
 Providing Secure Environments for Untrusted
Network Applications

----With Case Studies using VirtualVault and Trusted Sendmail Proxy1

Qun Zhong

1 Trusted Sendmail Proxy was carried out as part of the End-to-End Security (E2S) project in the European IVth

Framework Programme, IT RTD Project No. 20.563

Hewlett Packard Laboratories, Bristol
Filton Road, Stoke Gifford
Bristol, BS12 6QZ
U.K.

Telephone: +44 117 9229854
Fax: +44 117 9229285
Email:qz@hplb.hpl.hp.com

Abstract:

Bugs in network application program can be exploited to compromise the system on
which the application is running. When running these applications in an unsafe
environment such as the Internet, the security concerns raised are a significant barrier
to electronic commerce. In addition, these application programs such as web servers,
mailservers, etc., are usually too big and complex to be bug free; trying to build
security directly into these applications has been proven very difficult.

The purpose of the paper is to demonstrate that Compartmented Mode Workstation is
a suitable platform to provide a secure environment that can contain most existing
network applications. We describe how to wrap these applications to reduce the
potential for a security breach without the need to rewrite the application completely.
By minimizing the effort of transferring unsafe application services to be reasonably
secure, we are able to accelerate the process of electronic commerce.

Keywords:

Internet/Intranet Security, Secure Environment, Untrusted Application, Sandbox,
Compartmented Mode Workstation

1. Introduction
With global connection of Internet and easy access to various services on most
hardware platforms, integrating existing IT application with Internet presents
incredible commercial opportunities. However, deploying those applications also
brings a major security challenge. Any process that lets customers into internal
systems potentially opens a door to sensitive, mission-critical data and applications.
Without the proper security guard, the danger coming from this door would keep
many businesses from doing business on the Internet.

Various network security solutions provide different protection for different types of
network attack [CB 94]. However, security is an integrated system problem: any
missing part can render the whole system vulnerable.

Today, most network security solutions do not guarantee an application server will not

2

cause a security problem. Since most application servers are very big and complex, it
is very difficult to insure that they will be bug-free and the bugs can be exploited to
compromise the network system.

In this paper, we explain how to use Compartmented Mode Workstation, a B1-level
operating system, to provide a safe environment for application servers. By
encapsulating the existing application without rewriting it completely, we can gain the
advantage of avoiding re-development and keep pace with application upgrades.

1.1 Background

Network security protocols such as SSL[FKK96], SHTTP, etc., provide some protection
over the communication channel between two ends. Firewall technology offers some
protection by keeping out unwanted connections. However, most protection ends
when the data reaches the server; they do not address what happens if the data itself
triggers off bugs hidden in the server software or the server machine is compromised
(for example an intruder gains a login). This can compromise the network system to
which the server is attached, resulting in the leakage or damage of sensitive data on
the server machine or contained in the internal network.

It is almost impossible to directly build security into every application. On one side,
this would lead to rewriting the application in a simple, secure form. This is not
feasible since most applications are very big and complex. They usually took great
effort to develop. On another side, even if we manage to rewrite the program, we
could not guarantee that the new program would be bug-free or safe. The sad story of
Sendmail is an example of trying to build the security directly into the highly
privileged program. New weakness/bugs of the program are identified continuously;
new patches/versions have to be released and installed at the same fast pace in order to
prevent a hacker from making use of them. It’s not an easy task to install and
configure an application every couple of months.

We have a dilemma: on one side, opening these applications to the customers on the
Internet could bring brand new business opportunities and increase the
competitiveness of the business. On another side, these applications are previously
developed without security in mind and mainly used within business private networks,
which are much safer than the Internet. Connecting these services to the Internet could
raise substantial security problems that would be beyond the affordability of the
business.

One of the techniques deployed is called sandboxing, a concept previously introduced
in fault isolation [WLA93]. In our context, it means running the vulnerable applications
in a restricted environment thus confining the damage to the degree we can afford. In
most of the situations, this means protecting the data from unwanted use by the
application or/and prevent the hackers from gaining the privilege of the application
when they break in.

However, conventional operating systems offer little choice in providing the restricted
environment. It is very difficult to deploy the principle widely. Some work
[GWT96][TIS96] make use of this principle to solve some specific problems. However,
due to the limitation of the underlying operating system infrastructure, it’s hardly
suitable to use these methods to provide a general framework to solve the problem in

3

this category. For example, [TIS96] relies on physically separated hardware to provide
information seperation. [GWT96] relies on specific operating system’s process tracing
facilities to trace the system call. There is still the powerful root user and the security
checks are still at the user-level. There is still the possibilities that the hacker can
make use of compromised privileged applications to alter the security policies and
further his attacks.

1.2 Our Approach

We use HP-UX CMW (a B1 level operating system) to wrap untrusted applications.
Operating systems certified as B1 or higher level provides a set of fine grained
administrative security attributes and a set of operations to handle these attributes.
Security checks are built into the Operating System kernel to guarantee maximum
protection. Due to these features, it is able to separate the application structure from
security structure, thus provide an ideal general platform for wrapping existing
untrusted security-dumb applications.

To explain how CMW can be used to sandbox untrusted applications, we use two
typical examples to serve as the case studies. One is the HP’s Praesidium
VirtualVault, which wraps the Web server and prevents it from unauthorized
access/modification the data it uses. Another is Trusted Sendmail Proxy developed in
HP Labs Bristol that prevents the heavily privileged yet vulnerable Sendmail from
causing fatal damage to the system it running on.

The objective of the work is to serve as a general guideline to providing network
application services safely by wrapping untrusted applications and to explore the
advantages of introducing CMW (designed for military security) to solve the
enterprise security problems in the commercial area. By minimizing the effort of
developing the trusted application by wrapping the existing one, one can gain the
advantage of avoiding redevelopment and keep pace with the application upgrade.

2. Security Concepts of CMW
The Compartmented Mode Workstation Evaluation Criteria (CMWEC) [DIA91] was
originally developed by Defense Information Agency for evaluating trusted systems
used in the military and government. The CMW criteria is a different but related set of
criteria to the more popular Trusted Computer Systems Evaluation Criteria (TCSEC
or Orange Book) [DOD85]. Under the TCSEC terms, CMW has all of the B1 level
security features and includes some of B2 and B3 features. The HP-UX CMW is an
HP-UX operating system with enhanced security features which satisfies CMWEC
and has been passed the evaluation of B1 level. Applications developed on HP-UX
can be run without modification on HP-UX CMW.

The most significant feature of B1 or higher level operating systems lies in its
abstraction of administration security attributes in the computer system. In addition to
the enhanced discretionary access control mechanisms based on the security attributes
such as identities found in the conventional operating system, it also provides the
mandatory access control mechanisms based on sensitivity levels built upon the
concept of compartment and classification. The purpose of the MAC is to enforce
administration security policies. The concepts of compartment and classification

4

capture the essential comparable attributes of the real world and enable it to describe
the security requirements found in the various applications naturally and gracefully.

We do not intent to cover all the CMW security features here. This section only
introduces some of the B1 level security features used in this paper.

2.1 Compartment, Classification and Mandatory Access Control

It is the Mandatory Access Control based on the sensitivity labels that distinguishes
B1 or higher level operating systems from the conventional C and lower level
operating systems. MAC is based on the administration policy concerned with
information flow. Its mathematical model is Bell-LaPadula model [BDE75]. It
guarantees that no information flow will violate confidentiality and integrity (integrity
is guaranteed in CMW, not necessarily on B1 level systems).

Sensitivity labels are a combination of hierarchical classification and non-hierarchical
compartments. Classification represents a kind of ordered relationship while
compartment represents a kind of container (set) relationships. The relationship of two
sensitivity levels A and B is defined as:

A is equal to B if:

1. A’s classification is the same as B’s, and

2. A’s compartment sets are the same as B’s.

A dominates B if:

1. A’s Classification is greater than or equal to B’s, and

2. B’s compartments are a subset of A’s.

Mandatory Access Control is enforced by operating system when a system operation
happens. Every subject (such as a process or a user) and object (such as a file or
device) in a B level system is labeled with a sensitivity label. When a subject wants to
perform a read/write operation on an object, the operating system decides whether to
allow or reject the operation by comparing sensitivity labels of the subject and the
object in addition to the normal discretionary access control check. The MAC rules
CMW use is: Subject A can read object B only if A’s sensitivity label dominates B’s
sensitivity label; Subject A can write object B only if A’s sensitivity label equals B’s
sensitivity label.

Mandatory access control is the administration imposed access control. The sensitivity
label of an object or the subject is defined in Trusted Computing Base and is not
changeable by the user. It is different from the discretionary access control where
whether an object is accessible to a particular subject is at the discretion of the owner
of the object.

2.2 Privilege

Privileges are the trust tickets given to the subject to enable the information flow
across different levels and to do some other system operations. MAC label checking is
enforced at the lowest system operation level, i.e., system read/write operation level
along with the Discretionary Access Control. It guarantees that the default information

5

flow would not destroy the confidentiality and integrity of information. Any
information flow between different security levels occurs in an auditable way with the
necessary privileges. When a MAC/DAC check fails, the operating system checks to
see whether the subject has the necessary privilege to by-pass this check before
deciding to reject the operation.

Beside read/write operations, the operating system also contains other system
operations to be used by applications such as bind to a privileged TCP port. CMW
associates a different privilege to each of these system operations. To be able to use a
particular system operation, a subject must possess the relative privilege. By providing
these fine grained privileges, there is a way to confine the subject in the minimum
privileges it needs to finish its task and avoid the subject from abusing system
resources that it does not need.

2.3 Trusted Programming

On HP-UX CMW, programs can be written in a trusted way by following the
guidelines set out in [HP 96c].

The privilege inheritance between parent and child guarantees the safe transfer of the
privileges with great flexibility. For example, a child process can not gain the
privileges it does not have accidentally by inheriting it from parent process since
privilege inheritance is not automatic. A parent process can have full control of its
child process’s behavior since a process holding a certain privilege can decide what
privileges a child process can have, depending on the situation.

Trusted programs only raise privileges when they need to. This prevents the program
that needs to perform certain system operation from carrying the privilege of doing the
operation all the time even when it does not need to do the operation. If a bug is
triggered off in a non-privileged area, it cannot lead to a serious problem. By keeping
the privileged area of a program small and simple, we can put more effort into
studying these pieces of code to keep them bug-free.

3. Using CMW to Wrap Untrusted Applications
Our objective is to protect ourselves from unwanted effects when an application server
is compromised, for example, to prevent an intruder gaining root access to a system
attached to the internal network by fooling Sendmail to hand this control to him.

CMW can be used to prevent the hacker from causing damage by manipulating
vulnerable network application servers. In this section, we look at what the hacker is
expecting from compromising the application and what we can do to prevent it. Then
we use two typical network applications: Web server and Sendmail to illustrate how to
apply the methods.

3.1 What we do not want to see from a compromised application

By analyzing the hacker’s objectives and breaking them down into different
categories, we are able to identify which part of the application is vulnerable to which
types of attack. Then we are able to apply appropriate methods to strengthen it.

6

Common attacks’ objectives are:

1. To gain the privileges of the application, for example root privilege, so that
the hacker can do things he is not allowed to do with his current privileges.

2. To access the data the application uses in an unauthorized way, e.g.
modifying the HTML files the Web server delivers. One of the examples of
how this could cause great damage is the “U.S. Department of Injustice” case
[RN 96].

3. Using the applications as a step to compromise another system that the
hacker does not have the right to directly connect to. Since many applications
need to cooperate with other applications, compromising one that the hacker
can access can be used to attack another one that could not be reached before.
For example, most Web servers rely on CGI scripts to provide information
generated by other applications. Compromising the Web server could allow an
outside hacker into the company internal network.

3.2 Using CMW to confine the hacker

To solve the above problems, we need two basic mechanisms: minimum privilege and
information separation. Minimum privilege is needed when we want to reduce the
function of a particular part of or the whole application to a certain degree.
Information separation is needed when we want to prevent the server from accessing
the data that it does not need or using data in an inappropriate way.

CMW is an ideal platform not only because it provides the mechanisms we need, but
also because these mechanisms are built into the operating system kernel so that
nobody can bypass them. Its Mandatory Access Control provides the information
separation that prevents one process in one compartment from accessing data
belonging to another compartment in an inappropriate way. Fine-grained privileges
can let us control the behavior of the program without looking into the code.

 Here are solutions to the above problems:

1. To prevent the hacker from gaining the privilege the application has, the following
method can be used:

• When the application has to talk to the outside world (Internet), turn off the
privileges that could be potentially harmful;

• When the application has to be run in a privileged state to fulfill its
functionality, do not allow it to communicate with the outside world directly;

• Provide a trusted link between the two sides of the application, i.e., unprivileged
and privileged state.

2. By carefully labeling data the server uses in a suitable compartment and
classification, we can thwart the threat of inappropriately accessing data. For
example, give the read only data a sensitivity label that is lower than the process, so
the process can read it but can not modify it.

3. In order to stop the hacker from furthering his adventure even after he manages to
compromise one application, we can let other associated applications run at

7

different sensitivity levels and provide a strict communication path between them.
The process that provides the path between two applications has the necessary
privilege and can be programmed in a trusted way [HP96c] to enable the process to
perform the operations that cross the compartment in a safe way.

By analyzing the application according to when it has to interact with the unsafe world
and when it is going to access certain types of data, we can decide how to break it up
and use appropriate methods to encapsulate different parts. The following section uses
two typical examples to show how to put the above guidelines into action.

3.3 Trusted Sendmail Proxy

Trusted Sendmail Proxy is a set of trusted programs to encapsulate the dangerous
Sendmail application. It provides a sandbox to run Sendmail to reduce the damage
caused by accidental or malicious use.

Sendmail has been one of the Internet hacker’s favorite applications and the result can
be very serious. Experts consider it one of the security nightmares. One thing that
contributes to its fame is its long list of reported bugs [CERT]. Moreover, there are
probably many other bugs that are still buried in Sendmail or not reported. The various
techniques deployed in attacking Sendmail all make use of various existing bugs in
Sendmail.

What makes Sendmail more attractive to hackers is that it is a heavily privileged
application. It needs many privileges to run. In the normal UNIX, it has to be run as
the powerful “root”. Some of these privileges are very dangerous and not available to
ordinary users. Once Sendmail is compromised and hands these privileges to the
attacker, the whole system is probably comprised.

We cannot expect Sendmail to be bug free and we do not want to rewrite it in a trusted
way [HP96c] since it is too big and complex. The objective we aim at is to minimize
the damage caused by exploiting it. In our context, this means that the damage is
confined in the local host and no critical information on the local host can leak out. As
indicated in the previous section, the strategy we adopt is providing a sandbox to run
Sendmail. Figure 1 shows the architecture of the Trusted Sendmail Proxy that
provides a secure environment for priviledged Sendmail.

tsmap tsmapd

relay

sendmail

tsmapd

sendmail

System Outside System Inside

6\VWHP
�6HQGPDLO�&RQILJXUDWLRQ�ILOHV��HWF��

WVPDS
�QRQH�SULYLOHJHG�

Figure 1: Architecture of Trusted Sendmail Proxy

8

3.3.1 Applying the Methods

Since Sendmail is a heavily privileged program, the first thing we want to do is keep it
away from directly interacting with outside world when in a privileged state. We use
two compartments to divide the environment into inside and outside. The outside
compartment is used for interacting with the Internet to collect the messages and for
running unprivileged Sendmail to send messages to the Internet. The inside
compartment is for running the Sendmail in privileged state to deliver the messages
locally.

Because there is no easy way of splitting Sendmail and making it accept messages
without giving it privileges, we use TIS’s method [TIS96] to write a simple front end
tsmap implementing SMTP only to collect the messages directed to this host and write
the messages to a spool directory. This program only needs one harmless privilege that
let tsmap excute “chroot” to its spool directory so that tsmap can only access the spool
directory to provide further protection.

Sendmail must have some potentially dangerous privileges when it has to call a mailer
to deposit the message to the user mailbox or sending out messages in the name of the
message sender. We put the privileged Sendmail in the inside compartment so that the
host running Sendmail can act as the internal network's mailhost. Since we only give it
the privileges to manipulate the users’ mailbox but not the privileges that enable the
operation across the compartments, it cannot have any direct connection with the
outside compartment.

We can see that CMW has an advantage over conventional operating systems here. In
conventional operating systems, implementing similar functionality needs at least two
physical machines [TIS96].

We provide a small trusted program “tsmapd” as the trusted communication passage
to pass the messages to privileged Sendmail. This program reads the messages
deposited in the spool directory by “tsmap”, raises privileges that allow the write
operations across the compartments if necessary, passes the messages to the privileged
Sendmail to do the real delivery. Since some special formatted mail headers can
trigger off some bugs in the mailers Sendmail use, we can also let “tsmtpd” filter out
the known dangerous mail headers.

Sendmail in the inside compartment accepts the messages passed to it by either inside
or outside tsmapd. If the message should be delivered within the internal network,
then this privileged Sendmail delivers it in the name of the message sender. If the
message should be delivered to the outside network, the message should be passed to
a trusted relay since this Sendmail does not have the privilege to do operations across
the compartments. We modify the configuration file of this Sendmail to let it pass the
“outbound” messages to our trusted relay in stead of the default built-in [IPC] mailer.

The small trusted relay program simply reads the messages and raises its privileges to
pass the messages cross the border to the outside Sendmail.

The outside Sendmail performs complex operations to send out messages. It does not
need any privileges to do so.

There are some common data files that both the inside and outside Sendmail want to
read. We put these files in the level that is dominated by both outside where the

9

outside Sendmail is running and inside where the inside Sendmail is running so that
both of them can read but not change.

3.3.2 Security Risk Analysis

If a hacker from inside or outside manages to gain the control of the daemon he is
talking to (tsmap), he is unlikely to gain any profit since the program he is controlling
only has the privilege to access the temporary undelivered messages in the spool
directory.

The above architecture can also prevent the leakage of internal information and the
Worm-like attacks even when the internal Sendmail is compromised. The mail
messages carefully constructed by the hacker can trigger off bugs in Sendmail or in
one of the mailers and fool it into executing some undesired code, as in the case of
famous Morris Internet Worm [SD 96]. Since Sendmail and its child processes are not
able to open connections to the outside, the compromised Sendmail will not be able to
pull in the code from outside that does the real infection and damage (as in the Worm
case). It will not be able to send out internal information either.

3.4 HP Praesidium VirtualVault ---- Wrapping Web Server

VirtualVault is one of HP’s Internet security products built on top of the HP CMW.
VV provides secure access to the sensitive internal data for a commercial “off-the-
shelf” Web server that directly interacts with the Internet.

Serving static data alone is not enough in most situations. There is a need to connect
other applications, for example, corporate databases, to the Web server.

A typical Web server contains too many complex functions and is too extensible to be
trusted. Although the Web server itself does not need many privileges to run, it can be
used as the stepping stone to attack the internal applications that interact with it.

System
(static read-only data, such as HTML files, etc.)

System Outside System Inside

Web Server

CGI
Requester

Trusted
Gateway Agent

CGI Scripts

Figure 2: VirtualVault Architecture

The architecture we get is shown in Figure 2. We use two compartments, inside and
outside, and one classification (system). The read-only information is labeled with the
sensitivity label “system” without compartment. So the process running at sensitivity
level “system outside” and “system inside” can read it but not modify it. The Trusted

10

Gateway Agent provides a restricted secure path between the outside Web server and
the inside applications.

3.4.1 Applying the Methods

The solution is to separate the applications and provide a restricted secure path
between them according to the above methods. The point where Web server interacts
with other applications is through the Common Gateway Interface. (This is the most
popular interaction method Web servers use now. More efficient and capable secure
interaction can be found in [ER97].) CGI simply spawns a child process to execute the
program indicated in the URL and passes all the arguments to it. All we need to do is
let the Web server run in the outside compartment so that it cannot access the internal
sensitive resource; let all the CGI programs run in inside compartment so that they can
cooperate with other internal applications. All the CGI scripts that can be used by the
outside web server are registered with the Trusted Gateway Agent. All the outside
web server’s CGI requests are directed to the CGI Requester which passes it to the
Trusted Gateway Agent. TGA validates whether the CGI request is a valid one. If it is,
it then raises its privilege to invoke the CGI script in the inside compartment, passing
out the result.

To protect the static read-only information, we should label it with a lower sensitivity
label so that applications running in both inside and outside compartments can read it
but not modify it.

3.4.2 Security Risk Analysis

The outside Web server only holds the privilege that enables it to bind to the
privileged HTTP port. It is running at the level higher than the static HTML file’s
level, so it can read them but cannot modify them. If it is compromised, it can neither
modify the static HTML files nor go into the internal system since it does not hold any
other privileges at all.

Even if the data passed in from outside web server triggers off a bug in the inside CGI
scripts or other application started by CGI, all damage is confined in the “system
inside” compartment. Since all the “system inside” process cannot open connections
to the outside network, the hacker is not able to directly control the broken process
and make use of it.

4. Conclusion and Future Work
Due to fine-grained administrative security attributes and security operations, CMW
provides an ideal platform to provide the tailored security management to meet
various enterprise security policies. It can be used for commercial applications on the
large scale and diverse networks such as the Internet where administrative security
management becomes a vital part of security infrastructure and where there are many
legacy applications that were developed without security in mind.

This paper demonstrates one of commercial application areas of CMW. Security-
dumb applications can be safely put on the unsafe network without major re-
engineering. It widens the service area of these applications. This is very attractive to a
business that wants to make use of its existing IT infrastructure, or third party’s

11

products, to explore the new business opportunities on the Internet while at the same
time protecting themselves from the various dangers it present.

CMW also show promise in other application areas, such as building new secure
distributed object gateways [ER97], enhancing user authentication [DG97] and using
existing single level applications to provide multi-level services [DC97].

By exploiting various commercial application areas of CMW, we aim to identify
general security infrastructures for enterprise applications and to modify and extend
CMW to build this platform.

5. Acknowledgments
The author would like to thank Nigel Edwards for his constructive suggestions and
great help in preparing this paper. Also thanks Jonathan Griffin for his valuable
inputs.

6. Reference
[BL 75] D.E. Bell and L.J. LaPadula, “Secure Computer Systems: Mathematical Foundations and Model”, Mitre
Corp. Report No. M74-244, Bedford, Mass., 1975

[CB 94] W.R. Cheswick, S. M. Bellovin, “Firewalls and Internet Security - Repellimg the Wily Hacker”, Addison-
Wesley, 1994

[CERT] CERT advisory, ftp://ftp.cert.org/

[DC 97] C. I. Dalton,“Providing Secure Multilevel Service using existing single level application”, in preparation

[DG 97] C. I. Dalton and J. F. Griffin, ”Applying Military Grade Security to the Internet”, 8th Joint European
Networking Conference, Edinburgh, U.K., 12-15 May 1997

[DIA91] Defense Intelligence Agency, “Compartmented Mode Workstation Evaluation Criteria Version 1(Final)”,
DDS-2600-6243-91, 1991

[DOD 85] Department of Defense Standard, “DoD Trusted Computer system Evaluation Criteria”, DoD 5200.28-
STD, Dec. 1985

[ER 97] Nigel Edwards and Owen Rees, “High Security Web Servers and Gateways”, Proceedings of the 6th
WWW Conference, April 1997

[FKK96] A.O. Freier, P. Karlton and P.C. Kocher, “The SSL protocol Version 3.0”,
http://home.netscape.com/eng/ssl3/ssl-toc.html

[GWT 96] Ian Goldberg, David Wagner, Randi Thomas and Eric A. Brewer, “A secure Environment for Untrusted
Helper Applications --- Confining the Wily Hacker”, Proceedings of 6th USENIX Security Symposium, 1996

[HP 96a] Hewlett-Packard, “HP Praesidium/VirtualVault Internet Security Solution”, June 1996, available at

http://www.hp.com/go/security/

[HP 96b]Hewlett-Packard, “HP-UX Compartmented Mode Workstation key security concepts”, 1996

[HP 96c]Hewlett-Packard, ”HP-UX CMW Security Features Programmer’s Guide”, 1996

[RN 96] Noah Robischon, “Hacking Justice”, http://cgi.pathfinder.com/netly/archive/netly/960819txt.html, 1996

[RD 96] C. Schmidt and T. Darby, “The What, Why, and How of the 1988 Internet Worm”, available at:
http://www.mathcs.carleton.edu/students/darbyt/pages/worm.html

[TIS96]Trust Information Systems Inc., “TIS Internet Firewall Toolkit Overview”, available at
http://www.tis.com/docs/products/fwtk/fwtkoverview.html

[WLA93]Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham, “Efficient software-based
fault isolation”, In Proc. of the Symp. On Operating System Principles, 1993.

