
COS 432 Thursday, February 15
Information Security Assignment 2: Public Key Cryptography

Assignment 2: Public Key Cryptography
This project is due on Thursday, February 22 at 11:59 p.m.. Late submissions will be penalized
by 10% per day. If you have a conflict due to travel, interviews, etc., please plan accordingly and
turn in your project early.

This is an individual project.

The code and other answers you submit must be entirely your own work. Undergraduate students are
bound by the Honor System while graduate students are bound by the Graduate School’s expectation
of research integrity. You may consult published references, provided that you appropriately cite
them (e.g., with program comments), as you would in an academic paper.

Solutions must be submitted electronically via CS Dropbox.

Introduction
In this assignment, you’ll add functionality to the code you wrote for assignment 1, toward the goal
of implementing a secure facility for client-server communication across the Internet.

As before, we will give you some of the code you need, and we’ll ask you to provide certain
functions missing from the code we provide. You can download the code we are providing at:
https://goo.gl/cYGQYE. Create a fresh directory and unzip the downloaded code into it. Then copy
into that same directory all of the .java files from your solution to assignment 1. As before, you
must not use any crypto libraries; the only primitives you may use are the ones we gave you, and
ones you implemented from scratch yourself.

In this assignment you will implement three facilities, by modifying three Java code files. You will
modify RSAKeyPair.java to generate an RSA key-pair. You will modify RSAKey.java to implement
secure RSA encryption and decryption, and to create and verify digital signatures. You will modify
KeyExchange.java to implement a secure key exchange. As in the previous assignment, we have
provided you with code files in which some parts are "stubbed out". You will replace the stubbed
out pieces with code that actually works and provides the required security guarantee. We have put
a comment saying "IMPLEMENT THIS" everywhere that you have to supply code.

Although your solution may call on code that you wrote for assignment 1, your solution to this
homework should not rely on any specific properties of your assignment 1 code. We will test your
solution with our own implementation of the assignment 1 functionality. Your solution must work
correctly when we do this — this shouldn’t be a problem as long as you respect the API boundaries
between the different classes we have given you.

Objectives
• Understand how public key cryptography works

https://goo.gl/cYGQYE


RSAKeyPair
Your RSAKeyPair class should implement the following API:

public class RSAKeyPair {
public RSAKeyPair(PRGen rand, int numBits)
public RSAKey getPublicKey() //already implemented
public RSAKey getPrivateKey() //already implemented
public BigInteger[] getPrimes()

}

For RSAKeyPair, the bulk of the interesting work is performed by the constructor. This constructor
should create an RSA key pair using the algorithm discussed in class. The constructor will use the
PRGen called rand to get pseudo-random bits. numBits is the size in bits of each of the primes that
will be used. The key pair should be stored as a pair of RSAKey objects.

getPrimes() is a method we’ve added in order to help us with the grading process. getPrimes()
should return the two primes that were used in key generation. Typically, you would not explicitly
have a method to return these primes. The primes may be returned in either order.

2



RSAKey
Your RSAKey class should implement the following API:

public class RSAKey {
public RSAKey(BigInteger theExponent, BigInteger theModulus)
public BigInteger getExponent()
public BigInteger getModulus()
public byte[] encrypt(byte[] plaintext, PRGen prgen)
public byte[] decrypt(byte[] ciphertext)
public byte[] sign(byte[] message, PRGen prgen)
public boolean verifySignature(byte[] message, byte[] signature)
public int maxPlaintextLength()
public byte[] encodeOaep(byte[] input, PRGen prgen)
public byte[] decodeOaep(byte[] input)
public byte[] addPadding(byte[] input)
public byte[] removePadding(byte[] input)

The RSAKey class implements core RSA functions, namely encrypting/decryption as well as
signing/verification. Note that the RSAKey class is used for both public and private keys, even
though some key/method combinations are unlikely to be used in practice. For example, it is
unlikely that the sign() method of a public RSAKey would ever be used.

The encrypt() method should encrypt the plain text using optimal asymmetric encryption padding
(OAEP) as discussed in class. It is not enough to simply exponentiate and mod the plain text.
encrypt(), sign(), and encodeOaep() take a PRGen parameter, in case the implementation wants to
use some pseudo-random bits. The decrypt() method should be able to decrypt the cipher text.

Your code for OAEP encoding and decoding should be in the provided encodeOaep() and de-
codeOaep() methods. Your other methods should call these utility methods to encode/decode when
necessary. When decodeOaep() fails integrity checks, it should reveal this by returning null or
throwing an exception. For full credit, don’t forget to pad the input to the OAEP algorithm if it is
too short – this is necessary to guarantee security (otherwise the exponentiated message might be
smaller than the modulus).

The sign() method should generate a signature (array of bytes) that can be verified by the verifySig-
nature() method of the other RSAKey in the private/public RSAKey pair. You should not include
the entire message as part of the signature; assume that the verifier will already have access to this
message. This assumption of access is reflected in the API for verifySignature(), which accepts the
message as one of its arguments.

The verifySignature() method should be used by a public RSAKey object to verify a signature
generated by the corresponding private RSAKey’s sign() method.

The maxPlaintextLength() method should return the largest N such that any plain text of size N
bytes can be encrypted with this key and padding scheme. Your code must correctly operate on
plain texts that are any size less than or equal to the size returned by maxPlaintextLength().

3



The addPadding() and removePadding() methods are used to pad the input to the OAEP algorithm
if it is too short. You should not call these methods from within encodeOAEP()/decodeOAEP().
See below for more information on this.

4



KeyExchange
Your KeyExchange class should implement the following API:

public class KeyExchange {
public static final int OUTPUT_SIZE_BYTES
public static final int OUTPUT_SIZE_BITS
public KeyExchange(PRGen rand, boolean iAmServer)
public byte[] prepareOutMessage()
public byte[] processInMessage(byte[] inMessage)

}

The constructor should prepare to do a key exchange. rand is a secure pseudo-random generator
that can be used by the implementation. iAmServer is true if and only if we are playing the server
role in this exchange. Each exchange has two participants; one of them plays the client role and the
other plays the server role.

Once the KeyExchange object is created, two things have to happen for the key exchange process to
be complete:

• Call prepareOutMessage on this object, and send the result to the other participant.

• Receive the result of the other participant’s prepareOutMessage, and pass it in as the argument
to a call on this object’s processInMessage.

These two things can happen in either order, or even concurrently (e.g., in different threads). This
code must work correctly regardless of the order.

The call to processInMessage should behave as follows:

• If passed a null value, then throw a NullPointerException.

• Otherwise, if passed a value that could not possibly have been generated by prepareOutMes-
sage, then return null.

• Otherwise, return a "digest" (hash) value with length OUTPUT_SIZE_BYTES and the property
described below.

Your KeyExchange class must provide the following security guarantee: If the two participants end
up with the same non-null digest value, then this digest value is not known to anyone else. This must
be true even if third parties can observe and modify the messages sent between the participants.

This code is NOT required to check whether the two participants end up with the same digest value;
the code calling this must verify that property.

5



Getting Started
Tips This list may grow in response to Piazza questions.

• Start with RSAKeyPair. While it is true that it contains instances of RSAKey, RSAKeyPair
does not use any of the methods that you’ll be implementing in RSAKey.

• As in assignment 1, the spec is deliberately vague regarding how you should accomplish each
task. There is a significant design component to each problem.

• Make sure to run your code with the java -ea flag, so that assertions are enabled.

• Use BigInteger:

– Since you’ll be doing math with very large integers, you’ll probably want to use the
java.math.BigInteger library class for any such operations. This class provides myriad
functions that you may find useful for this assignment, particularly as BigInteger was
originally designed with RSA implementation in mind. (Using BigInteger doesn’t
violate our rule against using external crypto primitives, because BigInteger provides
basic mathematical functions, and not crypto.)

– If you find yourself writing complex functions involving BigIntegers (e.g. manually
testing primality, manually generating primes, manually finding the greatest common
denominator of two numbers, manually finding d given p, q, and e, etc.), you’re doing
way more work than you need to. Find the appropriate BigInteger method.

– One particularly useful BigInteger function is modPow().

– Converting back and forth between BigIntegers and byte[] arrays is a major hassle. It’s
surprisingly hard to get this code right. We have given you code, in the HW2Util.java
file, that can do this.

– For maximum elegance in RSAKey, your message should only be in BigInteger format for
the purposes of exponentiating and modulusing. In other words, when you’re applying
OAEP, padding, unOAEP, etc., it’s much easier to deal with your input in terms of
byte[].

• In class, we said that given public and private keys (d, N) and (e, N), we have that x =
(x(de) mod N), if 0 < x < N. Thus, if you’re going to use the built in BigInteger functions
to encrypt and decrypt, it is important that you represent your input message as a positive
BigInteger.

• An RSAKey object does not know if it is "private" or "public". Indeed, it is even possible
to sign messages using a public key or encrypt using a private key, though neither of these
strange operations are likely to be useful in practice.

• We recommend that first you get your code working for the case where all inputs are full
sized, then modify your code so that it handles padding. When you implement padding, the
relevant code should be in the provided addPadding() and removePadding() methods. Your
other methods should call these utility methods to pad/unpad when necessary.

6



• There is a bit more programming this week. Our reference solutions are 45, 151, and 84 lines
of code (including everything, even comments, whitespace, brackets, etc.) for RSAKeyPair,
RSAKey, and KeyExchange respectively.

• If your think that your solution to assignment 1 is flawed, you will want to correct these
mistakes before testing your implementation of assignment 2. Alternatively, you can use a
pre-compiled version of our sample solution for assignment 1, which you can download at:
https://goo.gl/3dpYwL.

7

https://goo.gl/3dpYwL


Submission Checklist
Upload to CS Dropbox the files listed below. Make sure you have the proper filenames and
behaviors.

RSAKeyPair
RSAKeyPair.java A file containing your implementation of the RSAKeyPair class.

RSAKey
RSAKey.java A file containing your implementation of the RSAKey class.

KeyExchange
KeyExchange.java A file containing your implementation of the KeyExchange class.

8


