COS 432 Sunday, March 4
Information Security Assignment 4: Encrypted Storage

Assignment 4: Encrypted Storage

This project is due on Tuesday, March 13 at 11:59 p.m.. Late submissions will be penalized by
10% per day. If you have a conflict due to travel, interviews, etc., please plan accordingly and turn
in your project early.

This is a group project; you will work in teams of two or three and submit one project per team.
Submissions by groups of size one or four+ will receive no credit unless an exemption is given by
an instructor. Please find a partner as soon as possible. If you have trouble forming a team, post to
Piazza’s partner search forum. The final will cover project material, so you and your partner should
collaborate on each part.

The code and other answers you submit must be entirely your own work. Undergraduate students are
bound by the Honor System while graduate students are bound by the Graduate School’s expectation
of research integrity. You may consult published references, provided that you appropriately cite
them (e.g., with program comments), as you would in an academic paper.

Solutions must be submitted electronically via CS Dropbox.

Introduction

In this assignment, you will implement a secure network storage facility, building on what you have
done in the first three assignments.

As before, we will give you some of the code you need, and we’ll ask you to provide certain
functions missing from the code we provide. You can download the code we are providing here:
https://goo.gl/uCbS3e. Create a fresh directory and unzip the downloaded code into it. Then copy it
into the same directory all of the .java files from your solution to the previous homeworks reside
in. As before, you must not use any crypto libraries; the only primitives you may use are the ones
we gave you, and ones you implemented from scratch yourself. If you’d like to use our reference
solution for the previous homeworks you may download it here: https://goo.gl/smLxuW. Note that
this library does not contain source code.

In this assignment you will implement a secure file storage system. The system is based on three
components: client-side software, server-side software, and an insecure block storage device.


https://goo.gl/uCbS3e
https://goo.gl/smLxuW

Specifications

The client-side software runs on the user’s computer. The client-side does most of its work by
sending requests to the server-side software. The client offers the following API:

public class StorageClientSession {
public StorageClientSession(String serverHostname, int serverPort,
String serverPublicKeyFilename) ;
public void createAccount(String name, String password);
public void authenticate(String name, String password) ;
public void write(int nbytes, int storageOffset, int bufOffset, bytel[] buf);
public void read(int nbytes, int storageOffset, int bufOffset, byte[] buf);

The constructor connects securely to a server. createAccount creates a new user account on the
server and sets up a username and password for the account. (This only succeeds if there is not
already an account on the server with the same username.) authenticate logs into the server. Once
the user is logged in, the write and read operations will write and read the storage space that the
server maintains on behalf of the logged-in user. The server maintains separate storage space for
each user.

To simplify your job, you may assume that there will not be more than 16 user accounts. So, for
example, you can allocate 16 "slots" for storing information about user accounts, without having to
worry that the number of accounts will grow beyond 16.

The server-side software accepts connections from one or more clients and does what is necessary
to satisfy the clients’ requests. The server-side software normally runs for a long time, awaiting
connections from clients. The design of the server software is up to you.

Data stored on the server side on behalf of clients must be persistent, which means that it is not
enough to store the data in the memory of the server (although you might choose to store it in
memory and also elsewhere). The server is not allowed to use any of the Java library calls relating
to files or persistent storage. The only type of persistent storage that your server can use is the
insecure block device that we are providing.

The third facility we are giving you is an insecure block storage device. We are giving you a
complete implementation of the insecure block storage device. You may not modify this. The block
device stores fixed-size blocks of data, but it does not do anything to guarantee the confidentiality or
integrity of the data it holds. You should assume that the insecure block storage device is controlled
by an adversary. The one exception is that the storage device has a single "super block" which does
offer confidentiality and integrity. Unfortunately the super block is fairly small.

Note that the block storage device, being under the control of the adversary, can destroy any data
you store in it. Because of this, your solution is not required to provide availability. If the adversary
trounces data in the block device, it is okay for your client and server side code to return errors.
However, you must provide confidentiality and integrity.



The block storage device supports the following API:

public interface BlockStore {
public void format() throws DatalntegrityException;

public int blockSize();
public void writeBlock(int blockNum, buf[] buf, int bufOffset,

int blockOffset, int nbytes) throws DatalntegrityException;
public void readBlock(int blockNum, buf[] buf, int bufOffset,

int blockOffset, int nbytes) throws DatalntegrityException;

public int superBlockSize();
public void writeSuperBlock(byte[] buf, int bufOffset,
int blockOffset, int nbytes) throws DatalntegrityException;
public void readSuperBlock(byte[] buf, int bufOffset,
int blockOffset, int nbytes) throws DatalntegrityException;
}

The block device is (conceptually) unlimited in size. format puts the device into a known initial
state, where all blocks are filled with zeroes. (The implementation doesn’t actually store all of the
zero-filled blocks.) blockSize returns the size of a data block, and writeBlock and readBlock write
and read a single block, respectively. Similar facilities operate on the superblock, giving the size
and allowing reading and writing of the superblock.

Don’t be overly concerned about efficiency. It’s okay to "waste" a constant amount of storage,
but your solution should be within a small constant factor of the optimal space requirement in the
case where there are many users, each using a large amount of storage. Similarly, we won’t mind
if you copy data more times than necessary, but your running time should be at least be within a
logarithmic factor of optimal in the many users, large storage case.

Although your solution will call on code that you wrote in the previous homeworks, we will test
your solution with our own reference implementation. Your solution must work correctly when we
do this — this shouldn’t be a problem for you as long as you respect the API requirements of the
previous assignments.



Getting Started

Tips

This list may grow in response to Piazza questions.

This assignment is more difficult than you might initially think. Please get started early.

Most of the code and most of the design work is in the server-side code. The main function
of the client-side is to establish a secure connection to the server, relay requests to the server,
and collect the server’s answers.

Think carefully about how you are going to use the super-block. It’s the only inherently
secure storage you have, so you’re going to have to build the security of everything else on
top of confidential, integrity-protected information that you keep in the super-block.

The server will need to keep track of metadata such as information about user accounts
and passwords, and the size and layout of users’ storage. This metadata won’t fit in the
super-block, so you’re going to have to put most or all of it in the same untrusted block device
where users’ data lives. One way to manage this is to create a special "magic" user whose
storage area contains the metadata — but be careful to avoid circular dependences where you
need to read a metadata block in order to know how to find that same metadata block.

In writing our sample solutions, we found it useful to build our server-side storage functionality
in layers. Each layer implemented the BlockStore interface, and assumed the layer below
it also implemented the BlockStore interface, thereby allowing us to stack up the layers in
different orders. As an example, one of our layers took an insecure BlockStore and built on
top of it a BlockStore that guarantees confidentiality and integrity of all the data it holds.

GROUP For this assignment, we require a GROUP file which contains the NetID of every partner
in the group. Please format it as such:

NetID1
NetID2
NetID3

README For this assignment, we will also require a README file. In the file, you should
describe your setup and your threat model: What are you doing? How to you know that your
solution provides the necessary confidentiality and integrity properties? This should be in addition
to any documentation you would normally put in comments or a README.



Submission Checklist

Upload to CS Dropbox the files listed below. Make sure you have the proper filenames and
behaviors.

GROUP
GROUP A file containing the group’s NetIDs.

README

README A file containing your description of your implementation.

ServerAuth

ServerAuth. java A file containing your implementation of the ServerAuth class.

BlockStoreAuthEnc

BlockStoreAuthEnc. jaAdile containing your implementation of the BlockStoreAuthEnc class.



