against state-of-the-art ap-
proaches in a real-world, labeled Twitter network. We demon-
strate that by combining local attributes with global structure,
SYBILFUSE outperforms state-of-the-art significantly.

A. Network Preprocessing and Measurement

The original directed network was obtained from [15].
Since it is easy for the attacker to manipulate one-way directed
edges, we followed the established convention [14]–[17], [19]
and preprocessed it to an undirected network by retaining an
undirected edge if both directions exist.
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Fig. 3: Accuracy and AUC of SYBILFUSE with weighted random walk (SF-RW) and weighted loopy belief propagation (SF-LBP)
given local node trust scores. For (a), we vary FPR=FNR of local node classifiers. For (b) and (c), we fix FPR=FNR=0.3.
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Fig. 4: Accuracy and AUC of SYBILFUSE with weighted random walk (SF-RW) and weighted loopy belief propagation (SF-LBP)
given local edge trust scores. For (a), we vary FPR=FNR of local edge classifiers. For (b) and (c), we fix FPR=FNR=0.3.

After preprocessing, the network consists of 8,167 nodes
and 54,146 edges, with verified 7,358 benign nodes and 809
Sybil nodes. We observe that: (1) Sybil nodes emit a large
number of attack edges (40,010), with 49.5 attack edges on
average per Sybil; (2) 53.4% of Sybils are isolated (i.e., they
only connect to benign nodes). These isolated Sybils emit
37.0% of attack edges. In addition, 41.2% of Sybils form a
largest connected component (emitting 42.8% of attack edges),

and 5.4% of Sybils form several small connected groups
(emitting 20.2% of attack edges); (3) the number of victims
is large (5,546; 75.4% of benign nodes). Thus, the benign
region and the Sybil region can hardly be viewed as separate
communities, and the assumptions that existing approaches
require (Section II-B) are not satisfied. As we will show in
Section V-D, existing approaches [14]–[17], [19] have limited
performance on this network.
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Fig. 5: Fraction of Sybils among top K nodes of all evaluated approaches. We observe that SF-LBP has the best ranking
performance among all approaches and achieves > 98% Sybil ranking up to top 400 nodes.

B. Local Trust Score Computation

Feature extraction: We extract three discriminative node
features from the original directed network, and map these
features to the corresponding nodes in the undirected network.
Since extracting discriminative edge features from this dataset
is difficult, we set local edge scores to be 0.9 by default to
model homophily.

• Incoming requests accepted ratio: Reqin(v) =
|In(v)∩Out(v)|
|In(v)| , where In(v) (Out(v)) represents the

set of all incoming (outgoing) edges of v. The insight is
that Sybils are more likely to accept incoming requests
than benign users in order to quickly propagate spam,
resulting in a higher Reqin. Since the dataset only contains
structural information, we use in-degree & out-degree to
model the ratio.

• Outgoing requests accepted ratio: Reqout(v) =
|In(v)∩Out(v)|
|Out(v)| . The insight is that Sybils are less reliable

than benign users and hence their outgoing friend requests
are less likely to be accepted, resulting in a lower Reqout.
• Local clustering coefficient: CC(v) =
|{(i,j):i,j∈Nei(v),(i,j)∈E}|
|Nei(v)|(|Nei(v)|−1) ), where Nei(v) represents

the set of neighbors of v. The insight is that benign users
often have well-connected social cliques, and users in such
cliques are often friends, resulting in to a high CC.

Training a SVM classifier: We randomly sample 50 benign
nodes and 50 Sybil nodes as the training set, and train a
SVM classifier with RBF kernel using LIBSVM [35]. We then
output probabilistic estimates as local node scores. Note that
we extract these features and adopt the SVM classifier in
particular for this Twitter network. The system administrator is
free to explore other features and classifiers under the overall
SYBILFUSE framework.

C. Evaluated Approaches

For SYBILFUSE, we propagate local scores through
weighted random walk (SF-RW) and weighted loopy be-
lief propagation (SF-LBP). We also evaluate the follow-
ing existing approaches: (1) local node classification: SVM;

(2) global structure-based approaches: SybilRank (SR), CIA
(CIA), SybilBelief (SB), SybilSCAR (SS), Íntegro (INT),
Íntegro with perfect victim prediction (INT-PF). We use the
same training data as propagation seeds. For INT , we further
sample 50 victims and 50 non-victims to learn a victim
predictor based on Random Forest algorithm [19]. For INT-PF,
we model a perfect victim predictor by setting the probability
score of each victim to be 1 and the score of each non-victim
to be 0; (3) ensemble approaches: EnC-SR, EnC-CIA, EnC-SB,
EnC-SS. We combine the scores from SVM classifier with the
scores from structure-based approaches in a standard voting
scheme; (4) random guess: RG.

D. Evaluation Results

Sybil ranking performance: Following the established con-
vention [14], [16], [17], [19], we evaluate the ranking per-
formance of the compared approaches by ranking all nodes
in an ascending order of their final scores. A more effective
approach will rank more Sybil nodes upfront.

Fig. 5 shows the fraction of Sybils among top K nodes.
We observe that: (1) SF-RW has the best performance among
all random walk-based approaches. Specifically, the average
improvement of SF-RW w.r.t. SR, CIA, and INT is 44.8%,
16.2%, and 54.3%, respectively (the improvement of A w.r.t.
B is computed as A−B, where A and B represent the fraction
of Sybils); (2) SF-LBP has the best performance among all
evaluated approaches. Specifically, the average improvement
of SF-LBP w.r.t. RG, SVM, SR, CIA, INT , SB, and SS is 85.7%,
57.5%, 85.9%, 57.4%, 95.5%, 36.5%, and 13.4%, respectively.
Besides, SF-LBP achieves > 98% Sybil ranking up to top 400
nodes; (3) SF-RW and SF-LBP outperform INT , INT-PF, and
ensemble approaches significantly. Surprisingly, even under
perfect victim prediction, the performance of INT-PF is just
slightly better than RG. In fact, Íntegro assigns low weights
to all edges originated from victims according to the formula
w(vi, vj) = min{1, β · (1−max{p(vi), p(vj)})} [19]. Hence,
the propagation of scores from trusted seeds to victims and
from victims to other benign nodes is inhibited. When the
number of victims is large (75.4% in our Twitter network),
even under perfect victim prediction, a large number of benign
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Fig. 6: Decomposition of top 500 nodes. We observe that SF-LBP has the best performance in ranking both isolated Sybils and
Sybils in the largest connected component (LCC).

nodes will receive low final scores, including the victims and
the benign nodes that are separated from propagation seeds
by victims. This problem becomes worse in practice since it
is impossible to have perfect victim prediction. For INT , the
victim predictor has 18.3% precision and 19.6% recall, and
we can see that INT has nearly 0 Sybil ranking capability. In
short, INT has very limited performance when the number of
victims is large or the victim predictor is inaccurate.

Measuring the composition of top-ranked Sybils: We
study the power of each approach in ranking different types
of Sybils: isolated Sybils (Isolated), Sybils in the largest
connected component (LCC), and Sybils in small, connected
groups (Others). Fig. 6 shows the decomposition of top 500
nodes. We omit INT and INT-PF due to their very limited
performance. We observe that: (1) local node classification
approach (SVM) is more powerful in ranking isolated Sybils
(74.6% of all Sybils ranked by SVM); (2) global structure-
based approaches are more powerful in ranking Sybils in the
LCC (71.2%, 66.4%, 62.4%, and 71.6% of all Sybils ranked
by SR, CIA, SB, and SS, respectively); (3) SF-LBP has the
best performance in ranking both isolated Sybils and Sybils
in the LCC.

Summary: In summary, SYBILFUSE methods (SF-RW, SF-
LBP) significantly outperform existing approaches in terms of
Sybil ranking, and the most effective approach is to propagate
local trust scores from local classifiers through weighted loopy
belief propagation (SF-LBP).

VI. LARGE-SCALE LABELED TWITTER EVALUATION

We further evaluate SYBILFUSE against state-of-the-art
approaches in a real-world, large-scale, labeled Twitter net-
work comprising over 20 million nodes and 256 million edges.

A. Ground Truth Collection

We obtained a snapshot of the Twitter follower network
from [38]. Similar to Section V-A, we preprocessed the
original directed network to an undirected network by only
retaining bi-directional edges. After preprocessing, the net-
work consists of 21,297,772 nodes and 265,025,545 edges.
To collect ground truth, we re-crawled every account using

Twitter’s API, which told us the account status. We found that
145,156 (0.7%) nodes were suspended by Twitter, 1,911,482
(9.0%) nodes were deleted, and the rest were still active. We
treated the suspended accounts as Sybil nodes and the active
accounts as benign nodes. For the deleted accounts, since
we were not sure whether they were deleted by users or by
Twitter, we did not include them in the training and evaluation.

B. Network Structure Measurement

We adopt modularity [39], ranging from -0.5 to 1, to quan-
tify if a network partition can be viewed as two communities.
Clauset et al. [40] concluded that modularity > 0.3 indicates
a significant community structure. However, we find that the
partition consisting of the benign and Sybil regions only has
modularity 0.0042. Thus, the two regions cannot be viewed
as separate communities. Next, we show two reasons:

(1) Half of Sybils are isolated: In total, we find 77,917
connected components in the Sybil region. Among them, 50%
of Sybils are isolated, 45% of Sybils form a largest connected
component, and the rest of Sybils form small connected
components whose sizes are less than 20. Furthermore, we
find that the modularity of the partition consisting of the
benign region and the largest Sybil connected component is
still only 0.0046, which means that even this largest connected
component cannot be viewed as a community.

(2) Large number of attack edges: In total, there are
18,414,469 attack edges, which means each Sybil node suc-
cessfully attacks around 127 benign nodes on average. Further-
more, we find that the number of neighbors of both benign
and Sybil nodes follow long-tail distributions, which is also
widely observed in other OSNs such as LiveJournal [41] and
Google+ [42]. Thus, we speculate that Sybils are imitating the
benign region to evade automatic detection. Besides, 90% of
attack edges concentrate on 3% of benign nodes. Thus, we
speculate that such nodes are celebrities that tend to follow
back any account that follows them.

Note that these structural properties of Sybil nodes in our
Twitter network match those in another large-scale Twitter
network [22] and those in the RenRen network [20], which
indicates the representativeness of our observations. As a
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TABLE I: AUC in the large-scale Twitter network

SR CIA INT INT-PF SB SS SF-RW SF-LBP
0.57 0.80 0.48 0.54 0.74 0.74 0.81 0.85

result, the assumptions that existing approaches require are not
satisfied, leading to their limited performance (Section VI-D)

C. Local Trust Score Computation

We extract the same set of features as Section V-B. Fig. 7
shows the scatter plot of Reqout vs. Reqin and the CDF
plot of CC. As expected, Sybil nodes tend to have a higher
Reqin, a lower Reqout, and a lower CC. We randomly sample
3,000 benign nodes and 3,000 Sybil nodes, and train a SVM
classifier using LIBSVM [35]. We then output probabilistic
estimates as local node scores. Since extracting discriminative
edge features from this dataset is difficult, we set local edge
scores to be 0.9 by default to model homophily.

D. Evaluation Results

Following the notations in Section V-C and the established
convention [14], [16], [17], [19], we evaluate the ranking
performance of SYBILFUSE approaches (SF-RW, SF-LBP)
against state-of-the-art Sybil defense approaches SR, CIA,
INT , INT-PF, SB, and SS (we follow the same notation as
Sec. V-C). We measure two metrics: (1) AUC; (2) fraction of
Sybils among top K ranked nodes.

Table I shows the AUC of the evaluated approaches and
Fig. 8 shows the fraction of Sybils among top K nodes. We
observe that: (1) SF-RW has the best AUC among all random
walk-based approaches. Specifically, the improvement of SF-
RW w.r.t. SR, CIA, INT , and INT-PF is 0.24, 0.01, 0.33, and
0.27, respectively (measured as A − B); (2) SF-LBP has the
best AUC among all evaluated approaches. Specifically, the
average improvement of SF-LBP w.r.t. SR, CIA, INT , INT-
PF, SB, and SS is 0.28, 0.05, 0.37, 0.31, 0.11, and 0.11,
respectively; (3) SF-LBP outperforms state-of-the-art Sybil
defenses significantly in terms of Sybil ranking. Specifically,
among the top 1K nodes, the Sybil ranking improvement of
SF-LBP w.r.t. SR, CIA, INT , INT-PF, SB, and SS is 54.8%,
46.5%, 55.1%, 55.1%, 55.1%, 53.9%, and 55.1%, respectively.

E. Limitations in Twitter’s Sybil Detection Policy

Recall that we obtained our ground truth based on whether
the account was active or suspended by Twitter. Thus, it
is possible that some accounts are actually Sybil but evade
Twitter’s detection policy. To test this, we manually examined
the top 100 accounts, of which 71 were suspended and 29
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Fig. 8: Fraction of Sybils in the large-scale Twitter network

were active. Among the 29 active accounts, we found: (1) 3
benign accounts, with a long timeline and diverse tweets; (2)
24 Sybil accounts, with common low-quality profile pictures
and spam tweets; (3) 2 suspicious accounts with protected
information. These 24 (24/29=82.8%) active Sybil accounts
evaded Twitter’s detection policy but were successfully cap-
tured by SYBILFUSE’s ranking mechanism.

VII. DISCUSSION

Resilience against social churn: According to [43], existing
Sybil defenses such as SybilInfer [13] and SybilRank [14]
are vulnerable to the churn in social graphs. To attack these
systems, [43] considers churn in attack edges by gradually
moving the attack edges closer to the trusted seeds, so that
the seed-based score propagation will eventually fail. The
success of this temporal attack requires two assumptions: (1)
the attacker knows the location of the trusted seeds in the
social graph; (2) the location of the trusted seeds will not
change drastically for a certain period of time, so that the
attacker has enough time to perform the attack. However, we
propose that the system administrator can frequently change
the trusted seeds and rerun the detection program. Further-
more, SYBILFUSE does not start propagation from the trusted
seeds. Instead, SYBILFUSE computes local scores for all nodes
and propagates these scores. As a result, the attacker does not
have a direction for moving the attack edges gradually.

Strategic adversaries: Strategic adversaries who are aware of
the features used in SYBILFUSE’s local classifiers may attempt
to evade detection by changing attack strategies. SYBILFUSE’s
multi-layer protection restricts such possibilities by combining
heterogeneous information sources. Specifically, if the attacker
aims to evade the detection of local node classifier by mim-
icking the local features of benign users (i.e., lower Reqin,
higher Reqout, and higher CC), he needs to establish more
connections between Sybil identities. Consequently, Sybils
will be much more densely connected, and the trust score
propagation module (Fig. 2) will be more effective to detect
them. Machine learning in these adversarial scenarios remains
a challenging problem for the research community. In general,
we advocate periodically retraining the local classifiers to
respond to the dynamics of attack behaviors.



Broader applicability: Our framework that combines local
attributes with global structure has broad applicabilities for
network security. For example, the area of botnet detection
can benefit from similar techniques that combine host-level
information with network structure-based information.

VIII. CONCLUSION AND FUTURE WORK

In this work, we proposed SYBILFUSE, a defense-in-
depth framework that novelly combines local attributes with
global structure to perform robust Sybil detection. SYBILFUSE
overcomes the limitations in existing approaches by leveraging
local attributes to train local classifiers and propagating the
local classifier scores through global structure via weighted
score propagation. Experimental results in synthetic topolo-
gies and real-world topologies demonstrate that SYBILFUSE
outperforms state-of-the-art approaches significantly. In future,
we plan to generalize SYBILFUSE to detect Sybils in directed
social graphs [29] and apply SYBILFUSE to other security
applications such as botnet detection and reputation systems.
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