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Sun’s announcement of the programming language Java more than anything
popularized the notion of mobile code, that is, programs traveling on a
heterogeneous network and automatically executing upon arrival at the
destination. We describe several classes of mobile code and extract their common
characteristics, where security proves to be one of the major concerns. With these
characteristics as reference points, we examine six representative languages
proposed for mobile code. The conclusion of this study leads to our
recommendations for future work, illustrated by examples of ongoing research.

Categories and Subject Descriptors: A.1 [General Literature]: Introduction and
Survey; D.3.2 [Programming Languages|: Language Classifications—object-
oriented languages; C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications; D.4.6 [Operating Systems]: Security and

Protection—access controls

General Terms: Languages, Security

Additional Key Words and Phrases: Distribution, formal methods, Java, Limbo,
mobile code, network programming, Objective Caml, Obliq, object orientation,
portability, Safe-Tcl, safety, security, Telescript

1. WHY MOBILE CODE?

The expression “mobile code” has vari-
ous different meanings in the literature.
Just to take three examples, let us cite
the following.

—The term mobile code describes any
program that can be shipped un-
changed to a heterogeneous collection
of processors and executed with iden-
tical semantics on each processor
[Adl-Tabatabai et al. 1996].

—Mobile code is an approach where pro-
grams are considered as documents,
and should therefore be accessible,
transmitted, and displayed (i.e., eval-

uated) as any other document [Rouaix
1996].

—DMobile agents are code-containing ob-
jects that may be transmitted be-
tween communicating participants in
a distributed system [Knabe 1996].

In this survey we refer to mobile code
as software that travels on a heteroge-
neous network, crossing protection do-
mains, and automatically executed upon
arrival at the destination. Protection
domains can be as big as a corporate
network and as small as a personal
hand-held digital assistant. We believe
that this characterization is general
enough to encompass most usages and
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precise enough to exhibit the distinctive
features of this technique. For example,
it excludes the cases where code is
loaded from a shared disk or down-
loaded (manually) from the Web.
Mobile code supports a flexible form
of distributed systems where the desired
nonlocal computations need not be known
in advance at the execution site. The ad-
vantages of this model are many, includ-
ing:

—Efficiency. When repeated interac-
tions with a remote site are needed, it
can be more effective to send the com-
putation to the remote site and to
interact locally. This is especially the
case when the latency of the network
is high and the interactions consist of
many small messages.

—Simplicity and flexibility. The main-
tenance of a network can be much
simpler when the applications are lo-
cated on a server and clients them-
selves install them on their sites on
demand. Installing new or updated
software becomes independent of the
nature and number of clients. In some
cases, it is even impossible to know in
advance all the pieces of code that
will be needed at a given site.

—Storage. Loading code on demand
rather than having all programs du-
plicated on all sites can significantly
reduce the total storage requirement.

We start with a short review of some
of the most well-known examples of ap-
plications using mobile code.

—PostScript® is a page-description lan-
guage designed by Adobe Systems.
PostScript is remarkable in that it is
also a stack-based programming lan-
guage and is associated with a large
standard library suitable for page
rendering. Printing on a PostScript
printer consists of composing a pro-
gram describing the pages to be
printed and sending this program to
the printer. The printer then executes
this program and prints pages as a

@ PostScript is a registered trademark of Adobe
Systems Incorporated.
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side effect. This example is a good
illustration of some of the benefits
that motivate mobile code: the algo-
rithmic description of a complex im-
age can be made very compact and
general, independent of printer spe-
cifics such as resolution and number
of available colors. Also, PostScript
printers off-load some of the work
burden from the printing host. This
compactness, expressiveness, and de-
vice independence have made Post-
Script a de facto standard today.

—Database technology is another area
where a form of mobile code has long
been used advantageously. The size of
a typical database makes it infeasible
to transmit it in entirety to a client;
thus any database operation must be
communicated to and performed by
the database server. Today, most
commercial databases support the
ANSI standard query language SQL
for database access. SQL offers a com-
pact notation for expressing complex
operations on multiple database rela-
tions.

—Documents with embedded executable
contents transmitted on the network
are another kind of mobile code. Mul-
timedia documents in the Andrew
System [Hansen 1990] can include ex-
ecutable scripts written in an object-
oriented script language. These en-
riched documents can be sent as
electronic mail or posted as news arti-
cles. The scripts are executed under
user control and can present interac-
tive dialogues and use graphical facil-
ities. A similar extension for the In-
ternet multimedia standard MIME
has been proposed. This extension en-
ables the use of embedded executable
content written in Safe-Tcl [Boren-
stein 1994], a restricted variant of the
script language Tecl.

The usefulness of mobile code has also
been realized for the World Wide
Web. One of the problems with the
Web is that interactive pages are im-
practical in general due to network
latencies. Even when latencies are



not a problem, the content and ap-
pearance of Web pages are con-
strained by what is expressible with
the HTML language. Allowing embed-
ded executable contents removes the
constraints of HTML and network la-
tency. Among the many existing pro-
posals, the most well known is proba-
bly Java by Sun Microsystems.

—Finally, a fourth class of applications

of mobile code addresses the problem
of software distribution and installa-
tion, traditionally known to be costly
and difficult. Lucent Technologies has
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bile code. Section 5 draws the lessons of
this study and compares the languages
studied. We conclude the article by giv-
ing our perspective on the current state
of mobile code programming languages
and point out directions for future re-
search.

2. PROGRAMMING LANGUAGE
CONCERNS

From the application classes of mobile
code listed in the introduction, we can
extract a number of common needs in
terms of programming languages.

developed Inferno [Lucent 1996], a
mobile-code-enabled network operat-
ing system aimed mostly at media
providers and telecommunication
companies. Customer’s decoder-boxes
or portable telephones running In-
ferno can be extended dynamically
with software in response to their re-
quests. In the same spirit, but in a
different context, Sun has proposed
the use of Java-capable network com-
puters to replace workstations in cor-
porate networks. The benefit here is
the low cost of maintaining an Intra-
net (a local network using Internet
technologies) of network computers
that download all applications on de-
mand from an application server.

It should be noted that there are sub-
tle differences in the usage of mobile
code in the preceding four applications;
in the PostScript and the database mod-
els, it is the sender of mobile code that
takes the initiative of the communica-
tion, whereas in the Java and Lucent
models, the execution site takes the ini-
tiative to load the mobile code. We come
back to this distinction when we present
programming languages for mobile
code.

In this survey we first identify the
special concerns for mobile code and
their impact on programming lan-
guages. In Section 3 we focus on the two
most important issues: safety and secu-
rity. With this background, we examine,
in Section 4, six representative lan-
guages that have been proposed for mo-

—The need for portability. Inherent in

the idea of mobile code is the notion of
heterogeneous execution sites. It is
not possible to have a specific version
of the code for every possible architec-
ture, thus the need for portability.
The portability issue also has an im-
pact on the kind of services the appli-
cation can expect from the executing
host, for example, trying to write to a
file might not be meaningful on a
hand-held telephone.

—The need for safety. We use the word

“safety” here in the sense that a bug
in a safe application should not affect
the execution of other independent
parts of the environment. Limited as-
sumptions can be made on code im-
ported from an unknown source,
which means that it cannot be trusted
a priori to be safe, and special protec-
tion must be provided. Notice that
this definition addresses the safety
from an operating system point of
view. Safety can also be imposed by
appropriate restrictions at the pro-
gramming-language level. For exam-
ple, free access to memory can be
eliminated through a disciplined
pointer model and systematic check-
ing of the bounds for array accesses.

—The need for security. As the mobile

code crosses protection domains, spe-
cial care must be taken to protect
against security threats presented by
mobile applications. The boundary be-
tween safety and security concerns is
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not always clearcut. Safety is mostly
concerned with the behavior of sys-
tems in the presence of bugs, but as a
lack of safety can be exploited for
security breaches, safety becomes a
necessary (but not sufficient) prereq-
uisite for security.

We distinguish between four security

properties [Russell and Gangemi
1991].

Confidentiality, also known as secrecy:
it concerns the absence of leakage of
private information (which often oc-
curs through a covert channel, i.e., a
channel that is not explicitly intended
for communication).

Integrity, also known as accuracy: pri-
vate data should not be modifiable by
unauthorized parties.

Availability, the negation of which is
denial of service: the attacker denies
normal use of shared resources, for
example, by overloading them.

Authenticity guarantees that the iden-
tity of a communication partner can
be trusted.

—The need for efficiency. Efficiency is
almost always an issue for program-
ming languages and their implemen-
tations. The special need here is for a
minimal overhead for the measures
taken to ensure portability, safety,
and security.

Portability and efficiency are issues
that have been studied in the program-
ming language community for quite a
long while. The safety and security is-
sues are well known in the context of
operating systems, but safety and, espe-
cially, security are issues that have not
received enough attention so far in the
area of programming languages. Secu-
rity and safety problems take a new
dimension in the context of mobile code.
For this reason, we focus on these is-
sues in the next section.

3. SAFETY AND SECURITY ISSUES

Safety and security concern many as-
pects of a system. We distinguish four
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levels at which to address these issues:
the communication level, the operating-
system level, the abstract-machine
level, and the programming-language
level.

3.1 The Communication Level

In a top-level view of a computer sys-
tem, we consider a collection of comput-
ers connected with some networking
technology. Safety concerns here re-
quire a robust protocol implementation
that can withstand a faulty or malicious
communication partner.

For networks like the Internet, where
data can pass through untrusted inter-
mediate hosts, the communication itself
cannot be assumed to be secret or au-
thentic. Therefore secure protocols
based on cryptographic techniques are
employed to guarantee confidentiality,
integrity, and authentication, even on
such networks. This is included in the
new Internet protocol, IPv6 [Huitema
1996], but many proposals are also lay-
ered on the top of existing protocols.
Secure HTTP [Rescorla and Schiffman
1996] and the Secure Socket Layer
[Freier et al. 1996] are two examples.
Availability is also an issue, but dealing
with it is very difficult. This difficulty is
illustrated by the many denial of service
attacks on the Internet (see, e.g., Fox
[1996]).

3.2 The Operating-System Level

Safety and security at the communica-
tion level is not sufficient in general.
Handling safety and security is also a
primary concern at the operating-sys-
tem level.

Safety is generally ensured through
the use of hardware memory protection.
This isolates a process from the rest of
the system, leaving operating-system
calls as the only accessible interface. As
no assumptions need to be made on the
nature of the process, this leaves a great
degree of freedom to the implementa-
tion, for example, to choose any pro-
gramming language available. For mo-



bile code, it has the problem of being
very dependent on the operating system
and the hardware, and thus not porta-
ble. Even when using memory protec-
tion is possible, it may not always be
desirable.

—Memory protection means that all
communications have to cross a pro-
tection boundary, for example, using
a system call mechanism, and this
can be expensive.

—Many smaller systems, for example,
personal digital assistants (PDAs), do
not have the hardware needed.

—Requiring the use of memory protec-
tion makes embedding the mobile
code environment in another applica-
tion much more complicated and often
impossible.

Confidentiality and integrity can be
achieved by controlling processes’ access
to information and communication
channels. Complete control of covert
channels is very hard and rarely at-
tempted in nonclassified systems. A
form of availability can be attained by
using limits on resources, such as disk
space, number of processes, and mem-
ory usage, and using preemptive sched-
uling and timeout in locks. Authentica-
tion is usually established through an
initial identification of the user (e.g.,
using a password scheme) and main-
tained by data structures of the operat-
ing system, protected from tampering
from user-level processes.

3.3 The Abstract-Machine Level

The safety guarantees obtained through
the use of hardware memory protection
can also be realized using an abstract
machine. Using a language-independent
abstract machine retains all the lan-
guage independence of the operating
system solution, but does not have the
portability problems. In the simplest
version, the protection boundaries are
enforced by an interpreter, performing
all the needed checks at run-time.

In the Omniware model [Adl-Taba-
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tabai et al. 1996] the overhead of inter-
pretation is eliminated through soft-
ware fault isolation (SFI). Code for the
Omniware abstract machine is trans-
lated almost directly into native ma-
chine code, but all memory accesses are
translated to code that checks for ac-
cesses outside a given boundary.

The self-certified code (SCC) [Necula
and Lee 1996] technique goes even fur-
ther and eliminates the overhead of the
protection as well. Self-certified code is
the pair of machine object code and ma-
chine-checkable formal proof. The proof
demonstrates that the object code re-
spects the execution site’s published
(low-level) safety policy. This policy
comprises a set of proof-formation rules,
along with a set of preconditions. The
correctness proof can easily be verified
automatically and ensures that the code
respects the (low-level) safety and can
therefore run without run-time checks.

3.4 The Programming-Language Level

Another way to obtain the required
safety is to sacrifice the language inde-
pendence and use programs written in a
safe programming language. Most mod-
ern programming languages guarantee
against low-level errors through mecha-
nisms such as typing, restricted point-
ers,! automatic memory management,
and array bounds checking. It is possi-
ble to go even further and use the lan-
guage scope and access rules to protect
the interface of resources. The gain here
is that the security implementation,
such as resource management and con-
trol, can be written in the source lan-
guage and used as a library.

As an optimization, the high-level
program can be compiled and type-
checked before being shipped as mobile
code. The question then arises as to how
to make sure that the object code is
really a nontampered output of a correct

! Restricted pointers are like references known
from, for example, Standard ML. The only valid
operations on a pointer variable are dereferencing
and assignment.
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compiler. Three techniques have been
proposed.

—Using cryptographic signatures to re-
duce the problem to one of trusting
the author. As we already trust major
software producers enough to run
their applications, this can be seen as
a continuation of current practice.

—Using cryptographic signatures to
trust compilers. The idea is to ship
the source to one of a small number of
trusted compilation sites for compila-
tion and certification.

—Compiling to an intermediate lan-
guage that can be (type) checked to
verify the same constraints as are im-
posed on the source language. The
success of this approach depends on
the intermediate language being suit-
able for efficient verification and per-
mitting an efficient abstract machine.

These techniques are not exclusive.
For example, combining the first two
seems easily feasible as they require
much of the same technology and infra-
structure. Likewise, the abstract ma-
chine can include operating-system as-
pects and can be more or less language-
dependent. For instance, depending on
the context, we can consider the system
libraries either as part of the abstract
machine or as part of the language. The
languages examined in the following all
use combinations of these levels, al-
though this is generally not made ex-
plicit.

4. PROGRAMMING LANGUAGES FOR
MOBILE CODE

We focus here on a list of representative
languages for mobile code. Space consid-
erations prevent us from presenting all
the relevant languages. Among the
other programming languages for mo-
bile code, let us mention JavaScript
[Netscape 1997] and VisualBasic. The
interested reader is referred to the bib-
liography for a more extensive overview
of the field.

The first four languages studied,
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Java, Limbo, Objective Caml, and Obligq,
are general-purpose languages, in-
tended for general application develop-
ment. The last two, Safe-Tcl and Tele-
script, are special-purpose languages.
We expect Java to be the best known
language amongst these, and therefore
give it a more detailed treatment and
use it as the reference point for the
other languages.

4.1 Java

Java is a class-based object-oriented
language created by Sun Microsystems,
with an emphasis on portability and
security [Arnold and Gosling 1996; Gos-
ling et al. 1996]. As an example of how
to use Java for mobile code, JavaSoft
has created the applet model. Applets
are small applications that are auto-
matically downloaded and executed
upon visiting a Web page containing
them.

The Language

For clarity, we distinguish three levels
in the presentation of Java: the lan-
guage level, the abstract-machine level,
and the library level.

Language level. The language is
based on a simplified variant of C++
with all unsafe and most complicated
language features removed. The fea-
tures that have been removed include
unsafe operations such as pointer arith-
metic, unrestricted casts, unions, and
features leading to unmaintainable pro-
grams such as the C preprocessor, un-
structured gotos, operator overloading,
and multiple inheritance. Automatic
memory management has been added,
guaranteeing against pointer errors due
to manual memory management and
making usage of dynamic memory much
simpler. Array and string types are
built in with range check of all accesses.
Exception handling has also been
added, favoring the creation of robust
programs. Finally, for concurrency,
Java provides threads and serialized
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methods, using a mutex-locking on the
corresponding object.

Java includes a novel notion of inter-
face types. Interfaces define a collection
of abstract methods and constants with
their associated types. A class can be
declared to implement an interface, in
which case it must implement all the
abstract methods of the interface. Any-
where a value of an interface type is
expected, a value of a class implement-
ing this interface can be used. Inter-
faces are useful for a number of pur-
poses: they can be used to hide the
implementation of a class and to group
classes with common functionality with-
out forcing them into a class hierarchy.

Java also uses a notion of package. A
package groups a number of class and
interface definitions. Unlike most mod-
ule systems, Java packages are open-
ended and can be extended with defini-
tions not envisioned by their original
creator.

The default visibility of class and at-
tribute definitions can be changed with
a visibility modifier keyword. A class
can be declared final, preventing deri-
vation of subclasses of itself, abstract,
preventing creation of instances, and
private, limiting the scope of the class
declaration to the containing package.
Attributes have four (ordered) levels of
visibility: private, default, protected,
and public. Private attributes are only
visible from within the object itself, that
is, not in objects of a subclass or other
objects of the same class. The default
visibility extends visibility of the at-
tribute to the package in which it is
defined. Protected attributes further ex-
tend the visibility to subclasses of the
defining class, potentially defined in an-
other package. Finally, public attributes
are visible everywhere.

Abstract machine level. The Java
Virtual Machine (JVM) is a language-
dependent abstract machine that is
close enough to Java that its object code
can be checked to respect the language
semantics. In addition to these static
(load-time) verifications, the JVM must
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implement dynamic checks to guarantee
the safety of the language. These are
bounds checking on array and string
accesses, checking casts to a more spe-
cific type, invoking methods on null
pointers, and the like.

Library level. Complementing the
language, a library provides general-
purpose data structures, support for
graphical user interfaces, and access to
network communication. Applications
written using these libraries run un-
changed on a wide range of platforms,
including Unix, Windows, and Macin-
tosh.

Security

The Java language, as described, is a
modern “safe” language, guaranteeing
that type and access rules are always
respected. This in turn enables a low-
level security policy to be expressed
within the language itself. The visibility
rules for classes and attributes play a
crucial role in this respect. Indeed, the
interface to local resources is provided
by libraries, protected by the scope and
visibility rules. Most resources requir-
ing dynamic access control, such as the
file system or access to the network, are
controlled by a centralized security
monitor, called the SecurityManager.
The SecurityManager has an abstract
type that cannot be instantiated by an
applet. All security-related methods are
declared final, so that applications and
applets are forced to use the appropri-
ate code. Without this protection, mali-
cious applets could redefine the method
in a subclass, potentially circumventing
the security invariants. A final class
enjoys even stronger protection, in that
the inability to create subclasses also
implies the inability to define new
methods with access to protected at-
tributes.

Linking

The loading of classes over the network
is done by an object of the class Class-
Loader. This object is created during
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startup and cannot be replaced by ap-
plets afterwards (it is part of the Secu-
rityManager state). As attributes with a
default or protected visibility are fully
accessible within the package of their
definition, these two visibilities would
be of little use if applets could introduce
classes freely in any package and thus
avoid the intended protection. To pre-
vent this, the ClassLoader protects a
fixed set of packages from being ex-
tended by applets. The exact set is not
specified, but includes java and sun. The
ClassLoader also maintains a unique
name space for each network source,
separate from the name space for
classes coming from the local file sys-
tem. Network sources are currently dis-
tinguished based only on their symbolic
address.

Classes can be loaded from the local
file system if they are present in a direc-
tory specified in the CLASSPATH vari-
able. This variable is part of the Java
environment configuration and can be
changed by the user before launching
the network browser or Java client, but
cannot be accessed or modified by an
applet.

As class files loaded through the net-
work cannot be trusted to be untam-
pered with and the abstract machine
runs with few type checks, the bytecode
is passed through a bytecode verifier
that checks that the object code respects
the Java semantics: it ensures that the
bytecode is in a valid format, that point-
ers are not forged, that access rules are
enforced, that the operand stack is used
consistently with respect to the types,
and that the parameters passed have
the expected types.

Applications

There is no single well-identified appli-
cation area for the language: any dis-
tributed and portable application can
take advantage of Java. Sun and Oracle
emphasize Java’s capabilities as a gen-
eral-purpose language for corporate In-
tranets of disk-less network computers.
Most commonly encountered applets are
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animations, games, demonstrations,
and interactive multimedia educational
programs; but major software houses
have already demonstrated complete of-
fice application suites written as ap-
plets.

Moving beyond applets, let us men-
tion some of the more substantial offer-
ings (some are currently under develop-
ment) [JavaSoft 1996]:

—JavaOS, a complete operating system
written in Java, offering portability
and extensibility;

—dJeeves, a framework for extendible
network servers;

—dJava Management API, a framework
for management of heterogeneous
networks;

—Java Electronic Commerce Frame-
work, a software point-of-sale termi-
nal accessible by any Java-enabled
browser;

—dJava Beans, a component architecture
for reusable software components;

—dJava Database Access API, a uniform
interface to relational databases; and

—Java RMI, an API for implementing
remote method invocation. This will
ease the creation of client-server ap-
plications and permit the creation of
more traditional distributed systems.

Reflections

Java is a promising language with a
tremendous market acceptance. Much of
this popularity stems from its unique
combination of characteristics: close to
C**, safe, portable, and concurrent, as
well as supplying a rich base library.
Since the first presention of Java, a
number of “safety” bugs have been dis-
covered [Dean et al. 1996]. It is of con-
cern that many of the sources of the
bugs can be attributed to the vague
nature of the definition of Java. Al-
though the core language seems simple,
many details are in fact quite subtle.
For example, in Java the integrity of
the security depends upon applets not
being able to instantiate subclasses of
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critical classes, like ClassLoader. This
condition is checked at run-time by the
constructor (a special method devoted to
initializing the object upon construc-
tion), which throws an exception in case
of violation. If the applet can catch this
exception within the constructor, it has
succeeded the instantiation, although
the object will only be partially initial-
ized. The subtle restriction imposed on
the constructor to avoid these situations
was checked by the compiler, but not
enforced by the bytecode verifier in an
early version of Java [Dean et al. 1996].

Java’s current security implementa-
tion can only be seen as a first step, as
it has a number of shortcomings. For
example, as noted in Billon [1996], it
currently does not scale beyond simple
applets. Many of the prospective appli-
cations for Java, such as the ones men-
tioned in the following, require addi-
tional local libraries. Unfortunately,
there is currently no way to protect
user-defined libraries from redefinitions
and extensions from applets. Only the
system-defined fixed set of packages is
protected. The fact that packages in
Java are always extensible makes it
impossible to guarantee the security of
a package based on its source alone; the
semantics of the ClassLoader must be
taken into account as well. This seems
against the spirit of Java’s language-
based security, and can be a serious
problem considering that the Class-
Loaders of the major Java applet envi-
ronments available today do not have
identical semantics [Billon 1996].

We strongly believe that a formal ap-
proach to security in Java could help
avoid most of these weaknesses and
would result in a much cleaner and
coherent design. Work on formalizing
Java is underway, and progress has
been made recently on formal studies of
Java’s type system [Drossopoulou and
Eisenbach 1996].

4.2 Limbo

The technologies of three major indus-
tries, entertainment, computing, and
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telecommunication, are converging. In-
ferno [Lucent Technologies 1996] by Lu-
cent Technologies (Bell Labs Innova-
tions) is a network operating system
designed to suit the constraints and
needs of this environment. Inferno is
intended to be flexible enough to be
employed on devices as diverse as intel-
ligent telephones, hand-held computers,
personal digital assistants, television
set-top boxes,? home video game con-
soles, and inexpensive network comput-
ers. It can also be used on servers such
as Internet servers, financial servers,
and video-on-demand servers.

The design of Inferno is based largely
on Plan 9, a network operating system,
also from Lucent Technologies, which
emphasizes portability, versatility, and
an “economical” implementation. Eco-
nomical here refers to the computing
resources required; Inferno can run
within little memory and does not re-
quire virtual memory hardware. Porta-
bility has two dimensions in Inferno.
The operating system itself can run on
the bare hardware, or on top of an exist-
ing operating system such as Unix,
Windows-NT, or Plan 9. In the latter
case, the services provided by Inferno
are interfaced to the native services of
the underlying operating system. The
second dimension is the portability of
Inferno applications. Applications are
written in Limbo, an integral part of
Inferno, and are compiled to a binary
format that is portable between all In-
ferno implementations. Inferno provides
a unified file system interface to operat-
ing system services, which hides the
fact that the service can be local or
remote.

The Language

As for Java, it is useful to distinguish
between three levels of Limbo: the lan-
guage level, the abstract machine level,
and the library level.

2 A set-top box is the consumer receiver and de-
coder for the (usually scrambled) television sig-
nals distributed typically by satellite or cable.
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Language level. Limbo is a “safe” im-
perative language. Its main inspiration
is C, but it includes in addition declara-
tions as in Pascal, abstract data types,
first-class modules, first-class channels,
automatic memory management, and
preemptive scheduled threads. It ex-
cludes pointer arithmetic and casts.

Abstract data types (ADT) declare ob-
jects with variable, constant, and func-
tion fields. There is no notion of inheri-
tance for ADTs and no visibility
declaration for ADT members. Recur-
sive structures are subject to a few sim-
ple syntactic constraints to guarantee
that cyclic data cannot be created (re-
cursive fields cannot be assigned).
Fields declared cyclic do not suffer from
this constraint. The reason for this par-
ticularity is the way Limbo’s garbage
collection handles cycles (see the follow-
ing).

The declaration of a module identifies
the types of exported functions and con-
tains the exported declarations of ADTs,
simple type declarations, and constants.
In order to use a module, it must be
instantiated by loading an implementa-
tion of the module (at run-time). The
loading is done with the built-in func-
tion load that takes a module type and a
path to the module implementation and
returns the instantiated module (or null
if unsuccessful). This allows the pro-
gram to choose among several imple-
mentations of a given module at run-
time.

The channels of Limbo allow the com-
munication of any value of its declared
type. A channel can be connected di-
rectly to another process or, through a
library call, to a named destination.
Channels are the only built-in primi-
tives for interprocess communication,
but more complicated mechanisms can
be built upon them.

Limbo’s garbage collection is based on
reference counting and reclaims the
memory of noncyclic data immediately,
once the last reference to them disap-
pears. Reference counting has the limi-
tation that it cannot reclaim cyclic data,
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so cyclic data are treated in a specific
way and are eventually reclaimed.

Abstract machine level. Limbo pro-
grams are compiled to a RISC-like ab-
stract machine called Dis, designed for
just-in-time compilation to efficient na-
tive code by the Limbo run-time system.
Dis does not impose language con-
straints; for example, Dis code need not
be type checkable. Lucent claims that
Dis is well suited for real microproces-
sors and reports excellent performance
of their implementation.

Library level. Limbo provides a rich
library of standard modules, including
modules for network communication, se-
cure and encrypted communication, and
graphics.

To reflect the different uses of In-
ferno, two user interface libraries are
available. One, based on Tk [Ousterhout
1994], is intended for “traditional” win-
dow-based user interfaces. The other
provides ready-made interface compo-
nents for typical embedded applications,
such as interactive TV. The specialized
design allows for a minimal memory
requirement.

Security

Safety in Inferno is achieved through a
safe language with restricted pointers
and automatic memory management.
Pointers can point to any object but
cannot point to inside arrays, and there
is no pointer arithmetic or arbitrary
pointer type conversion. This safety is
not enforced by the abstract machine,
though. Instead, Inferno relies on appli-
cations being signed by trusted authori-
ties who guarantee their validity and
behavior.

Security management in Inferno is
inspired by the Plan 9 operating sys-
tems; all resources are accessed as files,
including data, network communication
channels, and the executable modules
that constitute the applications. All re-
sources available to an application ap-
pear exclusively in the name space of
that application. Applications cannot



arbitrarily manipulate this name space
themselves, but must, for security sen-
sitive resources, call the modules that
provide them.

Linking

The built-in support for dynamic linking
of modules provides type-safe linking at
the user level. Another (type-safe) way
to provide a module is to transmit it on
a channel of the appropriate type. Cur-
rently, certain data types, such as mod-
ules, cannot be exported outside a ma-
chine [Pike 1997].

Applications

The application domain for Inferno is
focused towards applications for service
providers. In such environments, only a
few, usually fixed, sets of authorities
need to be trusted, which justifies the
use of cryptographic signatures.

Reflections

Lucent’s use of an operating system ba-
sis provides a clear separation of re-
sponsibilities among the language, the
abstract operating system, and the run-
time environment. This separation re-
duces the complexity of verifying secu-
rity consistency and eases the isolation
of security breaches. The module system
of Limbo enables a clean and type-safe
way to implement dynamic loading.

4.3 Objective Caml

Objective Caml (O’Caml) [Leroy 1997] is
a functional language in the ML tradi-
tion, originating from Caml, a language
developed at Inria that is widely used in
education. O’Caml has been used as a
language for mobile code in the develop-
ment of the MMM [Rouaix 1996Db,
1996a] Web browser, also developed at
Inria. MMM adds the possibility of dy-
namically linking and executing O’Caml
applets accessed through the Web.
MMM provides a number of hooks for
the applets; for example, applets can
add elements to the user menu, include
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new content decoders, or change the
handling of link activation. Applets can
access parts of the browser internals,
such as the cache and browser naviga-
tion values.

The Language

O’Caml includes imperative features,
such as references and assignment, and
a class-based object system, all inte-
grated within a functional core. The
main characteristics of O’Caml and its
implementation are:

—Strong, static polymorphic typ-
ing. The static typing property en-
sures that “well-typed programs can-
not go wrong”; that is, they cannot
terminate with a type error. All type
errors are caught during compilation.
Primitives’ errors, like division by
zero, are not considered type errors,
but are handled through the excep-
tion mechanism.

Polymorphic typing allows types to be
parameterized over a number of type
variables. This makes possible a type-
safe construction of general functions.
For example, a function calculating
the length of a list is not dependent
on the type of the list elements. With
polymorphic typing, it can be defined
once (with type a list — int, where « is
a type variable) and then used for
every kind of list.

O’Caml offers automatic type recon-
struction, as is usual with languages
in the ML family. For documentation
and debugging purposes, it is often
useful to manually annotate key func-
tions with their type.

—A powerful module system. O’Caml
offers a rich higher-order module sys-
tem in which modules have signa-
tures, providing the names and types
of exported elements. O’Caml permits
higher-order modules through the no-
tion of functors. A functor can be in-
stantiated by applying it to modules
with the same signatures as its for-
mal arguments. The unit for separate
compilation is the file, which implic-
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itly defines a module of the same
name.

—First-class (higher-order) functions.
Functions can be passed to other
functions or returned as results. They
can be anonymous (defined using the
lambda notation of lambda calculus),
and can refer to variables outside
their own definition (free variables).
Higher-order functions are at the
heart of functional languages, and are
thus not specific to O’Caml.

O’Caml includes support for concur-
rency through threads and mutexes (al-
though applets do not support the use of
threads) and class-based object orienta-
tion through an extension of the typing
discipline. An object is an instance of a
static class, which can be the specializa-
tion of multiple superclasses. In the
case of name classes, only the last entry
is visible, but the shadowed name can
still be accessed. This is a simple solu-
tion, but it entails an asymmetry in
which inheriting from A and B is differ-
ent from inheriting from B and A.
O’Caml supports a small number of vis-
ibility modifiers for classes and object
attributes: a class can be declared vir-
tual, preventing instances from being
created, and closed, preventing sub-
classes from being derived. Attributes
can be declared private, making them
inaccessible outside the methods of the
defining class.

Security

MMM applets are only allowed to use
safe variants of the standard libraries.
A safe library imports everything ex-
ported from the unsafe original, but it
only re-exports a selected subset. Enti-
ties considered to be safe are re-ex-
ported directly, but sensitive structures
are exported as abstract data types; for
dangerous functions, wrappers are ex-
ported that check the capabilities of the
applet (a wrapper for a function is an-
other function with the same signature
that may perform extra computations
before and after calling the original).
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The capabilities of an applet are repre-
sented by an abstract data type with
one function to access the encapsulated
capabilities and another one to ask the
user for extended privileges.

As MMM applets are transmitted in
object form, the question of how to trust
the binary object code arises. Unlike
Java, the object code is not verified be-
fore execution, but is instead associated
with a cryptographic checksum of the
interfaces of the imported modules. For
protection from unsafe compilers, the
MMM designers suggest employing
trusted compilation sites to certify that
the object code is the result of a correct
compilation.

Linking

O’Caml includes library support for dy-
namic linking object files. As there is no
way to access the loaded entities, dy-
namically loaded modules are responsi-
ble themselves for registering the func-
tions they export. The dynamic linking
used for applets constrains the use of
the primitives that are considered dan-
gerous.

All applets consist of exactly one (po-
tentially big) module, which may con-
tain nested modules. As the applets are
self-contained and only allowed to use a
fixed set of development modules, they
cannot interfere with one another, thus
avoiding the complications of separate
name spaces for applets.

Applications

Applications for MMM include browser
extensions, decoders for new contents
types, animations, games, and the like.
The advantage of O’Caml is a richer
language, with support for several pro-
gramming paradigms: functional, im-
perative, and object-oriented.

Reflections

In Java, since all standard library func-
tions can potentially be called by an
applet, they must all be secured. With
MMM, only functions exported by the



safe libraries need to be checked. The
major drawback of MMM is the need for
trusted compilation sites.

4.4 Obliq

Obliq [Cardelli 1995] of DEC System
Research Center is a lexically scoped,
dynamically typed, prototype-based lan-
guage, designed for distributed object-
oriented computations. Computations in
Obliq are network-transparent; that is,
they depend neither on the allocation
site nor on the computation site, but the
distribution is managed explicitly at the
language level.

The Language

To support network transparency, Obliq
extends the static scope to the network:
free variables of transmitted computa-
tions can refer to objects from the origin
site. The language has three main char-
acteristics.

—Any value can be transmitted be-
tween hosts, including closures and
object references. Objects themselves
are local to a site and are not consid-
ered as values, but object migration
can be programmed with a combina-
tion of closure transmission, aliasing,
and object cloning (see the following).

—Obliq belongs to a class of object-ori-
ented languages called prototype
based. In prototype-based languages
there are no classes, and objects are
created by copying (cloning) existing
objects (the prototypes). Obliq uses a
simple variant of prototyping, called
embedded prototyping, which avoids
all the complications of delegation-
based prototyping [Malenfant 1995].
In embedded prototyping, all the
methods valid on an object are con-
tained in the object itself; that is, they
are not searched for in a list of super-
classes.

—Obliq is dynamically typed. Type er-
rors are caught cleanly and propa-
gated to the origin site.
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An object in Obliq is a collection of
attributes (named values). A simple
point object p can be written {x => 3,
y => 4}. There are four basic operations
on objects.

Selection /invocation: using the value of
an attribute or invoking a method, for
example, p.x and display.plot(p).

Updating/overriding: changing the
value or the method bound to an at-
tribute, for example, p.x <— 4 and
display.plot <— lineto. Notice that it is
legal to change a value into a method
and a method into a value.

Cloning: creating a shallow copy of an
object. The immediate values of at-
tributes are copied, but structured
values introduce sharing. For exam-
ple, array elements are shared be-
tween the clone and the original ob-
ject. Cloning is generalized to support
mixing several objects with disjoint
names. Using the given examples,
clone(p,display) produces an object
with at least the attributes X, y, and
plot.

Aliasing: mechanism of aliases redirect-
ing attributes to attributes in other
objects. All selections and updates on
an aliased field are done on the redi-
rection target. For redirected method
invocation, the “self” object is the ob-
ject containing the redirected target,
not the object containing the alias. An
alias itself can redirect to another
alias. Objects consisting only of
aliases are called surrogates (also
known as proxies in other languages).
For examples of aliasing and redirec-
tion, consider {x => alias x of p1} and
redirect p2 to p end. The latter makes
all attributes of p2 aliases of the cor-
responding attribute of p.

Objects can be protected against modifi-
cation, aliasing, and cloning from out-
side the object using the protected key-
word. Safe interfaces to objects can be
constructed through a combination of
protection and surrogates.

Concurrency is inherent in Obliq; pro-
cesses can execute independently on
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distinct servers and processes can
spawn new threads locally. To handle
concurrent accesses, Obliq supports se-
rializing objects. An object is serialized
if at most one thread can access an
object or run one of its methods at any
given time. This is realized using a mu-
tex on the object, which is acquired
when one of its methods is invoked and
released when the method returns. To
avoid trivial deadlocks, operations and
method calls from within the object it-
self are not subject to locking. For de-
tails, see Cardelli [1995].

Lexical scoping hides named values
from outside a given block and run-time
typing ensures that these scope rules
are enforced. Extending the lexical
scope to the network makes it possible
to use scope rules to address security
issues, such as information hiding; a
procedure executing on a foreign server
has only access to its own parameters
and free variables. Communications be-
tween two independent servers are
meditated by a shared global name
server, which allows servers to import
and export local values. To have a pro-
cedure executed on a distant server, the
name server is asked for the engine
object accepting procedures. For exam-
ple, remote invocation can be pro-
grammed as follows (on the client side):

let mydisp = net_import(“display”, Namer);
mydisp.plot(p);

Here the name server, Namer, is asked
for the value registered with the name
display. After this call, mydisp is a refer-
ence to the display object, either locally
or on a remote server, and is treated
like any other object. For example, we
can invoke the method plot with a vari-
able p. This example assumes that some
process has exported display with

net_export(“display”, display)

Object migration can be programmed
using a combination of closure trans-
mission, cloning, and surrogates. The
following example is taken from
Cardelli [1995].
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let migrate
Proc = proc(obj, engineName)
let engine = net_importEngine
(engineName, Namer);
let remoteObj = engine(proc(arg)
clone(obj) end);
redirect obj to remoteObj end;
remoteObj;
end;

To migrate an object obj to an engine,
we first ask a name server for a refer-
ence to the engine. Next, we remotely
execute on this engine (engine(...)) a
cloning operation of obj, resulting in a
remote object.® Finally, all attributes of
obj are made aliases for the correspond-
ing attributes of the remote object (redi-
rect obj to remoteObj end).

The distributed object model is closely
based on (and implemented with) the
Modula-3 network objects [Birrell et al.
1993].

Security

Besides the basic use of scope to control
what is exported, no special provision
for security in Obliq is made at the time
of writing [Cardelli 1995].

Linking

Transmitted closures can use functions
from the basic library, but do not other-
wise gain access to names from the re-
ceiving site. Names are explicitly ex-
ported by passing them as parameters
to the received closure.

Applications

Obliq is an academic project, and the
collection of example applications is
small. Examples include a user-inter-
face toolkit, algorithm animation, 3D
graphics, and its use as the basis of the
Visual Obliq distributed application
builder.

3 Note that the engine-specific information sup-
plied as parameter arg to the migrated closure is
not used here.
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Reflections

Using network-wide scope for distrib-
uted applications leads to an elegant
and powerful model of programming. As
object migration can be expressed
within the language, it is possible to
program autonomous traveling agents
in Obliq. This is not possible in the
model employed by Java and O’Caml.
Without further experimental results,
however, it is difficult to evaluate the
advantages and drawbacks. It seems
that this model could be inefficient,
leading to many small messages to be
transmitted: one for each access to a
remote object. Also, Obliq seems to re-
quire a much tighter coupling of hosts
to support a distributed garbage collec-
tion.

4.5 Telescript

Telescript [General Magic 1996] of Gen-
eral Magic is an object-oriented class-
based language designed for network
programming. Telescript is intended not
as a general-purpose language but as a
specialized language for communica-
tion, just as PostScript is a language for
printing. The system is based on a num-
ber of metaphors from the real world.
The central concept in Telescript is the
agent, which autonomously travels on
the Telesphere (a Telescript network of
engines) doing business on behalf of its
owner. The engine is a Telescript inter-
preter with a collection of built-in
classes and an engine place. Engines
provide persistence of objects, even in
the presence of a system crash. Places
are stationary processes that can accept
incoming traveling agents. Users can
create their own places nested within
other existing places. Resource usage
can be tracked and charged to the re-
sponsible user.

The Language

The Telescript language itself is class-
based and includes run-time typing.
Classes can inherit from a single super-
class and any number of mix-ins, ab-
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stract classes that cannot be instanti-
ated. Mix-ins can themselves inherit
from other mix-ins.

Use of classes can be restricted in two
ways: a sealed class cannot be special-
ized, and an abstract class cannot be
instantiated. Attributes of objects can
be either private or public. Private at-
tributes can only be accessed from the
class itself and its subclasses, whereas
public attributes are unrestricted. The
operator protect, a novelty of Telescript,
turns object references into protected
references. A protected reference cannot
be used to modify an object.

Agents are processes with a number of
properties.

—The telename is the pair of an author-
ity and a process identity that to-
gether name a process. The authority
identifies the (usually human) Tele-
script user.

—The owner is the process that will own
future created objects (except pro-
cesses, which own themselves). This
is usually the current process, but it
can be temporarily changed. Objects
not owned by any process are garbage
collected.

—The sponsor is the process whose au-
thority will be attached to and
charged for new created objects.

—The client is the object whose code
requests the current operation.

—The permit specifies the capabilities
of the current process. A permit has a
number of process parameters:

—the age is the maximum life in sec-
onds,

—the extent is the maximum size of
memory allowed to the process,

—the priority is used to determine
when to schedule the process for
execution, and

—the Boolean parameters canCreate,
canGo, canGrant, and canDeny
specify whether the process can cre-
ate new processes, travel, raise the
permission level of other processes,
and lower the permission level of
other processes, respectively.
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Agents are sent by invoking their go
operation with a ticket, specifying the
destination place and possibly the route
to this address. If the destination ac-
cepts the agent’s authority and permits,
the agent is sent together with its ob-
jects to the place and resumes execution
within the new place. The effective ca-
pabilities of a process are computed as
the intersection (minimum) of the four
permits process, local, regional, and
temporary. The local permit is imposed
by the place entered, the regional per-
mit is imposed by the engine, and the
temporary permit can be imposed by the
language construction restrict. In the
following we give an example (taken
from General Magic [1996]) of how to
execute a method from an untrusted
object, using a temporary permit.

paranoid := Permit( );
paranoid.canCreate = false;
paranoid.canDeny = false;
paranoid.canGo = false;
paranoid.canGrant = false;
paranoid.age = *.age + 2;
paranoid.extent = *.size + 1000;

try {
restrict paranoid {

yourObiject.yourSuspect-
Call( );

catch failed:  PermitViolated

{...}

catch ...

}

First we create an new empty permit,
named paranoid, which we initialize
with very restrictive permissions. We
set the maximal age to current plus two
seconds and then allow it to allocate
1,000 bytes of storage. The suspicious
call, yourObject.yourSuspectCall( ), is
then executed in a try block using the
paranoid permit. The try block enables
us to catch violations, such as code run-
ning too long or using too much space.

Four built-in mix-ins are available for
further protections on classes:

—unmoved: objects of this class cannot
be taken along with a traveling agent;
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—uncopied: objects of this class cannot
be copied,;

—copyrighted: objects of this class can
only be instantiated if authorized by a
Copyright Enforcer object; and

—protected: objects of this class cannot
be modified.

Security

As is apparent from the preceding, secu-
rity is an overall consideration that af-
fects most of the Telescript language.
The permission model is elaborate and
applies to resource consumption as well
(the model can thus address denial of
service issues).

Linking

Mobile processes in Telescript are run
in a separate domain and can only in-
teract directly with the engine in which
they run. All interprocess access is me-
diated by the engine.

Applications

Telescript is envisioned to make possi-
ble an electronic marketplace where us-
ers can launch their agents to search
and reserve tickets, inspect currencies,
and the like.

Reflections

The Telescript system includes a num-
ber of features to restrict the actions of
agents, but they seem to suffer from a
lack of systematic design. It is not clear
how to be convinced of the consistency
of the implemented security restric-
tions.

A positive aspect of Telescript is that
it tries to deal with denial of service
attacks. Telescript agents have their
own initiative to travel and are thus
more powerful than Java applets, but in
a sense, also more dangerous: they can
be hard or impossible to control once
launched. An interesting aspect of Tele-
script is that the user does not have to
be connected to the network while his
agent is acting. The agent can finish its



business and return to the user once he
reconnects to the network.

4.6 Safe-Tcl

The idea of executable contents had
been realized in the context of electronic
mail before the arrival of the World
Wide Web. We present Safe-Tecl, the
most popular among several similar
proposals. First Virtual Holdings pro-
poses Safe-Tcl as an extension to
MIME, the Internet multimedia mail
standard [Borenstein 1994]. The MIME
standard defines a standard encoding
for enriched mail; that is, mail with
more than just ASCII text. MIME mail
consists of several parts, each of which
can have a different contents type. The
simplest contents type is just the ASCII
text, but contents types include several
popular formats for pictures and sound.
Safe-Tcl is proposed as an executable
contents type of MIME, and thus as the
standard language for executable con-
tents within email.

Reflecting the store and forward na-
ture of electronic mail, three different
execution phases are distinguished: de-
livery-time, receipt-time, and activa-
tion-time. Delivery-time is when the
mail leaves the sender, receipt-time is
when the mail arrives at the destina-
tion, and activation-time is when the
user reads the mail. It is specified in the
MIME header in which of the three
phases the program is intended to be
executed. (These three phases coincide
for Web pages.)

The Language

Safe-Tcl is, as the name implies, based
on Tcl [Ousterhout 1994], a procedural
script language designed to be simple,
portable, easily embedded, and power-
ful. Efficiency was a minor design issue.
For simplicity, every value in Tecl is
represented as a string, including pro-
grams themselves. Scope rules are very
simple in Tcl; there are only two scope
levels: local (to a function) and global.
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Security

Tecl is already a safe language in the
sense that there is no notion of pointers,
casts, or unchecked array accesses. The
aim of Safe-Tcl is to be a safe and secure
programming language. To achieve this,
every language construction and primi-
tive of Tcl was carefully examined.
Primitives considered to be too danger-
ous or general were replaced by a collec-
tion of more specific ones. For example,
the file system access functions were
removed and replaced by an isolated
global configuration space. This space is
accessed using two functions: SafeTcl_
setconfigdata and SafeTcl_getconfig-
data. The former associates a string to a
key, and the latter returns the string
associated with a key. A rich but safe
graphical user interface was a major
concern in the design of Safe-Tecl. This
has likewise been achieved by replacing
primitives that are too general with
more specific ones.

Linking

As the Safe-Tcl environment is likely to
have a great deal of its implementation
in Tecl, two interpreters are used: one
only for Safe-Tecl, running the untrusted
applications, the other for full unre-
stricted Tcl. The untrusted application
can interact directly only with the Safe-
Tecl interpreter.

Applications

Typical applications reported for Safe-
Tecl include advanced user dialogues for
ordering and voting. Safe-Tcl has also
been used experimentally for applets in
the Surflt! Web browser [Ball 1996].

Reflections

Safe-Tcl’s inherent limitations in terms
of efficiency place it in a weak position
in the competition. On the other hand,
the Safe-Tcl language is much smaller
than any of the preceding five, known to
be easy to embed, and requires only a
small amount of storage.
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Table I. Programming Language Features

- Security Trust in the object
Language OO Concurrency Mobility Safety model code
Java v v Fetch N4 PL Verified object code
O’Caml J/ Some Fetch J PL Signed object code
Limbo v Fetch N 0S Signed object code
Obliq J/ J Agent J PL No provision
Telescript J/ J Agent J PL Secure network
Safe-Tcl Fetch J 0S Not applicable

5. REVIEW AND COMPARISON

The main features of the languages pre-
sented in Section 4 are summarized in
Table I. Let us now review them and
use them as the basis for a comparative
study.

—Object orientation. In the context of
mobile code, objects are a convenient
entity in which to encapsulate data
and programs to be sent on the net-
work. They also serve as entities for
grouping information with the same
access restrictions.

—Concurrency. In a distributed context,
the notion of simultaneous and inde-
pendent computations is a natural
one. For Java and O’Caml, support for
concurrency is rudimentary; multiple
threads of control and corresponding
serialization are supported (O’Caml
applets do not support concurrency,
though). Limbo and Telescript add a
rich support for network communica-
tion. Limbo includes channels as first-
class values. Concurrency is also in-
herent in Obliq.

—Mobility. We can distinguish two dif-
ferent models of mobility.

—We call code fetching (noted by
“Fetch” in Table I) the model used
by Java, O’Caml, and Limbo in
which the user downloads the code
to be executed. The initiative is
with the receiver of the code.

—Mobile agents (Obliq and Tele-
script) are processes that can be
programmed to migrate themselves,
so the initiative is with the mobile
code itself. We denote this model
“Agent” in Table I.
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—Safety. All of the studied languages

are “safe” in the sense that access
boundaries expressed in the language
are enforced. This is an essential
property for a language if security
issues are to be expressed using lan-
guage constructs. Enforcing safety in-
volves ruling out pointer arithmetics,
checking array bounds, using auto-
matic memory management, disallow-
ing arbitrary casts, and dynamically
checking casts that promote objects to
more specialized classes.

—Security model. The implementations

of access control can be roughly clas-
sified in two categories: the operating-
system approach and the program-
ming-language-based approach
(noted, respectively, as “OS” and “PL”
in Table I). In the former, the capabil-
ities of applets are hardwired into the
run-time system of the language, and
in the latter, they are programmed in
the language using protection fea-
tures such as scope and visibility
rules:

—dJava has trusted libraries with ac-
cess to native code functions. The
trusted libraries are protected
through a mixture of language con-
structs and sensitive functions call
upon a (protected) security monitor
(the SecurityManager) to check dy-
namic access control.

—O’Caml uses the module system to
restrict applets’ use of libraries to a
fixed safe subset. This subset pro-
vides a supervised interface to the
underlying operating system. The
security monitor uses a variable of
an abstract data type to represent
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Table Il. Class and Attribute Protection and Keyword Used
Protection offered Java O’Caml? Oblig® Telescript Limbo
Class protection
No subclasses final protected sealed
Subclasses cannot add methods closed
No instances abstract virtual  protected abstract
Visible only in same package private NA® NA NA
No outside updates protected
No aliases NA NA protected NA
Mutual exclusion serialize
Attribute protection
No restriction public default® default public exported
Visible only in the same package protected NA NA NA NA
or in subclasses

Visible in subclasses default NA private NA
Visible only in the defining class private private NA default
Runtime protected reference protect
Mutual exclusion synchronized

2 Visibility in O’Caml can furthermore be restricted using the module system.
b Object used as prototypes play the role of classes in Obliq. The restrictions apply only to operations

from outside the object.
¢ Not applicable.

its capabilities.

—Limbo provides all available re-
sources as files in an applet-specific
file-system hierarchy, separated
from other applets. New resources
are obtained through system mod-
ules. Limbo offers no support for
protecting user-written modules.

—Obliq has the language constructs
necessary to program access control
in the language. Examples on how
to do this are given in Cardelli
[1995], but there is very little detail
on how this is exploited by the
Obliq system itself.

—In Telescript, capabilities are repre-
sented by protected permission ob-
jects.

—Safe-Tcl offers a fixed and re-
stricted functionality through the
built-in functions.

—Trust in the object code. The safety of
object code is based either on trust or
(in the case of Java) on verification.
In the case of O’Caml and Limbo, the
trust is based on a cryptographic sig-
nature of a trusted authority. Tele-
script agents are trusted based on
their origin as the network is “secure”
and sender addresses can be trusted
to be correct.

As the security policy for the object-
oriented languages is implemented us-
ing objects, it is interesting to compare
the possibilities for restricting access to
part of the objects in the different lan-
guages. Table II summarizes the visibil-
ity rules for the four object-oriented lan-
guages studied in Section 4. We have
included a column for Limbo, whose
first-class modules can be compared
with classes.

6. PERSPECTIVES

The informal treatment of both lan-
guage and security aspects is a major
drawback of all the languages studied.
Mobile code is executed within a com-
plete environment (the run-time envi-
ronment of the language, the Web
browser, the operating system, the net-
work, etc.), so arguing about security
enforcement is meaningless without a
clear specification of the separation of
the responsibilities among the various
entities of the environment (what entity
is assumed to ensure what property?). A
number of the flaws discussed in Dean
et al. [1996] can be seen as a conse-
quence of the lack of such a clear sepa-
ration. For example, in Java, classes
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loaded from the local file system are
more trusted than classes loaded
through the network, and thus the
former have access to more dangerous
operations. Here the integrity of the
system depends on both the local oper-
ating system and on the Java system.
One attack exploited a flaw that made it
possible to load classes from anywhere
in the file system [Dean et al. 1996]. For
this attack to succeed, it must be possi-
ble for the attacker to upload a file
somewhere on the victim’s file system.
This can often be done in a variety of
ways, depending on the local operating
system. Another attack allowed applets
to connect to arbitrary hosts. The attack
succeeded due to a weakness in the
Java library, where an external name
service was implicitly assumed to be
trustworthy, which in fact it was not.
Current work on mobile code does not
take enough account of the research
done in programming language seman-
tics [Nielson and Nielson 1992; Schmidt
1986], formal methods in software engi-
neering, like VDM [Bjgrner 1991a,b], Z
[Spivey 1988], RAISE [Brock and
George 1990], and B [Lano 1996], for-
mal models of security [Bell and LaPa-
dula 1973; Landwehr 1981; McLean
1994], or research on static program
analysis [Banatre et al. 1994; Denning
and Denning 1977; Mizuno and Schmidt
1992; Volpano et al. 1996]. As a starting
point, a semantic definition of the lan-
guage would provide an important in-
sight and emphasize the weak parts of
its definition with respect to security.
Such a definition would also make pos-
sible formal statements for the security
claims made by the proponents of the
language. Having a semantics for the
language would not be enough, though.
Security is a global property, so a secu-
rity model must take into account all
aspects of the system supporting the
execution of the code. This includes in
particular the hardware, the operating
system, the abstract machine, the mod-
ule libraries, the security manager, and
the browser. A security weakness in
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just one of these endangers the security
of the whole system.

Existing research into formal meth-
ods for security [Bell and LaPadula
1973; Landwehr 1981; McLean 1994]
provides a strong foundation on which
such a model should be build. The chal-
lenge consists of integrating the differ-
ent levels mentioned in a coherent and
useful way. The formal model will be
useful only if it can support the expres-
sion of the global security policy and its
decomposition to highlight its impact on
the various components of the system.
One of the components is the execution
model of the mobile code language,
which would then be characterized pre-
cisely in terms of security requirements.
This, in turn, would provide the neces-
sary formal basis for both static and
dynamic verifications in the language
for mobile code.

Several efforts have recently been un-
dertaken that suggest promising ave-
nues for future research to provide a
formal basis for mobile code verifica-
tion. Among them, let us mention:

—Mizuno and Schmidt [1992] derive a
security flow analysis as an abstract
interpretation of an enriched denota-
tional semantics. The analysis is com-
positional; individual modules can be
analyzed separately and the results
(symbolic expressions) can be com-
bined to obtain an analysis of the
entire system.

—Banatre et al. [1994] present the de-
velopment of a static analysis for in-
formation flow in a simple guarded
command language. The information-
flow logic is based on a noninterfer-
ence property. The analysis is then
derived through successive refine-
ments of the proof system into a com-
plete algorithm for information-flow
analysis.

—Volpano et al. [1996] present a sound
type system for secure flow analysis.
The multiple sensitivity level of Den-
ning’s lattice model is formulated as a
subtyping relation that can be stati-
cally checked. The soundness of their
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system is formulated as a noninterfer-
ence property of well-typed programs.

—Necula and Lee [1996] present a tech-

nique for safely loading binary exten-
sions into an operating-system kernel.
The technique is based on pairing the
object code with a machine-checkable
proof that the object code respects the
published safety policy of the operat-
ing system. The proof, formulated in
terms of a simple type system, is ver-
ified together with the object code by
a type checker in the operating sys-
tem. If it is found to be correct, the
code is allowed to execute without any
dynamic check whatsoever.
Their approach represents the best
that can be achieved in terms of per-
formance (no more overhead is in-
curred after the type checking) with-
out being dependent on cryptographic
signatures. The major problems with
their technique is the burden of proof
generation, which is manual, and the
fact that each safety policy potentially
requires its own proof.

—Borgia et al. [1996] present a struc-
tural operational semantics for the
Facile language based on the notion of
proved transition systems. Facile is a
concurrent functional language based
on the m-calculus, a basic language
for mobile processes. The semantics
can be used to extract causal depen-
dencies, as demonstrated by its use to
debug a mobile agent system. This
work is very promising, and it will be
interesting to see how well it scales to
mobile code programming languages.

The advantage of the preceding con-
tributions on program analysis or typ-
ing [Banéatre et al. 1994; Mizuno and
Schmidt 1992; Volpano et al. 1996] is
that they lead to mechanical verifica-
tions. Their limitation is that they de-
scribe individual security analyses for
programs without considering their in-
tegration in the general context (includ-
ing the network, operating system, ab-
stract machine, etc.). As a consequence,
the properties of the programs verified
by the analyses are not linked to a
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general security policy for the whole
system. On the other hand, the ap-
proach of Necula and Lee [1996] can be
seen as a more ambitious attempt, but
it relies on mostly manual proof con-
struction. One challenge for future work
is probably to find an appropriate inte-
gration of automatic and interactive
proof techniques.

APPENDIX. LANGUAGE EXAMPLES

To give the reader a feel of the different
languages we present examples for
Java, Limbo, O’Caml, and Safe-Tcl. Un-
fortunately, realistic examples would be
much too long for this article. We omit
Obliq and Telescript, as we feel there
are already sufficient examples of their
treatment.

A.1 Java

Figure 1 shows the source of a small
applet example illustrating the use of
two user interface primitives: buttons
and labels.

1-2 The two import statements
make all classes from the
package applet and awt (ab-
stract windows toolkit) avail-
able under their unqualified
class name. In this example,
we use the class Applet from
the package applet and the
classes Button and Label from
the package awt.

The Applet class constitutes a
framework for applets and all
applets are a specialization of
the Applet class. The applet
in this example, HelloWorld,
has two graphics items, a
push button and a label.
These are declared as the pri-
vate variables push and lab of
class Button and Label, re-
spectively.

The system initializes applets
by calling init. The first thing
to do is to call the init defined
in the superclass. A new But-
ton instance, initialized to

4-6

8-11
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import java.applet.s;

import java.awt.s;

private Button push;
private Label lab;

1
2
3
4 public class HelloWorld extends Applet {
5
6
7
8

public void init() {

9 super.init();
10 add(push = nev Button("Push me"));
11 add(lab = new Label("Hello World Applet Demo"));
12 }
13
14 public boolean action(Event event, Object arg) {
15 remove (push) ;
16 lab.setText("Hello World has ended");
17 return true;
18 }
19 1}
Figure 1. Source of Java applet HelloWorld.

carry the label “Push me,” is
created in line 10. This in-
stance is assigned to the local
attribute push. This instance
is added to the scene*
through the method add, de-
fined in the class Container
(not shown) in the package
java.awt.Applet is a special-
ization of Container.

Button events are delivered
to Applet objects by calling
their action method. For this
example, it is not necessary
to check which button was
pressed, as there is only one;
thus the two arguments,
event and arg, are ignored.
The applet responds to the
button press by removing the
button from the scene (line
15) and changing the mes-
sage in the label (line 16).
remove is a method of Con-
tainer like add, and setText
(line 16) is a method of the
class Label.

4 As in C, assignments are expressions with the
value of their left-hand side.

ACM Computing Surveys, Vol. 29, No. 3, September 1997

A.2 Limbo

Figure 2 shows a Limbo example that
uses a channel to report activations of a
button, illustrating communication be-
tween Tk and Limbo.

1

3-5

7-9

The head of the module de-
clares that what follows con-
stitutes the module Hello.
Module names begin with up-
percase letters.

The signature of modules Draw
and Tk are included from the
files “draw.m” and “tk.m”. The
tk: Tk statement declares an in-
stance named tk of the module
Tk (initialized to nil). Types
and constants exported from
modules can be accessed di-
rectly from the signature of the
module, but functions and vari-
ables require a module in-
stance. As this example only
uses the type Context from
module Draw, there is no need
to make an instance.

The signature of this module
exports only one function, init.
By convention, programs capa-
ble of being executed from the
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11-12

13

14

15

implement Hello;
include "draw.m";
include "tk.m";

tk: Tk;

Hello: module {
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init: fn(ctxt: ref Draw->Context, argv: list of string);

}

init(ctxt: ref Draw->Context, argv: list of string) {

tk = load Tk Tk->PATH;

t := tk->toplevel(ctxt.screen, "");

ccmd := chan of string;

tk->namechan(t, ccmd, "tcmd");
tk->cmd(t, "button .b -text Remove -command {send tcmd bye}");

tk->cmd(t, “pack .b");
tk->cmd(t, "update");
<- ccmd;

Figure 2. Limbo example.

top-level shell have a function
called init with the signature: a
function taking a graphics con-
text (type Context from module
Draw) and a list of string argu-
ments. The graphics context
provides a reference to a win-
dow system, necessary to cre-
ate new windows.

The implementation of the
init function starts by loading
the implementation of mod-
ule Tk and creating the in-
stance tk. By convention, each
module declaration includes a
pathname  constant that
points to the code for the
module; this is the second pa-
rameter Tk—>PATH of the
load statement.

The variable t is declared and
initialized to a reference to
the top-level window.

The string channel ccmd is
declared and instantiated. In
this example, a message on
this channel signals the ter-
mination of the application.
The namechan call associates

16-18

19-20

the Limbo channel with a Tk
string, thus bridging the two
languages. Messages sent on
tcmd from the Tk language
appear on ccmd.

These three lines are calls to
the Tk graphics library to
create a button that sends
the string “bye” on tcmd
(ccmd) upon a mouse press.
The pack command places the
button .b on the top level win-
dow, and update makes it ap-
pear on the screen.

The last thing to do is to wait
for a message on the channel.
The value received is ignored.

A.3 O’Caml

Figure 3 shows the complete source of
an MMM timer applet.

1

2-5

The open statement imports
all publicly exported identifi-
ers from the module.

Safestd is a safe subset of the
standard library, containing
basic primitives, such as
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8-9

10

11-17
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open Safestd
open Safemmm
open Safetk
open Safeunix
open Tk

let fabc=

let t = Toplevel.create (Mmm.get_global_widget()) [] in

Wm.title_set t "Time Web";

let 1 = Label.create t [Text "00:00:00"] in

let upd () =

let tm = localtime(time(}) inm

let txt n =

if n < 10 then "0" ~ string_of_int n

else string_of_int n in

let tms = txt tm.tm_hour™":"“txt tm.tm_min~":""txt tm.tm_sec in

Label.configure 1 [Text tms]

in
let rec tim () =

if Winfo.exists 1 then begin

add_timer 1000 tim;
upd ()
end in

tim();

pack [1][Fill Fill_X]

let a = Applets.register "f" f

Figure 3. O’Caml applet source.

string_of_int in the following.
The module Safemmm gives
restricted access to internals
of the MMM browser. Here
we only need it to create a
top-level window. Safetk con-
tains the graphics toolkit
function widgets.

The applet is a top-level func-
tion f with three arguments of
no relevance for this example.
Creates a top-level window
and sets the title to “Time
Web.”

Applies constructor Text to
string “00:00:00,” creating an
initialized text label 1 (a
graphic element). Text is im-
ported from the module Tk.
Defines a function to format
the current local time as a
string and update the label 1.
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19-23

24-25

The ~ operator is for string
concatenation.

The tim function updates the
text label continuously (with
a small pause). Winfo.exists 1
checks that the window is
still present (the user can de-
lete it externally using the
window manager). If the win-
dow has been removed, the
applet stops. The function ad-
d_timer registers a thunk (a
function of type ( ) — Unit)
for execution after a given
number of milliseconds. The
call to add_timer itself re-
turns immediately.

The updating is started and
the label is installed in the
top-level window. The list Fill
Fill_X are options to pack,
making the label take all
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1 proc ordershirt {} {

2 SafeTcl_sendmessage -to tshirts@nowhere.really \

3 -subject "Shirt request" \

4 -body [SafeTcl_makebody "text/plain" \

5 {SafeTcl_getline \

6 "What size t-shirt do you wear?" \

7 "mediu.m"] " u]

8 exit

9 }

10

11 if {[lsearch $SafeTcl_InterfaceStyle "Tk3.s"] >= 0} {

12 set win [mkwindow]

13 message $win.m -aspect 1000 \

14 -text "Click below if you want a free Bill Clinton t-shirt!"
15 button $win.b -text "Click here for free shirt!" \

16 -command {ordershirt}

17 button $vin.b2 -text "Click here to exit without ordering" \
18 -command exit

19 pack append $win $win.m {pady 20} $win.b {pady 20} \

20 $win.b2 {pady 20}

21 )} else { ...}

Figure 4. SafeTcl applet source.

available space in the win-
dow.

27 The final step is to register
the applet function, establish-
ing the connection between
O’Caml and MMM.

A.4 Safe-Tcl

Figure 4 gives the partial source of a
Safe-Tcl example application. In Tel,
the first word of the line is always the
name of a command and the rest of the
line contains the arguments, separated
by spaces. The backslash at the end of
the line allows long statements to be
broken across several lines. The square
brackets group subexpressions. The
curly brackets group arguments: every-
thing up to but excluding the matching
closing curly brackets is considered one
argument. Optional arguments are pre-
ceded by a keyword with a leading dash
(-), imitating the Unix command-line
convention. Variables are accessed with
the dollar operator ($). String concate-
nation is implicit everywhere; for exam-
ple, $win.m is the contents of the win

variable followed immediately by the
string “.m”.

1-9 We define a function, order-
shirt, which queries the user
for size information, using
the SafeTcl_getline function.
The result is wrapped up in
the body of a mail by SafeTcl_
makebody and sent to
tshirts@nowhere.really (by
SafeTcl_ sendmessage).

The conditional checks
whether it is running in a
Tk-capable client.

Creates a top-level window
and stores it in the variable
win. The command set assigns
variables to values.

Equips the window with a
leading message and two but-
tons, one of which activates
the previously defined order-
shirt upon button press. The
built-in commands message
and button create a message
panel and a button graphic
element, respectively.

11

12

13-18
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19-20 The pack command groups
the graphics elements to-
gether. The pady 20 argu-
ment specifies a vertical fill-
ing factor.
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