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Abstract—Buffer overflow vulnerabilities in the memory
stack continue to pose serious threats to network and computer
security. By exploiting these vulnerabilities, a malicious party
can strategically overwrite the return address of a procedure call,
obtain control of a system, and subsequently launch more
virulent attacks. Software countermeasures for such intrusions
entail modifications to applications, compilers, and operating
systems. Despite the availability of these defenses, many systems
remain vulnerable to buffer overflow attacks.

In this paper, we present a hardware-based solution that
prevents buffer overflow attacks involving procedure return
address corruption. We add a secure return address stack to the
processor that provides built-in, dynamic protection against
return address tampering without requiring any effort by users
or application programmers. Also, the performance impact is
negligible for most applications. Changes are not required of
application source code, so both legacy and future software can
enjoy the security benefits of this solution.

Index Terms—buffer overflow, processor architecture,
computer security, network security, return address corruption

I. INTRODUCTION

Buffer overflows have caused security problems since the
early days of computing. In 1988, the Morris Worm caused
Internet havoc using a buffer overflow vulnerability as one of
its means of intrusion. The Code Red worm and its variants,
which stung companies over the summer of 2001, exemplifies
the severity of problems that buffer overflow vulnerabilities
still cause today. Code Red spread by taking advantage of a
buffer overflow problem in Microsoft IIS. The total economic
cost of these worms is estimated at $2.6 billion by Computer
Economics [16]. In addition, various intrusion tools that
establish distributed denial of service (DDoS) networks often
exploit buffer overflow vulnerabilities to compromise
oblivious hosts [10].

The vast majority of buffer overflow exploits involve an
attacker “smashing the stack” and changing the return address
of a targeted function to point to exploit code. Thus,
protecting return addresses from corruption prevents most
attacks. Past work addresses the problem through software
methods, such as safe programming languages, operating
system patches, compiler changes, and even run-time defense.
However, the examination of potential solutions at the
hardware architecture level is justified by the frequency of this
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type of attack, the number of years it has been causing
problems, and the continuing emergence of such problems in
the face existing software solutions.

We seek to implement a hardware-based, built-in, non-
optional layer of protection against common buffer overflow
vulnerabilities in all future systems. Some processors contain
return address stacks to reduce performance penalties due to
delayed branch resolution. We detail how a modified
hardware return address stack (RAS) can be used to protect
return addresses. Our method preserves a correct copy of the
return address and also provides a means of detecting buffer
overflows with high probability. Since the RAS is of finite
size, various safe spill and fill methods are described and
evaluated. Our proposal is not meant to be the only defense
against such attacks, however. We recommend that our
proposal be used in conjunction with existing software
techniques to ultimately provide more pervasive protection.

In Section II, we detail the buffer overflow problem, and
we compare past work in Section III. In Section IV, we
describe our secure return address stack. We discuss hardware
return address stacks in existing processors, and we describe
the architectural and OS changes that are required to achieve
our security goals. In Section V, we discuss methods for
handling non-LIFO procedure control flow in our proposal. In
Section VI, we analyze the performance impact of our
proposal, and we conclude in Section VII.

II. BUFFER OVERFLOWS AND STACK SMASHING

Despite  existing  countermeasures, buffer  overflow
vulnerabilities continue to plague computer systems and
networks. Table I shows the percentages of CERT advisories
from 1996 to 2001 relating to buffer overflow weaknesses. In
2001, more than 50 percent of CERT advisories involved
buffer overflow. Furthermore, buffer overflow weaknesses
play a very significant role in the 20 most critical Internet
security vulnerabilities identified by the SANS Institute and
the FBI [18].

The majority of buffer overflow attacks involve corruption
of procedure return addresses in the memory stack. During
the execution of a procedure call instruction, the processor
transfers control to code that implements the target procedure.
Upon completing the procedure, control is returned to the
instruction following the call instruction. This transfer of
control occurs in a LIFO (i.e., Last In First Out) fashion, or
properly nested fashion. Thus, a procedure call stack, which
is a LIFO data structure, is used to save the state between
procedure calls and returns. We describe stack behavior and



buffer overflow attacks for the IA-32 architecture [11], but the
general procedures apply to all conventional ISAs.

Figure 1 illustrates the operation of the memory stack for
the example program shown in Figure 2. The memory stack
consists of a set of stack frames; a single frame is allocated for
each procedure (e.g., g) that has yet to return control to an
ancestor procedure. The stack pointer (SP) points to the top of
the stack frame of the procedure that is currently executing,
and the frame pointer (FP) points to the base of the stack
frame for the currently executing procedure.

When function £ () calls g(), a new stack frame is
pushed onto the stack. The stack on the left of Figure 1 shows
the state of the memory stack immediately following the call
to g (). The new frame includes the input pointers x and vy,
the procedure return address, the frame pointer, and the local
variables a and b. Upon completing g (), the program
should return to the return address stored in g’s stack frame;
this address should equal the location of the instruction
immediately following the call to g () in the function £ ().
The SP and the FP should also be restored to their former
values, and the stack frame belonging to g () should be
effectively popped from the stack.

A security vulnerability exists in the code shown in Figure
2 because strcpy () does not perform bounds checking. In
the function g (), if the string to which x points exceeds the
size of b, strcpy () will overwrite data located adjacent to
b in the memory stack. A malicious party can exploit this
situation by strategically constructing a string that contains
malicious code and a corrupted return address. If x points to
such a string, strcpy () will copy malicious code into the
stack, and the return address in g () ’s stack frame will be set
to the initial instruction of the malicious exploit code. This is
illustrated in Figure 1. Consequently, once g () completes,
the program will jump to and execute the exploit code instead
of returning control to £ (). There are many variations of this
form of attack [13], but the majority relies on the ability to
modify the return address. For example, rather than the
attacker injecting his own exploit code, the return address may
be modified to point to legitimate, preexisting code that can be
used for malicious purposes.

III. PAST WORK

Researchers  have  proposed many  software-based
countermeasures for buffer overflow exploits. These methods
differ in the strength of protection provided, the effects on
performance, and the ease with which they can be effectively
employed. One solution is to store the stack in non-executable
pages. This can prevent an attacker from executing code
injected into the memory stack. However, the return address
may instead be redirected to preexisting code in memory that
the attacker wishes to run for malevolent reasons. In addition,
it is difficult to preserve compatibility with existing
applications, compilers, and operating systems that employ
executable stacks. For instance, Linux depends on executable
stacks for signal handling.

StackGuard is a compiler-based solution involving a patch
to gcc that defends against buffer overflow attacks that

TABLE 1. CERT BUFFER OVERFLOW ADVISORIES
Adyvisories Percent
Year Advisories involving buffer buffer
overflow overflow
1996 27 5 18.52 %
1997 28 15 53.57 %
1998 13 7 53.85 %
1999 17 8 47.06 %
2000 22 2 9.09 %
2001 37 19 51.35 %
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FIGURE 1. BUFFER OVERFLOW ATTACK

int f£()
g(x, v)i
int g(char * x,

char * y)

int a;
char b[64];

gtrcpy(b, X);

return;

}

FIGURE 2. VULNERABLE CODE EXAMPLE

corrupt procedure return addresses [7]. In the procedure
prologue of a called function, a “canary” value is placed on
the stack next to the return address, and a copy of the canary is
stored in a general-purpose register. In the epilogue, the
canary value in memory is compared to the canary register to
determine whether a buffer overflow has occurred. The
application randomly generates the 32-bit or 64-bit canary
values, so the application can detect improper modification of
a canary value resulting from a buffer overflow with high
probability. However, there exist attacks that can circumvent
StackGuard’s canaries to successfully corrupt return addresses
and defeat the security of the system [2].

StackGhost employs the SPARC architecture’s register
windows to defend against buffer overflow exploits [8].



TABLE II. PRIOR WORK COMPARISON

Technique for defending Required changes Provides | Applies to | Application Adverse
against procedure return Source . complete many code size | performance
. Compiler (0N} Processor .1 . .
address corruption code protection’ | platforms increase impact
Safe programming languages Yes Yes No No Yes Yes Can be high | Can be high
Static analysis techniques Yes No No No No Yes Varies Varies
StackGuard No Yes No No No Yes Low Moderate
StackGhost No No Yes No Yes No None Low
libsafe No No Yes No No Yes Low Low
libverify No No Yes No Yes Yes High Moderate
Our SRAS proposal No No* Yes Yes Yes Yes None® Low

'By “complete protection,” we mean complete protection against buffer overflow addresses that directly corrupt procedure return addresses.
“Compiler changes may be required for certain programs depending on how non-LIFO procedure control flow is handled (see Section V).
*Depending on how non-LIFO procedure control flow is handled, some programs may experience a very small increase in code size (see Section V).

Return addresses that have stack space allocated in register
windows are partially protected from corruption. The OS has
the responsibility of spilling and filling register windows to
and from memory, and once a return address is stored back in
memory, it is potentially vulnerable. Various methods of
protecting such spilled stacks are defined. Buffer overflow
protection without requiring re-compilation of application
source code is a benefit of StackGhost, but the technique is
only applicable to SPARC systems [20].

Researchers have also proposed using more secure (or
safe) dialects of C and C++, for a high percentage of buffer
overflow vulnerabilities can be attributed to features of the C
programming language. Cyclone is a dialect of C that focuses
on general program safety, including the prevention of stack
smashing attacks [9]. Safe programming languages have
proven to be very effective in practice. While programs
written in Cyclone may require less scrupulous checking for
certain types of vulnerabilities, the downside is that
programmers have to learn the numerous distinctions from C,
and legacy application source code must be rewritten and
recompiled. In addition, safe programming dialects can cause
significant performance degradation and executable code
bloat.

Methods for the static, automated detection of buffer
overflow vulnerabilities in code have also been developed
[22, 23, 24]. Using such techniques, complex application
source code can be scanned prior to compilation in order to
discover potential buffer overflow weaknesses. The detection
mechanisms are not perfect: many false positives and false
negatives can occur. Also, as true with Cyclone, these
techniques ultimately require the programmer to inspect and
often rewrite sections of application source code.

Transparent run-time defenses have also been proposed.
The dynamically loaded libraries 1ibsafe and 1ibverify
provide a run-time defense against stack smashing attacks and
do not require programs to be re-compiled [1]. libsafe
intercepts unsafe C library functions and performs bounds-
checking to protect frame pointers and return addresses.
libverify protects programs by saving a copy of every
function and every return address in the heap. The first
instruction of the original function is overwritten to execute
code that stores the return address and jumps to the copied
function code. The return instruction in the copied function is

replaced with a jump to code that verifies the return address
before returning.

The downside to 1ibsafe is that it only defends against
buffer overflow intrusions resulting from certain C library
functions. In addition, static linking of these C library
functions in a particular executable precludes 1ibsafe from
protecting the program. Implementations of 1ibverify can
double the code space required for each process, which is
taxing for embedded devices with limited memory. Also,
libverify can degrade performance by as much as 15% for
some applications.

We compare past work to our solution in Table II. Our
hardware-based solution enables built-in, transparent
protection against common buffer overflow vulnerabilities
without requiring user or application programmer effort. We
observe that our proposal is the only solution that combines
the features of support for legacy code, wide applicability to
various platforms, low performance impact, a negligible
increase in code size, and strong protection against procedure
return address corruption.

IV. A SECURE RETURN ADDRESS STACK

We now describe low-cost enhancements to the core hardware
and software of future programmable machines that enable the
detection and prevention of return address corruption. More
specifically, we modify the implementation of procedure call
and return instructions, employ a special hardware return
address stack, and present a secure method for swapping the
contents of the hardware stack to and from memory. Since we
do not require changes to programming languages or
application source code, both legacy and future software
applications can benefit from the security provided by these
enhancements.

A. Hardware Return Address Stacks

The branch target of a procedure return instruction is often
calculated using the contents of one or more registers and/or
memory words. Therefore, the target address cannot be
resolved until the return instruction has passed through several
stages of the processor pipeline. Due to the LIFO nature of
procedure calls, a simple stack structure that stores return
addresses can facilitate highly accurate prediction of the return
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FIGURE 3. BRANCH TARGET PREDICTION WITH THE BTB AND THE RAS

instruction targets [12, 25]. Many processors, such as the
Alpha 21164 [5] and the Alpha 21264 [6], employ such return
address stacks (RAS) to improve performance by predicting
procedure return addresses early in the pipeline.

Processor branch predictors can employ a hardware return
address stack in conjunction with a branch target buffer (BTB)
as illustrated in Figure 3. Upon executing a procedure call
instruction, an entry from the BTB indexed by the program
counter (PC) is used as the predicted target of the call
instruction. The address of the following instruction (i.e., the
return address) is pushed onto the RAS. During the execution
of a return instruction, the topmost entry of the RAS is popped
and used as the predicted target (instead of using an entry
from the BTB). The RAS is unaffected during the target
prediction of other branch and jump instructions. RAS
structures are often implemented as circular buffers. When
overflow of the RAS occurs, the least recently pushed address
is overwritten with the value of the most recent return address.
We henceforth refer to the hardware return address stack as
the RAS, and we refer to the call stack for storing local
variables and return addresses in memory as the memory
stack.

Unfortunately, the RAS provides no protection against
corruption of the return addresses in the memory stack. When
a call instruction is executed, a valid return address is pushed
on to the hardware RAS, and depending on the ISA, the return
address may also be stored in the memory stack. Suppose the
return address is subsequently corrupted by a buffer overflow
in memory. At the moment when a valid return instruction is
fetched, the corrupted address is located in a register or a
memory location specified by the return instruction. Upon full
execution of this instruction, the processor learns that the
value popped from the hardware RAS does not equal the
return address associated with the instruction. However,
rather than jump to the correct return address popped from the
hardware RAS, the processor starts executing instructions
beginning at the corrupted return address. The instructions
issued and executed speculatively based upon the correct
return address from the RAS are nullified. The processor does
not employ the uncorrupted address from the RAS because the
RAS contents are treated as branch prediction “hints” that are
not expected to always be correct.

B.  Architectural Modifications

By using special protected hardware and memory structures,
we can defend against return address corruption in the
memory stack. We require a special hardware RAS, the
Secure Return Address Stack (SRAS), which always provides
correct, uncorrupted return addresses [15]. To properly
employ the SRAS, we first modify the operation of procedure
call and return instructions. We require that these call and
return instructions are clearly recognizable. For instance, in a
RISC ISA, a branch_and_link instruction is identified as
a procedure call, and a branch to the link register (such as
R31) is identified as a procedure return instruction [14].

We maintain the ISA definitions and visible behavior of
call and return instructions, but we alter the manner in which
the processor executes these instructions. Upon executing a
procedure call instruction, the processor always pushes the
return address onto the top of SRAS. The program counter is
set to the target of the call instruction. When a processor
executes a return instruction, the return address popped from
the top of the hardware SRAS — not the target specified by a
register or memory value — is assigned to the processor’s
program counter. The processor then determines whether the
return address from the memory stack equals the return
address popped from the SRAS. If these addresses differ,
corruption has occurred, and the processor can terminate the
current process, inform the OS of the corruption by issuing a
new invalid return address trap, or continue execution of the
program based upon the correct address popped from the
secure RAS.

C. Swapping Contents of the SRAS

The SRAS core consists of an n-address stack implemented as
a circular buffer. We now rely on the SRAS to store an
arbitrary number of return addresses, but the number of nested
return addresses in a program may exceed the number of
entries in the SRAS. Therefore, to avoid overwriting valid
addresses, we must define an efficient method for the
processor to securely swap the contents of the SRAS to
memory when the SRAS becomes completely full. We define
the event in which the SRAS becomes full following a call
instruction as overflow; the event where the SRAS becomes
empty following a return is defined as underflow. We discuss



the typical stack depth sizes observed for common programs
in Section VI.

Upon overflow, the processor will store the n/2 least
recently pushed addresses to memory underflow, and the
processor will retrieve up to n/2 most recently pushed
addresses from memory in the event of underflow. The
processor stores and retrieves n/2 addresses to and from
memory rather than all n addresses to prevent an SRAS
thrashing scenario. In some programs, a policy of transferring
the entire contents of the SRAS could lead to frequent storage
of all SRAS addresses to memory immediately followed by
the retrieval of n SRAS addresses from memory. We
investigate two different approaches to handling SRAS
swapping: operating system-managed and processor-managed
swapping.

OS-managed SRAS Swapping. In the first approach,
the operating system assumes complete responsibility for
swapping SRAS entries. The processor issues an OS interrupt
in the events of SRAS overflow or underflow. The OS then
executes code that transfers contents of the SRAS to or from
memory; the application does not observe or participate in
SRAS content transfers. The kernel is responsible for
managing the memory structures required to store the spilled
SRAS entries for all threads running on the system. This is
achieved by simply maintaining one stack of spilled SRAS
return addresses for each process. In addition, the virtual
memory regions that store the SRAS contents are mapped to
physical pages that can only be accessed by the kernel.
Hence, user-level application threads cannot corrupt the
contents of their respective spilled stacks.

Processor-managed SRAS Swapping. In this scheme,
we implement hardware enhancements to reduce the number
of OS invocations associated with SRAS overflow and
underflow. We store information in the processor concerning
the physical memory locations of the OS-managed data
structures that contain spilled SRAS addresses. Upon SRAS
underflow or overflow, the processor can employ this
information to directly transfer SRAS contents to and from
physical memory rather than invoking the OS. To support this
functionality, the processor maintains two pointers to two
physical pages that store spilled SRAS contents for the active
process. Also, the processor maintains a counter that indicates
how much space is available in the two physical pages.
Although the two pages may be virtually or physically
separated in memory, the two pages are treated as being
adjacent to form a single “superpage.” When the superpage
underflows or overflows, the OS is invoked to allocate a new
physical page or deallocate one of the two physical pages.

The processor maintains two pointers to two physical
pages rather than one pointer for one physical page in order to
avoid a thrashing scenario in which a page is repeatedly
allocated and immediately deallocated. In such a trashing
situation, the OS could be invoked for every SRAS spill and
fill, and performance would decay. By providing the
processor with access to two physical frames at once, we can
avoid calls to the OS caused by jumping back and forth over a
page boundary. The processor logic required to manage the
two pointers and the counter is based upon a simple 4-state

machine. The two bits that represent the machine state are
stored by the processor in the high order bits of the counter.

The OS is invoked much less often in this scheme than in
the OS-managed swapping scheme. For example, if the SRAS
consists of 64 8-byte return address entries and the page size is
8 KB, the OS is invoked only once after 8192/((64/2)x8) = 32
consecutive SRAS overflows. In the OS-managed scheme,
the OS would be invoked for each of those 32 SRAS
overflows. In Section VI, we compare the performance
impact of these two schemes on a set of benchmark programs.

We also note that since the values popped from the SRAS
must always be valid to preserve correct execution, all of the
SRAS contents and any associated configuration state bits
must be transferred to and from memory on context switches.

D. Security Analysis

Our primary design goal is to prevent attacks in which hostile
code is injected and executed on innocent hosts by exploiting
buffer overflow vulnerabilities that corrupt procedure return
addresses. The modifications described above accomplish this
goal: we defined architecture based on a secure return address
stack that detects and prevents any corruption of return
addresses. In our system, only call and return instructions can
modify the contents of the SRAS. Hence, the correct return
addresses will be preserved in the event of a standard buffer
overflow attack that corrupts the values of return addresses in
the memory stack. If such corruption does occur in memory,
the processor detects this and can respond appropriately.

Since the SRAS is finite in size, its contents must be
securely swapped to and from memory upon overflow and
underflow, respectively, to guarantee security. In both the
OS-managed and processor-managed SRAS schemes, we
protect spilled SRAS contents by storing the addresses in
physical pages that are not accessible by the virtual memory
spaces of user-level applications.  Because non-kernel
processes cannot access the contents spilled from their
respective SRASes, no software bug or buffer overflow
vulnerability in such processes can affect the spilled return
addresses.

To provide truly pervasive and comprehensive protection
against buffer overflow and related attacks, our solution
should be implemented in conjunction with existing software
defenses. Software-based security solutions encourage safe
programming practices and identify a wide variety of security
vulnerabilities in new code. Our proposal complements these
solutions by offering specialized dynamic protection for
legacy code and preventing potential attacks in new code that
may be unrecognized by the software defenses. In addition,
since we require changes to hardware, our proposal is meant
to be a long-term solution. Software defenses, however, can
and should be applied as they become available.

V. NON-LIFO PROCEDURE CONTROL FLOW

If software always exhibited LIFO procedure control flow
behavior, the SRAS would transparently provide hardware-
based protection of return addresses for all programs. No
compiler changes or recompilation of existing source code



would be necessary: the system would provide protection for
all legacy and future binary executables. Unfortunately,
however, some existing executables use non-LIFO procedure
control flow. For example, some compilers seek to improve
performance by allowing certain procedures to return to an
address located deep within the stack. The memory stack
pointer is then set to an address of a frame buried within the
stack; the frames located in between the former top of the
stack and the reassigned stack pointer are effectively popped
and discarded. Exception handling in C++ is one technique
that can lead to such non-LIFO behavior.

Other common causes of non-LIFO control flow are the C
setjmp and longjmp library functions. These functions
are employed to support software signal handling. The
longjmp function may cause a program to return to an
address that is located deep within the memory stack or to an
address that is no longer located in the memory stack. More
specifically, a particular return address may be explicitly
pushed onto the stack only once, but procedures may return to
that address more than once. Note that tail call optimizations,
which seem to involve non-LIFO procedure control flow, do
not cause problems for the SRAS. Compilers typically
maintain proper pairing of procedure call and return
instructions when implementing tail call optimizations.

Our security proposal depends on the correctness of the
address popped from the top of the hardware SRAS.
However, the SRAS mechanism described so far does not
accommodate non-LIFO procedure control flow. We can
address this issue in at least four ways. These four options
trade varying degrees of security and non-LIFO support for
implementation cost and complexity.

The first two options enable zero or complete support for
non-LIFO behavior while facilitating high or low security
against procedure return address corruption, respectively. The
first option is to implement the SRAS as described above and
completely prohibit code and compiler practices that employ
non-LIFO procedure control flow. This provides the highest
degree of security against return address corruption. Legacy
executables that exhibit non-LIFO procedure calling behavior
will terminate with an error (if not recompiled). The second
option is to allow users to disable the SRAS with a new
sras_off instruction. This enables the execution of
potentially insecure code that exhibits any non-LIFO behavior
as permitted in systems without an SRAS.

The third option is to permit certain types of non-LIFO
procedure control flow such as returning to addresses located
deep within the stack. This option requires re-compilation of
some legacy programs. During re-compilation, the compiler
must take precautions to ensure that the top of the SRAS will
always contain the correct target address for an executed
return instruction in programs that use non-LIFO techniques.
We define new instructions, sras_push and sras_ pop,
which explicitly push and pop entries to and from the SRAS
without actually calling or returning from a procedure.
Compilers can employ these new instructions to return to an
address deep within the SRAS (and to the associated frame in
the memory stack) when using longjmp, C++ exception
handling, or other non-LIFO routines.

The fourth option is to provide dynamic support for
common non-LIFO behavior. This approach does not support
all instances of non-LIFO behavior that the second option can
handle via re-compilation, but it does allow execution of some
legacy executables (where the source code is no longer
available) that exhibit non-LIFO procedure control flow.
First, we implement the sras push and sras_ pop
instructions described above. We also need an installation-
time or run-time software filter that strategically injects
sras_push and sras_pop instructions (as well as other
small blocks of code) into binaries prior to or during
execution. The software filter inserts these instructions in
recognized routines that cause non-LIFO procedure control
flow. For instance, standardized functions like setjmp and
longjmp can be identified at run-time via inspection of
linked libraries such as libc. This option only handles
executables that employ known non-LIFO techniques,
however. For new manifestations of non-LIFO procedure
control flow, the software filter may not identify some
locations where the new instructions should be inserted.

Regardless of the method(s) used to handle non-LIFO
procedure control flow, we require that the SRAS be “turned
on” by default in order to provide built-in protection. Our
architecture definition stipulates that the SRAS is always
enabled unless explicitly turned off by the user, at his own
risk.

VI. PERFORMANCE IMPACT

We now examine the performance impact of spilling and
retrieving the contents of the SRAS to and from memory
during program execution. The architectural enhancements
that we propose enable security features for all programs,
rather than just for network-based applications. Because of
this, a performance study that examines the impact of our
proposed architectural changes on all programs is more useful
than one limited to network applications. Thus, we use
SPEC2000 benchmarks to represent a “general-purpose”
workload [21].

A.  Simulation Methodology

To obtain performance data for the benchmarks, we use
SimpleScalar, a cycle-accurate out-of-order superscalar
processor simulator [3]. We consider the scenario in which
the operating system is invoked each time a SRAS swap is
required and the scenario where the processor primarily
handles SRAS swapping. The OS-managed swapping scheme
is easier to implement, but the processor-managed scheme can
provide better performance. We simulate the execution of 500
million instructions of 12 SPEC2000 integer benchmarks after
skipping at least 1 billion instructions in order to capture
steady state behavior [17].

Our base processor model closely represents an Alpha
21264 processor [6]. We summarize the processor simulation
parameters in Table III. The base processor includes a
hardware return address stack that is implemented as a circular
buffer. In some situations, speculative execution can pollute
the RAS with invalid addresses. Hence, to maintain the
integrity of the SRAS, the processor must include a perfect



repair mechanism to recover from SRAS corruption due to
branch mispredictions [19]. Such mechanisms involve saving
the top-of-stack (TOS) pointer and the return address to which
the TOS points following the prediction of a branch
instruction. If the processor discovers that a particular branch
was mispredicted and the wrong program control path was
followed, the processor can use information such as the saved
TOS to restore the SRAS to its former, correct state
(preceding the mispredicted branch).

We gather performance results for all 12 benchmarks,
SRAS sizes of 16, 32, 64, 128, and infinite entries, and page
sizes of 8 KB, 16 KB, and 32 KB. To model the SRAS
swapping code in the OS-managed swapping scheme, we
wrote a swapping and memory management routine in C. We
also wrote C code that models the allocation and deallocation
of physical pages during OS invocations in the processor-

TABLE III. SIMPLESCALAR SIMULATION PARAMETERS
Parameter Characteristics
Instruction window 64-entry RUU

Fetch/decode/issue width

4 instructions

Commit Width

8 instructions

Functional Units

4 integer ALUs, 1 integer mult.
4 FP ALUs, 1 FP multiplier

BTB

4K-entry, 2-way set associative

Branch Predictor

Hybrid: 4K 2-bit selector
4K 2-bit bimodal predictor
1K 2-bit local w/ 10-bit history

L1 data cache

64 KB 2-way set-associative
64 byte blocks, 2 cycle latency

L1 instruction cache

64 KB 2-way set-associative
64 byte blocks, 1 cycle latency

2 MB 4-way set associative

L2 unified cache

managed swapping scheme. We compile the SPEC2000 64 byte blocks, 12 cycle latency

benchmarks and our OS swapping code on an Alpha machine Main memory 100 cycle latency
with full optimizations to produce Alpha executables. Load/store queue 64 entries
Data memory ports 2 ports

We simulate the execution of our SRAS swapping and
page allocation routines assuming the caches are initially cold.
We obtain cycle counts for all four OS routines: spilling the
SRAS to memory in the OS-managed scheme, filling the
SRAS from memory in the OS-managed scheme, allocating a
new physical page in the processor-managed scheme, and
deallocating a physical page in the processor-managed

I-TLB and D-TLB 128-entry fully-associative

scheme. We find that each of these four routines requires B max depth

between 23,000 and 25,000 cycles to complete. These cycle 80 —
;00 5, depth

counts vary with the size of the SRAS. 0 mean dep

In addition, we simulate the spilling and filling of SRAS
contents directly to and from physical memory in the
processor-managed SRAS swapping scheme by stalling the
processor for a number of cycles. This stall time represents
the number of cycles required to transfer n/2 SRAS entries

directly to or from main memory. The bus from the processor 2 > £ o g 2 %5 § £ & X 5
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to main memory in our model can transfer one 64-bit value ° g ® o @ o g € 2 5
every two cycles after an initial latency. In the event of - g
underflow, the first load experiences the main memory latency Benchmark

of 100 cycles, and then the (n/2 — 1) subsequent addresses
arrive at the processor every other cycle for (n — 2) cycles.
Hence, the total stall time is (98 + n) cycles. Similarly, in the
event of overflow in this scheme, the processor stalls for (98 +
n) cycles to store n/2 addresses to main memory.
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depends on the rates at which the memory stack (and thus the
SRAS) grows and shrinks.

The performance penalties caused by SRAS swapping in
the SPEC2000 benchmarks are presented in Table IV. These
statistics represent percent performance degradation caused by
an n-entry SRAS relative to the base machine model that
includes an n-entry return address stack. The entries listed in
bold indicate the situations in which the performance
degradation exceeds 1%. For an SRAS size of 16 entries in
the OS-managed scheme, 6 of the 12 SPEC2000 integer
benchmarks experience performance reductions ranging from
47% to 67.9%. If the SRAS contains 64 entries, the
performance degradation caused by OS-managed swapping is
negligible (i.e., 1% or less) for all benchmarks except for
parser. The parser benchmark is a syntactic parser of
English in which the memory stack grows and shrinks
quickly; thus, SRAS swapping penalties can be significant.
When the SRAS contains 128 or more entries, the
performance impact is negligible for all of the benchmarks.

In the processor-managed scheme, however, the
performance degradation is less than or equal to 1% for all of
the benchmarks when using a SRAS of size 16 entries or
greater. We therefore conclude that the processor-managed
SRAS swapping scheme is superior to the OS-managed SRAS
swapping scheme. The processor-managed scheme achieves
much higher performance than the OS-managed scheme at the
cost of a small, incremental implementation effort.

VII. CONCLUSION

Malicious parties often exploit buffer overflow vulnerabilities
to enable the insertion or execution of hostile code on an
innocent user’s machine by corrupting procedure return
addresses in the memory stack. Due to the growing threat of
attacks such as distributed denial of service, addressing such
buffer overflow vulnerabilities has become a security priority.
Although software-based countermeasures are available, a
processor architecture defense is justified because of the fact
that major security problems stemming from buffer overflows
continue to plague networks and computer systems.

We described a secure hardware return address stack
(SRAS) that detects and prevents corruption of procedure
return addresses. The SRAS only requires minor changes to
the compiler, the operating system, and the branch prediction
structures found in many microprocessors, so legacy and
future software can enjoy the security benefits without
modifying application source code. We presented new
approaches to managing and swapping the SRAS, and we
presented new results that demonstrate the SRAS causes a
negligible performance impact in most applications.

Our hardware-based solution should be applied in tandem
with existing software countermeasures to provide truly robust
protection against buffer overflow attacks. In future work, we
will explore SRAS enhancements, and we will investigate
alternative techniques for preventing buffer overflow attacks.
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