
COS 432 Friday, February 23
Information Security Assignment 3: Authenticated Key Exchange

Assignment 3: Authenticated Key Exchange
This project is due on Thursday, March 1 at 11:59 p.m.. Late submissions will be penalized by
10% per day. If you have a conflict due to travel, interviews, etc., please plan accordingly and turn
in your project early.

This is an individual project.

The code and other answers you submit must be entirely your own work. Undergraduate students are
bound by the Honor System while graduate students are bound by the Graduate School’s expectation
of research integrity. You may consult published references, provided that you appropriately cite
them (e.g., with program comments), as you would in an academic paper.

Solutions must be submitted electronically via CS Dropbox.

Introduction
In this assignment, you’ll add functionality to the code you wrote for Assignments 1 and 2, to reach
the goal of implementing a secure facility for client-server communication across the Internet.

As before, we will give you some of the code you need, and we’ll ask you to provide certain
functions missing from the code we provide. You can download the code we are providing here:
https://goo.gl/XevDyX. Create a fresh directory and unzip the downloaded code into it. Then copy
into that same directory all of the .java files from your solutions to Assignments 1 and 2. As before,
you must not use any crypto libraries; the only primitives you may use are the ones we gave you,
and ones you implemented from scratch yourself. If you’d like to use our reference solutions for
assignment 1 and 2, you may download them after the submission deadline of assignment 2 here:
https://goo.gl/aUgZ17.

In this assignment you will implement a secure channel abstraction that can be used by two programs,
a client and a server, to communicate across the network, with the confidentiality and integrity of
messages guaranteed. We have given you a class InsecureChannel which implements a channel
that works but is not secure: everything is sent in unprotected cleartext. We have also given you
stubbed-out code for a class SecureChannel that extends InsecureChannel and (once you have
modified it) will protect security and confidentiality.

To facilitate the testing process, we have provided a few test files. The first is Util432s.java, which
provides a few methods used by the other testing files (feel free to use these methods for debugging).
The second is ChannelTest.java, which provides a demonstration that the InsecureChannel class
works correctly. The third is SecureChannelTest, which you can use to test your SecureChannel
class (once implemented). Note that this class does NOT test security properties, instead testing only
basic functionality. Note the commented out lines which give an example of how you can Util432s
for debugging. The fourth is InsecureChannelDebug, which is a special version of InsecureChannel
which provides the ability to echo channel transmissions to the screen. To use this class, simply
rename the file InsecureChannel.java and place it in the same directory as SecureChannel.java.

https://goo.gl/XevDyX
https://goo.gl/aUgZ17


AuthEncryptor
Your AuthEncryptor class should implement the following API:

public class RSAKeyPair {
public RSAKeyPair(PRGen rand, int numBits)
public RSAKey getPublicKey() //already implemented
public RSAKey getPrivateKey() //already implemented
public BigInteger[] getPrimes()

}

This class is used to perform authenticated encryption on values. Authenticated encryption protects
the confidentiality of a value, so that the only way to recover the initial value is to decrypt the
value using the same key and nonce that was used to encrypt it. At the same time, authenticated
encryption protects the integrity of a value, so that a party decrypting the value using the same key
and nonce (that were used to encrypt it) can verify that nobody has tampered with the value since it
was encrypted.

Code that uses AuthEncryptor will be required to pass in a different nonce for every call to encrypt.
The AuthEncryptor class is not required to detect violations of this rule; it is the responsibility of
the code that uses AuthEncryptor to avoid re-using a nonce with the same AuthEncryptor instance.

If includeNonce is true, then the nonce should be included (in plaintext form) in the output of
encrypt. If includeNonce is false, then the nonce should still be used in calculating the output, but
the nonce itself should not be copied into the output. (Presumably the party who will decrypt the
message already knows what the nonce will be.)

2



AuthDecryptor
Your AuthDecryptor class should implement the following API:

public class AuthDecryptor {
public AuthDecryptor(byte[] key)
public byte[] decrypt(byte[] in)
public byte[] decrypt(byte[] in, byte[] nonce)

}

The value passed as in will normally have been created by calling encrypt() with the same nonce in
an AuthEncryptor that was initialized with the same key as this AuthDecryptor.

If the integrity of the input value cannot be verified (that is, if the input value could not have been
created by calling encrypt() with the same nonce in an AuthEncryptor that was initialized with
the same key as this AuthDecryptor), then this method returns null. Otherwise it returns a newly
allocated byte-array containing the plaintext value that was originally passed to encrypt().

If the nonce is included in the message, then the message should be decrypted with decrypt(byte[]
in). Otherwise, the nonce should be provided along with the ciphertext to decrypt(byte[] in, byte[]
nonce).

3



SecureChannel
Your SecureChannel class should implement the following API:

public class SecureChannel extends InsecureChannel {
public SecureChannel(InputStream inStr, OutputStream outStr,

PRGen rand, boolean iAmServer,
RSAKey serverKey) throws IOException

public void sendMessage(byte[] message) throws IOException
public byte[] receiveMessage() throws IOException

}

The constructor will contain the vast majority of your code. Its role is to set up the secure channel
such that the sendMessage and receiveMessage methods can do their jobs. These methods should
provide authenticated encryption for the messages that pass over the channel, ensuring that messages
arrive at the receiving end in the same order that they were send on the sending end. Furthermore,
when the client is setting up its channel, it should also authenticate the server’s identity, and should
take whatever steps are necessary to detect any man-in-the-middle. If one of the two parties (server
or client) detects a potential security problem during channel construction, that party should close
the channel by calling close(). You can assume the serverKey (public key) passed to the constructor
of SecureChannel on the client side of the communication is verified externally in some way (for
example via a trusted certificate).

The underlying InsecureChannel will normally deliver messages in the same order they were sent.
But note that an adversary might try to reorder messages. receiveMessage should return null if an
invalid or out-of-order message shows up.

4



Getting Started
Tips This list may grow in response to Piazza questions.

• Start by looking at ChannelTest.java, which will provide you with a better understanding
of how InsecureChannel (and SecureChannel) are intended to be used. In particular, two
instances of InsecureChannel will be created (one for the server->client channel and one
for the client->server channel), each of which connects up two data streams (one input and
one output data stream). Messages are sent through the channel using the sendMessage()
method, and whenever a message is sent via a channel, it stays there until a corresponding
receiveMessage() call is made. Luckily for you, you won’t need to think about InputStreams
or OutputStreams at all. That is all taken of in InsecureChannel.java and in the main function
of the ChannelTests.

• If you’re unfamiliar with InputStreams and OutputStreams, don’t worry, you won’t be dealing
with them very closely. Same goes for runnable classes and threads.

• Another thing you might try is copying InsecureChannelDebug over InsecureChannel and
running ChannelTest, which will let you see the raw traffic being sent over the channel.

• From there, look at SecureChannelTest.java to get a feeling for how the SecureChannel
instantiations differ.

• From here, you should design a threat model. Carefully consider everything that your
adversary is trying to do that you’d like to prevent. Place this threat model and mitigations in
your README file.

• Once you feel comfortable with your threat model, consider what tools you have available
from assignments 1 and 2. Your design should be modular, where specific classes solve
specific subtasks. Sketch everything out schematically and try to find ways to compromise the
security of your design. Perhaps the best way to do this is to start your design early, sleep on
it, and then come back later to analyze it from a perspective that has been freshened by sleep.

• Once you feel comfortable with your overall design, implement and test.

• For reference, our solution for SecureChannel is a mere 87 lines of code, AuthEncryptor
is 66, and AuthDecryptor is 78. Unlike assignments 1 and 2, you should not run into any
programming challenges while writing SecureChannel (though writing additional tests beyond
ChannelTest might be tough). Your code should be very straightforward and easy to code up
from your design.

• In SecureChannelTest, if a thread calls readMessage and there is no message available, it will
wait until a message becomes available.

5



Submission Checklist
Upload to CS Dropbox the files listed below. Make sure you have the proper filenames and
behaviors.

README
README A file containing your description of your implementation.

AuthEncryptor
AuthEncryptor.java A file containing your implementation of the AuthEncryptor class.

AuthDecryptor
AuthDecryptor.java A file containing your implementation of the AuthDecryptor class.

SecureChannel
SecureChannel.java A file containing your implementation of the SecureChannel class.

6


