Exploring the Limits of Sub-word Level Parallelism

Kevin Scott and Jack Davidson
University of Virginia, Charlottesville, VA
{j ks6b, j wd} @s. virgi ni a. edu

Abstract

Multimedia instruction set extensions have become a
prominent feature in desktop microprocessor platforms,
promising superior performance on a wide range of float-
ing-point and integer signal processing, multimedia, and
scientific applications. But the question remains whether or
not these multimedia extensions can be applied to improve
the performance of general, integer intensive applications.
The answer to this question is important and could be used
to direct research and development of compiler algorithms
and refinements to multimedia architectures. In this paper
we answer the question of whether integer programs
exhibit enough sub-word level parallelism (SLP) to facili-
tate performance improvements through use of multimedia
extensions. Using a highly optimizing compiler and a sim-
ulator for an aggressive SLP architecture, we measured
available SLP in a range of integer benchmarks. Our mea-
surements show that these applications exhibit significant
levels of SLP. Using the most aggressive simulator set-
tings, dynamic instruction count reductions of 17 to 36 per-
cent were observed. However, detailed examination of the
data indicates that much of this parallelism is equivalent to
instruction-level parallelism (ILP) and could just as easily
be exploited by a traditional ILP architecture. Our findings
indicate that researchers should focus their efforts on
exploiting SLP in floating-point intensive and multimedia
applications.

1. Introduction

Most microprocessors used by desktops, workstations, and
servers have multimedia extensions that can be used to
improve the performance of applications exhibiting at least
some degree of fine-grained SIMD parallelism. These mul-
timedia extensions provide integer and floating-point
instructions that operate simultaneously on several data
elements packed into a single word. We call these packed
data elements sub-words; accordingly, we use the term sub-
word level parallelisml (SLP) to refer to the fine-grained

SIMD parallelism that these extensions were designed to
exploit.

While multimedia extensions can provide impressive
performance increases on hand-tuned applications, the
more general problem of automatically leveraging SLP
across a broad range of integer and floating-point applica-
tions remains open. For certain types of programs (e.g.,
vectorizable integer and floating-point codes), the outlook
is promising. Recent research at MIT has produced signifi-
cant speedups on single-precision floating-point intensive
codes by using a simple basic block SLP compilation tech-
nique [10].

However, it remains unknown whether there is suffi-
cient SLP in integer programs to effectively use SIMD
instruction set extensions, and what the necessary compila-
tion techniques are if the SLP exists. Even if significant
SLP exists in a wide range of programs, it must be in a
form that makes it clearly preferable to ILP execution on
wide-issue processors in terms of performance, power,
complexity or some other appropriate metric.

This paper addresses the question of whether or not
SLP that can be effectively exploited by existing multime-
dia extensions exists in typical integer applications. We
have simulated multimedia and integer benchmark pro-
grams from SPECint95 and MediaBench to determine the
degree and character of available SLP. Our simulation
study in many ways emulates the early ILP studies per-
formed by Wall [8, 20, 21]. We propose a hypothetical SLP
machine which can dynamically synthesize SIMD instruc-
tions from an executing stream of Alpha EV56 instructions
[1]. From these simulations we gather statistics such as
dynamic instruction count reduction due to SIMD instruc-
tion formation, SIMD instruction mixes, and the type and
sizes of synthesized SIMD operands.

1. Larsen and Amarasinghe [9] have used the term
superword level parallelism in their work to refer to the
same type of parallelism. We prefer the term subword
level parallelism as used by Lee [12] as it more accu-
rately reflects the fact that sub-word length operands are
the atomic units being combined to realize speedup.

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

Our results indicate that while integer applications can
realize significant dynamic instruction count reductions
due to SIMD execution, most SIMD instructions were
formed from only one or two Alpha instructions, resulting
in SLP that very much resembles ILP. While this is true of
most of the benchmarks that we studied, a few of the multi-
media codes do show impressive instruction count reduc-
tions and achieve this with SIMD instructions that have no
ILP equivalents. Hopefully this finding will promote fur-
ther investigation on the nature of sub-word level parallel-
ism and focus research on developing tools that can
uncover and exploit the available SLP in the types of pro-
grams where it is present.

The remainder of the paper is organized as follows.
Section two provides background on multimedia instruc-
tion set extensions and SLP. Section three discusses the
method we used to measure SLP and section four presents
our results. Section five presents related work and section
six presents our conclusions and suggests future directions
for studies of SLP.

2. Background

2.1. Multimedia Instruction Set Extensions

Computer architects have long recognized that SIMD (sin-
gle instruction, multiple data) computation can be an effec-
tive way to achieve high performance. SIMD architectures
have typically been realized as large scale multiprocessors
and date back to the early 1960’s and the Illiac IV [3]. The
fundamental idea behind SIMD architectures has remained
unchanged throughout four decades and across dozens of
research and commercial machines; a single instruction
operates on many data elements at once using many func-
tional units, perhaps located on many different processors.

Recently microprocessor vendors have applied the idea
of SIMD computation to instruction set extensions and pro-
cessor organizations specifically designed to improve the
performance of certain multimedia applications. Among
these multimedia extensions are Intel’s MMX and SSE [14,
18], AMD’s 3DNow! [13], Sun’s VIS [19], Motorola’s
Altivec [7], HP’s PA-MAX2 [12], and Digital’s Alpha
MVI [15].

A typical multimedia extension provides SIMD instruc-
tions that operate on 2 to 16 sub-word operands or operand
pairs simultaneously. Most multimedia extensions include
SIMD instructions for integer arithmetic, logical opera-
tions, and data movement. Some multimedia extensions,
such as Intel SSE and Motorola Altivec, provide SIMD
operations for single-precision floating point arithmetic.
Multimedia extensions often contain application specific
SIMD instructions. For instance most multimedia exten-

sions include a SIMD instruction designed specifically to
improve the performance of MPEG2 motion estimation for
video playback.

[32bits | [32hits | [8]88]8] [8]8]s]s]

4 x 8-bit SIMD Operation

Normal 32-bit Operation

Figure 1: Normal vs. SIMD instructions.

In Figure 1 we depict the difference between a normal
32-bit operation and a 4 x 8-bit SIMD operation. In the nor-
mal case, an operation is performed on two 32-bit source
registers and the result is placed in a 32-bit destination reg-
ister. In the SIMD case each of the 32-bit SIMD registers is
partitioned into four 8-bit sub-word elements. An operation
is performed on each pair of sub-word elements and placed
into a partitioned SIMD destination register.

It is the responsibility of the programmer or compiler to
place sub-word data into SIMD source registers in the cor-
rect order and to extract sub-word data (if necessary) from
the SIMD destination register. If the data on which the
SIMD instructions operate are arranged correctly in mem-
ory, a single SIMD load or store may be all that is required
to get data into or out of SIMD registers. If data is in the
wrong order in memory, or is coming from non-SIMD reg-
isters, then some data manipulation will be required to cor-
rectly pack and unpack the SIMD registers.

In the example above we can consider 4 x 8-bit to be
the #ype of the SIMD operation. For most fine-grained
SIMD architectures, including commercial processors with
multimedia extensions, and the research vector micropro-
cessors from Berkeley [2] and Toronto [11], the types of
SIMD operations are explicitly encoded in the instruction
stream. The burden then is on software and/or the program-
mer to uncover the fine-grained SIMD parallelism, or sub-
word level parallelism (SLP), and to produce the appropri-
ate code to exploit it on one of these architectures.

One alternative to compile-time exploitation of SLP has
been proposed by Brooks and Martonosi [5]. They describe
an architecture which dynamically examines operand
widths and uses this information to combine instructions in
the issue queue into SIMD operations. The Brooks/Mar-
tonosi architecture handles integer arithmetic and logical
operations, but excludes floating point and memory opera-
tions. Using this dynamic approach to SIMD operation
synthesis, instructions operating on data whose bit-width
requirements change over the course of execution may still
benefit from SIMD execution. Using detailed micro-archi-

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

tectural simulation, Brooks and Martonosi demonstrated
4.3-10.4% speedups using dynamic SIMD instruction syn-
thesis.

2.2.SLP vs ILP

At first it might not be obvious what advantages fine-
grained SIMD architectures have over typical wide-issue
processor organizations. If # operations can be executed in
SIMD parallel fashion, why not execute the n operations on
n functional units of a superscalar or VLIW machine?
There are two good answers to this question.

Interconnect design is one of the most challenging
problems in the engineering of modern processors. More
interconnect means higher power consumption, larger die
areas (and hence higher manufacturing costs), potentially
longer cycle times, and more constraints in general on
placement of other processor components [4]. Functional
units in most processors are designed to accommodate
operands as large as the native machine word size. If the
native machine word size is m, and the processor executes
n operations simultaneously on n functional units, n x m
wires are needed to communicate each operand from the
register file to the functional units. If it turns out that the
operands only required £ bits, then n x (m - k) interconnect
lines were unused per operand. If on the other hand we can
pack n k-bit operands into a word-sized register and use
these packed registers as operands to SIMD instructions,
then no interconnect is wasted. This more effective use of
interconnect can be used either to reduce the amount of
interconnect required on a processor, perhaps lowering cost
and power consumption, or it can be used to increase the
number of simultaneous operations possible, potentially
improving performance.

Fine-grained SIMD architectures with explicit encod-
ing may also make more effective use of the instruction
stream and register file. For n operations to execute on a
modern wide issue-processor, each of the n instructions
must be fetched, decoded, have its operand registers
renamed, and entered into a buffer from which it will be
issued to the execution units. A similar SIMD instruction
performing n simultaneous operations on packed registers
requires 1/n'™ the issue bandwidth and as few as 1/n" the
renaming registers. Note that the Brooks and Martonosi
architecture is practically the same as an ordinary wide-
issue processor through the issue stage [5]. Accordingly
their architecture would not make any more effective use of
the instruction stream or register file than would any other
wide-issue processor.

Fine-grained SIMD architectures do have their draw-
backs when compared with general-purpose wide-issue
organizations. Wide-issue processors perform a substantial
amount of dynamic optimization based on runtime behav-

ior of a program. In particular, wide-issue processors are
able to use dynamic scheduling and register renaming to
hide operation latencies and to achieve higher functional
unit utilization than would otherwise be possible through
static optimization. Modern wide-issue processors are also
able to accurately predict branch outcomes and specula-
tively execute along predicted paths. The current crop of
fine-grained SIMD architectures have no hardware mecha-
nisms for dynamically improving fine-grained SIMD exe-
cution.

3. Measuring Sub-word Level Parallelism

Implicit parallelism in source code and instruction streams
have allowed compiler writers and computer architects to
make impressive advances in high-performance computer
architectures and microprocessors. Instruction-level paral-
lelism (ILP) for example, is the driving force behind wide-
issue processor organizations. A compiler may be able to
recognize parallelism statically and produce code that
exposes that parallelism to the microprocessor by careful
arrangement of instructions. The processor may be able to
detect further parallelism in an executing instruction
stream, and perform additional transformations to expose
that parallelism to the execution pipelines.

ILP is a measure of independence among the instruc-
tions of a program. This independence itself is the property
that enables simultaneous execution of a program’s instruc-
tions. We can also define instruction-level parallelism in
terms of an abstract wide-issue machine that we give spe-
cial capabilities, like unbounded register files and unit
latencies for all operations [20]. By simulating execution of
programs on this abstract machine we can study the effects
of hardware and software approaches and trade-offs for
improving ILP.

Sub-word level parallelism (SLP) is another type of
implicit parallelism in programs. A program must exhibit
SLP in order to achieve high performance on fine-grained
SIMD architectures. This description yields very little
insight into the nature of SLP. Larsen and Amarasinghe
have asserted that SLP is just a more restricted form of ILP
[9]. In addition to being independent, instructions to be
combined into SIMD instructions must be of the same type.
If combining instructions into a SIMD load or store, the
memory elements loaded or stored must be contiguous. But
this is not a complete description of what SLP is.

The degree to which instructions can be combined
together to form SIMD instructions is affected by the width
of their operands. For instance we may only be able to
combine several add instructions when their operands have
the same width. So determining the narrowest possible
operand widths for instructions is necessary to maximize

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

SLP. This does not necessarily fall under the rubric of con-
strained ILP.

Our goal in this paper is to characterize the available
SLP in programs. To do this we simulate execution of code
compiled with the DEC C compiler on an abstract SLP
machine. In the remainder of this section we describe our
reference SLP architecture and the benchmark programs
that we simulated.

3.1. Reference SLP Architecture

Our reference SLP architecture (SLP-REF) is based on the
Alpha EV56 ISA and implemented in SimpleScalar 3.0 [6].
Alpha instructions are dynamically combined to form
SIMD operations. SLP-REF’s SIMD instruction set
includes load, store, integer arithmetic (including 32-bit
multiplies), floating-point arithmetic (including single-pre-
cision multiplies), logical, and comparison operations.
SLP-REF does not have SIMD instructions for integer or
floating-point division, double-precision floating-point
multiplication or arithmetic operations such as square root.
SLP-REF also does not provide application-specific SIMD
instructions like sum of absolute differences (useful for
MPEG motion estimation) or saturating integer arithmetic.
SLP-REF supports packing of up to 128-bits worth of sub-
word operands into a single SIMD register.

Figure 3 is a depiction of the organization of SLP-REF.
The SimpleScalar sim-safe functional simulator was modi-
fied to gather traces of Alpha instructions with branch out-
comes, register values and addresses fully resolved.
Executed instructions along with their actual operand val-
ues are entered in order into a staging queue. As instruc-
tions are entered into the staging queue, Alpha registers are
renamed to SIMD sub-word registers based on actual bit-
width requirements of the register values. Renaming
achieves two effects: it removes antidependencies and it
uses the actual operand value to choose the narrowest sub-
word register width that is still large enough to hold the
value. Possible sub-word widths are 8, 16, 32, and 64-bits.
When the staging queue fills, control is transferred to code
which simulates the issue of SIMD instructions on SLP-
REF.

SLP issue works by moving operations in order from
the staging queue and placing them in a queue of pending
SIMD instructions. A new instruction can be combined
with a partially-packed pending instruction if a compatible
pending instruction can be found. If no compatible instruc-
tion is found, the new instruction is placed at the end of the
pending queue. As each instruction is added a search is
conducted, beginning with the last scheduled instruction, to
find a conflicting instruction. An instruction conflicts with
the instruction being added if there is a register or memory
carried data dependence between them. The new instruc-

80%

70%
60%
50%
40%
30% A
20% A
10%

0%

[—
goSstone2l [
go9stone2l [

m88ksim [
mpeg2decode [
mpeg2encode [

gsmdecode

perl [T

unepic
vortex [T

epic

gsmencode [T
jpegdecode

compress
jpegencode

Figure 2: Percent of SIMD candidate instructions
combined past control flow boundaries

tion can’t be placed into the pending queue earlier than the
first conflicting instruction found. If the conflicting instruc-
tion participates in a true dependence with the new instruc-
tion then we can place the instruction no earlier than the
instruction following the conflict.

Once a conflicting instruction is found, we search the
instructions following the conflict for an appropriate place
to put the new instruction. We can combine the new
instruction with a partially packed SIMD instruction under
the following circumstances:

* The partially-packed instruction is the same type of
operation as the new instruction, e.g., both are adds.

* The partially-packed instruction has room in its
SIMD operand registers to accommodate the addition
of the new instruction sub-word registers.

* Loads and stores can only be combined if the
resulting SIMD load or store is to a contiguous chunk
of memory.

For instructions meeting these criteria, we keep track of
which instruction would be brought closest to fully packed
by the addition of the new instruction. When the search
reaches the end of the pending queue, we place the new
instruction into this “best” partially-packed instruction. If
no compatible partially-packed instruction is found, the
new instruction is placed at the end of the pending queue.

This process is repeated until the instructions are
exhausted from the staging queue, or until we can add no
more instructions to the pending queue. If we can add no
more instructions to the pending queue, it is emptied and
the process continues. When the staging queue is empty,
we return control to SimpleScalar.

There are several issues worth pointing out about SLP-
REF. Optimally combining instructions in the pending
queue is an NP-hard online bin packing problem. The tech-

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

while(not staging_queue.empty())

{
insn = staging_queue.get_next_instruction();
best_cycle = NONE;
if (is_slp_candidate(insn))

conflict_cycle = pending_queue.find_conflict(insn);
for cycle = conflict_cycle to pending_queue.last_cycle()

if (cycle.will_hold(insn))
if (cycle.free_slots() < best_cycle.free_slots())
best_cycle = cycle;
}
}
else
{
best_cycle = pending_queue.next_empty_cycle();
}
if (best_cycle == NONE) {
if (pending_queue.full())
{
pending_queue.flush();
best_cycle = pending_queue.first_cycle();

}
else
{
best_cycle = pending_queue.next_empty_cycle();

}

}

best_cycle.add_instruction(insn)

}

@)

simsafe
(Alpha EV56)

-

Rename Registers

<~

I dbu $t3, O($t1) 2 x ldbu
I dbu $t4, 0($t2) 2 x ldbu
addq $t3,$t4, $t5 2 x addb
()
sth $t5, 0($t1) /// 2 x stb 8
S
addq $t1,1,$t6 2 x addq (o4
jo]
o addq $t2,1,$t7 addq %
> c
Q | addg $tO,1,$t8 2 x cnpul t 8_’
(o4 nop
o | cmpult $t8, 16, $t9
c
= 2 dd
g’ bne $t9, top P2 x addq
(7) addq
I dbu $t 10, O($t6)
nop

Idbu $t11, O($t7)

addq $t 10, $t 11, $t 12

sth $t12, 0($t6)

addq $t6, 1, $t 13

addq $t7,1, $t14

addq $t8, 1, $t15

cmpul t $t 15, 16, $t 16

bne $t16, top

(b)

Figure 3: Organization of SLP-REF. A modified sim-safe collects traces of Alpha EV56 instructions. Register
operands are sized, renamed and entered into a staging queue. The pseudo-code describes how instructions are
removed from the staging queue and placed in the pending queue to create SIMD instructions.

nique that we’ve used is a greedy approximation to an opti-
mal solution. A better approximation or an optimal solution
might lead to more combined instructions.SLP-REF allows
SIMD operands to be synthesized from sub-word registers
regardless of the order in which the sub-word registers
were loaded from memory. In existing fine-grained SIMD
architectures it is expensive to rearrange the sub-words in a
SIMD register once it is loaded.

All simulations conducted with SLP-REF use perfect
branch prediction since we know all branch outcomes at
the point of SIMD operation packing. This was consistent
with our goal to determine the “ideal” amount of SLP in a
program. If we were actually designing hardware or soft-
ware to do SIMD instruction packing, we would have to
take control flow operations into account. Figure 2 shows
the actual percentage of SIMD-candidate instructions that
were combined past the boundaries of some control flow
operation. On average 43% of the instructions combined
into SIMD instructions were combined past a control flow
boundary. This indicates that compilers generating SIMD

code, or architectures dynamically synthesizing SIMD
operations would unlikely be able to achieve the dynamic
instruction count reductions that we achieve using perfect
branch prediction (see Section 4.)

The choice of Alpha EV56 as an ISA to simulate has a
definite impact on the results of our experiments. Since
Alpha is a 64-bit architecture, certain address computations
will require 64-bit arithmetic despite the fact that none of
our benchmarks require a 64-bit address space.

Our goal with SLP-REF was to design an architecture
that could aggressively uncover SLP, but that remained
similar enough to familiar SIMD extensions that our results
would have relevance. While SLP-REF is aggressive, there
are probably many more complex variations that would
yield higher degrees of SLP. For example limiting ourself
to finite staging and pending queues leads to potential
missed opportunities for SIMD instruction combining. We
could have given SLP-REF the ability to combine non-con-
tiguous loads and stores, but we chose not to since a realis-

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

tic implementation of this capability is infeasible given the
organization of typical microprocessors.

3.2. Benchmark Programs

Since we are trying to determine how much and what kind
of SLP exists in typical integer applications, we chose a
variety of integer intensive benchmarks to use in our simu-
lation study. The benchmark programs were selected to
reflect a wide range of multimedia and traditional integer
applications. Table 1 lists the benchmarks that we studied
along with the number of cycles that we simulated to pro-
duce our results. The programs from SPECint95 were run
on subsets of their reference inputs to keep the simulation
times reasonable, and for the same reason, programs were
only allowed to run for 100,000,000 instructions or until
completion. For the MediaBench programs that we exam-
ined, both encode and decode variants were simulated.

All benchmarks were compiled with the DEC C com-
piler version 5.8 with -OJ, -ifo, and -arch ev56 enabled. At
the O5 optimization level, DEC C does loop unrolling and
attempts to vectorize loops operating over char and short
arrays. We forced the compiler to use the Alpha BWX
extensions so that byte and halfword load and store opera-
tions would be more obvious in the instruction stream.

Name Description Instructions Simulated
compress || compression utility 100M
gce GNU C Compiler 100M
go strategy game 100M
li Lisp interpreter 100M
m88ksim || CPU simulator 100M
perl Perl interpreter 100M
vortex DBMS 100M
epic Pyramid image codec | 10M (decode) / 65M (encode)
gsm GSM audio codec 71M (decode) / 100M (encode)
jpeg JPEG image codec 4M (decode) / 16M (encode)
mpeg2 MPEG?2 video codec 100M (decode/encode)

Table 1: Benchmarks simulated. The top group of benchmarks are
from SPECint95. The bottom group are from MediaBench.
Simulations were halted after 100 million instructions.

4. Results

4.1. Available SLP

Available SLP is indicated by dynamic instruction count
reductions due to SIMD instruction combining. Our simu-
lation framework considers all of a program’s instructions,
including time spent in external library routines. The
dynamic instruction count reductions that we report should,
in a crude way, reflect the speedups that one could expect
from SIMD combining.

To determine SLP we varied three simulation parame-
ters—pending queue size, packing style and SIMD word
length. Packing style has two settings—homogenous and
ideal. Homogenous packing requires that all sub-word reg-
isters in a SIMD operand have the same size. This reflects
the reality of multimedia extensions found in existing pro-
cessors. Ideal packing removes this constraint and allows
sub-word registers to combine arbitrarily up to the size lim-
its imposed by the SIMD word size setting. Figure 4 illus-
trates the difference between operations created with
homogenous versus ideal packing.

EDES

Eos o

[8[8[e] 8] [s]e]se[8]

[8[8] 16] [s]8] 16]

@ (b)

Figure 4: Homogenous vs. Ideal packing. (a) a 4 x 8-bit
SIMD operation created with homogenous packing,
(b) a 2 x 8-bit + 1 x 16-bit SIMD operation created
with ideal packing.

Oldeal (16) W Ideal (256) @ Ideal (4K)

40.00%

35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

porl | —

mBBKsim j———

9L g g gL L L e = v o x
a T T T T T T [l
@ § © ¢ © 8 8 & © g 9 g
s cC £ 0 0 O O o O c O
S S @ £ & ¢ o ¢ 5 >
£ % B3 8 € T O S 0
o B & E E D O N N
(5] L QO oD D
c o n o I 3 s
o O o o = .= o o
E E

Figure 5: Dynamic instruction count reduction for ideal
packing, 128-bit SIMD words and pending queue sizes of
16, 256 and 4096.

To determine the effect of pending queue size on avail-
able SLP, we ran a series of experiments using ideal pack-
ing and 128-bit SIMD word lengths, while varying the
pending queue size from 16 entries to 4K entries. Figure 5
shows the results of these experiments. The largest
dynamic instruction count reduction (35.6%) occurred in
jpegdecode with 4K pending queues, and the smallest

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

dynamic instruction count reduction (5.6%) in m88ksim
with 16 entry pending queues.

The effect on dynamic instruction count reduction from
reducing the pending queue size was not as dramatic as we
anticipated. Since reduction of the size of the pending
queue reduces the scope of possible instructions with
which new instructions might combine, we expected larger
decreases in dynamic instruction count reduction. Instead
we went from an average reduction across all benchmarks
of 21.6% with 4K pending queues, to an average across all
benchmarks of 13.3% with 16 entry pending queues—a
difference of only 8.3 percentage points.

Our next set of experiments explored the trade-offs
between ideal and homogenous packing. While ideal pack-
ing increases the opportunities for SIMD instruction com-
bining and should result in larger dynamic instruction
count reductions than homogenous packing, current multi-
media extensions don’t support the single SIMD instruc-
tions with mixed sub-word lengths that ideal packing
would require. To determine the extent to which dynamic
instruction count reduction is reduced by forcing homoge-
nous packing, we ran a series of experiments with pending
queue sizes fixed at 4K, SIMD word length at 128-bits, and
either homogenous or ideal packing. Figure 6 shows the
results of these experiments.

With homogenous packing enforced, the average
dynamic instruction count reduction across all benchmarks
is 18.6% versus 21.6% for ideal packing, a difference of
only 3 percentage points. Again these findings are some-
what surprising. Homogenous packing imposes non-trivial
additional constraints on how instructions can combine
beyond the constraints of ideal packing. We anticipated
substantially larger decreases in dynamic instruction count
reduction due to these additional constraints. The fact that
homogenous packing doesn’t significantly affect dynamic
instruction count reductions implies that current multime-
dia extensions, which only have homogenous operations,
are probably adequate.

Current multimedia extensions have SIMD word
lengths of 64 or 128-bits. Longer SIMD word lengths allow
more operations to be packed into a single instruction
which potentially leads to increased dynamic instruction
count reduction. We ran a series of experiments where
SIMD word length was increased beyond SLP-REF’s
default SIMD word size of 128-bits. Figure 7 shows
dynamic instruction count reduction with ideal packing, 4K
pending queues and SIMD word sizes of 128, 256, 512 and
1024-bits. Dynamic instruction count reduction averages
24.3% with 128-bit SIMD words and 25.4% with 1024-bit
SIMD words. Increasing SIMD word lengths by a factor of
eight only yielded an average improvement in dynamic
instruction count reduction of one percentage point. This
finding is somewhat surprising and indicates that the 128-

O Homogenous (4K) @ ldeal (4K)

40.00%

35.00% M M

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

epic /———— 1
gosstone21. [l
godstone2!. [ty

m8sksim E=——
=N

jpegencode —— 1

5283583888882 5
o > & & o S o T £
5 o o6 O o o e o
@ 2 o @ c s s
£ T @ T T o
S E E O d
8 55 % 2%
o O = o o
£ E

Figure 6: Dynamic instruction count reduction for
homogenous and ideal packing with 4K pending queues
and 128-bit SIMD words.

bit SIMD word sizes common in the latest generation of
multimedia extensions (Intel SSE and Motorola AltiVec)
are adequate for the types of integer applications that we
studied.

‘Dldeel (128b) HIded (256b) Oided (512b) Mided (1024b)

45.00%

40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%
5.00%

0.00%

=

m88ksim E

2 2 8 g ® Y © o = 0 o o %
T T T T T T
@ § o 0 9 8 9 9 Q 9 g €
s c o © o o o o c O
S © ¢ © ¢ o c 5 >
£ b T ¢ T 0 ° 0
9 A8 E E D O [N
o 3 G @ @ @ o o
)] o o 2 2 [T
= = o o
E E

Figure 7: Dynamic instruction count reduction for ideal
packing, 4K pending queues, and SIMD word sizes of
128, 256, 512 and 1024 bits.

Finally, it is important to note that we tried more pend-
ing queue sizes than the 4K, 256 and 16 entry data points in
Figure 5 indicate. Lowering the pending queue size to 2K
and even 1K produced no appreciable decrease in dynamic
instruction count reduction. This suggested to us that pend-

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

ing queues with 4K entries were probably large enough for
our experiments and that further increases in pending
queue size would yield diminishing increases in dynamic
instruction count reduction.

4.2. Instruction Mix

The available SLP experiments in the previous section use
dynamic instruction count reduction, a metric that weights
all instructions equally, to measure SLP. In this section we
examine the actual mix of instructions that contribute to
dynamic instruction count reduction. Knowing the mix of
instructions can be helpful when trying to determine which
kinds of operations to include in a multimedia extension.
Instruction mix also lets us see what percentage of high-
latency instructions are combined into SIMD operations.

We gathered statistics on the mix of SIMD instructions
created in the ideal, 4K pending queue, 128-bit SIMD word
experiments. We classify SIMD instructions as to whether
they are loads, stores, comparison operations, floating-
point operations, logical operations or integer arithmetic
operations. Figure 8 shows the percentage of fofal dynamic
instruction count reduction due to combining instructions
into SIMD operations in a given category. For instance, in
compress 64% of the total dynamic instruction count
reduction results from combining instructions into SIMD
arithmetic operations.

‘DLoad EStore OFP OArithmetic BLogicd O Compae

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

N 0 Q0 dd O 0 Lo =0 0T 9 X
w53 ©Q N N T T T T = T T © g 9
0 o ©® 0 v 9 @ 9 Q9 7 9 0 o ¢ E
s c £ 9 © 9O © < O 9 c O
g S5s58s 3&£5F 57
9 8 8 € E oo E N o
[} o @ o o
o o s o % & 23
o> o o o &2 S 2
£ E

Figure 8: Instruction mix. This graph illustrates the
percentage of total dynamic instruction count reduction
due to combining instructions into SIMD operations of a
given category. Simulations conducted using ideal
packing, 4K pending queues and 128-bit SIMD words.

The category percentages in Figure 8 are relative to
total dynamic instruction count reduction. Since loads are
higher latency than other SIMD candidate instructions, and
account for an average of 22% of fotal dynamic instruction

count reduction, we decided to take a closer look at the
actual dynamic instruction count reductions due to SIMD
load combining alone. Figure 9 shows the results of these
measurements. We observed that the actual dynamic
instruction count reduction that is attributable directly to
SIMD load combining ranges from 0% in compress to
12.6% in mpeg2encode. For most applications SIMD load
combining accounts for less than 6% of the dynamic
instruction count reduction and averages 5%. Although this
is a relatively small dynamic instruction count reduction in
most applications, the fact that loads are high latency sug-
gests that SIMD loads could have a significant impact on
actual execution times.

14%

12%
10%
8%
6% M]

4% —

2%

O%“““““I_I“‘ T
42355888 8"E88F8 3
=% = S
o © v © 9 9 9 9 & o 9 o <4
‘aw c £ O O o ©O < O O gc

S o 9 ¢ o < ® o c 5 >
£ 7 % T & B O X T O
o nD o £ £ © O £ g
© ©c o o » & g > D
S 8% % 2 o o @
= = o o
£ E

Figure 9: Load effect. Percent dynamic instruction count
reduction from SIMD load combining.

4.3. SIMD Instruction Types

Homogenous SIMD instructions have a characteristic type
given by the number of sub-word registers packed and the
size of the individual sub-words. Knowing the distribution
of characteristic types in typical applications is very useful.
This information can help multimedia instruction set
designers determine which types of SIMD registers and
instructions to include in their extensions, and can help us
understand how available SLP is different from available
ILP in the same applications.

We looked at the distribution of characteristic types in
the homogenous, 4K pending queue, 128-bit SIMD word
simulations of all benchmarks programs. Figure 10 shows
the percentage of total instructions that were combined into
SIMD instructions of a given type. For example, in com-
press, of all instructions that were simulated, 14% of them
became part of 2 x 8-bit SIMD instructions.

In Figure 11, we combine the data in Figures 10a-d into
a single plot which shows the relative weights of SIMD

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

(@)

(b)

[0 1x8 W 2x8 [0 3-4x8 [05-8x8 W >8x8

40%
35%

30%
25%
20%

0 1x16 W 2x16 O 3-4x16 O5-8x16

35%

30% A
25% A
20% A

15%
1%
10%
10%
" i " O Anef
o L LB VT B P mr— LB U E e lle
N O QO H d 0 0 O O = v O =T L X N e 9 d d 0 0 0 o= g 0 0T Q %
38 S N NT B B T EZ T 8 8 28 S8 NNT T T T -
[D o © 9 9 o Q ® o 9o o € [CR) ®» © 6 O O o o o0 & ¢ €
5 @ o 0 © © X o o 2 cC £ o 9 9 o X o 0 2 s
c c c ©O S
2 < c ® c S 6 & ¢ & ¢ ® O < s
S & © 4] 4] > 5
£ 2 €T @ ©B O ® T O = E 2 £ T © B O ® T O
I} 8 8 £ E o o £ o o b $ € € © o £ N o
© o O o o © O o » » 9 © o o
c o & & % g 2 3 2 o o ©
£ E £ E
(©

0 1x32 W 2x32 O3-4x32

25%

20%

1%

10%

5%

0%

epic

gce [0

goSstone21 [T]

go9stone21

perl 1

unepic [1]
vortex [T]

compress B
gsmdecode]
gsmencode [T
jpegdecode]

i [
m88ksim

jpegencode |

mpeg2decode [T
mpeg2encode [| E—

[0 1x64 W 2x64

—~
o
~

60%

50%

40%

30%

20%

10%

0%

gec [T
[— |
m88ksim]
mpeg2decode [T
mpeg2encode [T

go5stone21

perl ||

compress
epic |]
gsmencode [TR
jpegdecode I
unepic — |
vortex | T

jpegencode |

gsmdecode | 1]

go9stone21

Figure 10: Percent of total instructions combined into SIMD operations of type (a) k x 8-bits, (b) k x 16-bits, (c) k x 32-bits,
and (d) k x 64-bits, using 4K pending queue, ideal packing, and 128-bit SIMD words.

instructions according to the number of sub-word operands
(of any size) packed into SIMD words.

Surprisingly, there are very few instances where com-
bining three or more instructions into single SIMD instruc-
tions has a significant impact on dynamic instruction count
reduction. An exception might be mpeg2encode, in which
11.2% of all instructions were combined into 16 x 8-bit
SIMD operations. On average though, 16% of instructions
are combined into 2-by SIMD operations, 10% are com-
bined into greater than 2-by SIMD operations, and only 4%
are combined into greater than 4-by SIMD operations.

With only 10% of instructions combined into greater
than 2-by SIMD operations, it is unlikely that SIMD execu-
tion will be able to deliver performance improvements over
traditional ILP execution on the types of integer bench-
marks that we’ve studied.

5. Related Work

Despite the fact that multimedia extensions have been
available in production microprocessors for several years,
very little has been published on automatic exploitation of
the SIMD features of these processors. All commercial pro-
cessors with multimedia extensions require the compiler or
programmer to uncover available SLP and to generate the
appropriate SIMD code to exploit it. There are two primary
SLP compilation approaches suggested by the literature.
By treating packed SIMD registers as short vectors,
vector compilation techniques can be used to extract the
SLP in certain types of programs. Vector compilation sub-
sumes a variety of program transformations that can be
used to rearrange and simplify loops so that vector instruc-
tions can be used to execute loop body statements [22]. On

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

O01m203-4058m>8

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

compress [T |

epic)

SCS —) |

go5stone2l

Rl —
perl [T
unepic [T

vortex]

go9stone2l
gsmdecode
gsmencode
jpegdecode
jpegencode
mpeg2decode

mpeg2encode [T 1 W

Figure 11: Percent of total instructions combined into
SIMD operations with either 1, 2, 3-4, 5-8, or greater
than 8 sub-words of any size packed into SIMD
operands.

many vector architectures loops must be arranged so that
elements of a vector are arranged contiguously in memory
and accessed in order by the loop’s statements. A loop so
transformed is said to be vectorized. Vectorization tech-
niques are most effective on loops where the control vari-
able’s upper limit is statically determinable, or at least loop
invariant. Loop bodies with complex inter-statement con-
trol and data dependences or vectors which are heavily
aliased may not be vectorizable [17].

On fine-grained SIMD architectures vector lengths tend
to be small, from 2 to 16 elements, and vector instructions
themselves tend to have very low latencies. On vector
supercomputers, vector lengths are large (often greater than
1024 elements) and setup for execution of vector instruc-
tions is expensive. On these machines it is important to
arrange loops so that vector lengths are maximized. While
this cannot hurt performance on a fine-grained SIMD
architecture, arranging loops for long vector lengths is not
necessary.

On programs that spend a significant amount of their
execution time in vectorizable loops, vector compilation
can yield excellent performance on fine-grained SIMD
architectures. But the fact that a program contains few or
no vectorizable loops does not mean that good performance
cannot be had.

Larsen and Amarasinghe have proposed a non-vectoriz-
ing compilation approach for fine-grained SIMD architec-
tures that attempts to synthesize SIMD instructions from
the statements of single basic blocks [9]. Basic blocks do
not typically exhibit enough SLP to generate good SIMD
code, so their approach must be combined with loop trans-
formations that boost SLP within basic blocks. Loop

unrolling can effectively boost SLP by increasing the num-
ber of similar statements in a basic block, and is easy to
implement. Larsen’s and Amarasinghe’s approach has
proved effective on floating-point intensive kernels and
some of the applications from SPECfp.

6. Conclusions

In this paper we have studied available SLP in a set of rep-
resentative integer intensive programs. Our studies have
demonstrated that features such as non-homogenous opera-
tions (ideal packing), SIMD word sizes larger than 128-
bits, and large dynamic traces (pending queues) do not sub-
stantially improve available SLP.

More importantly though, our studies have revealed
that the type and degree of SLP in many of the integer
benchmarks studied is substantially similar to ILP when
considering performance only. Even multimedia bench-
marks like mpeg2encode, which intuitively should benefit
substantially from SIMD execution, has only 11% of its
instructions combined into 16 x 8-bit SIMD operations. On
average less than 10% of all instructions simulated were
combined into SIMD instructions with more than two sub-
word operands per SIMD word. Under these conditions
SIMD execution appears no better than normal execution
on a wide issue machine with two or more integer execu-
tion units.

The single exception to this conclusion might be SIMD
loads. We found significant opportunities for SIMD load
combining in the integer benchmarks. Combining high
latency loads may yield improvements in application per-
formance not attainable through normal ILP execution.

This finding should help to focus the efforts of compiler
researchers on finding and exploiting available SLP in
floating-point and multimedia codes. It may also suggest
that compiler researchers need to attack the difficult prob-
lem of detecting the use of saturating arithmetic and other
multimedia idioms so that application-specific SIMD
instructions can be used to improve the performance of
applications.

While available SLP might not be distinguishable from
ILP in terms of performance of integer intensive programs,
this does not mean that SIMD instructions and SIMD archi-
tectures do not merit our attention. Fine-grained SIMD
architectures may offer smaller program sizes with
improved instruction stream performance, and provide
opportunities for power savings that would not be possible
with a traditional wide-issue processor organization.

Finally, our study of available SLP is far from the final
word on the subject. Available SLP that our infrastructure
can detect can be impacted by compile-time analyses and
transformations. One such compile-time approach that we

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

are eager to explore is the aggressive static bit width analy-
sis techniques proposed by Stephenson, et al. [16]. It is not
immediately obvious that this will improve SLP in the
benchmark programs that we studied, but we are hopeful.

7. Acknowledgments

This work was supported in part by NSF Grant ASC-
9612756 and by a generous grant from Panasonic AVC
American Laboratories. We also thank Kevin Skadron for
allowing us to use the LAVA cluster for our simulations
and the anonymous reviewers whose comments have
improved this paper. We are especially grateful to Sally
McKee for giving us detailed feedback on this paper.

8. References

[1]1 Alpha Architecture Handbook. Digital Equipment Cor-
poration, 1992.

[2] Krste Asanovic and David Johnson. Torrent architecture
manual. Technical Report CSD-97-930, University of Cali-
fornia, Berkeley, January 24, 1997.

[3] George H. Barnes, Richard M. Brown, Maso Kato, David J.
Kuck, Daniel L. Slotnick, and Richard A. Stokes. The
ILLIAC IV computer. [EEE Transactions on Comput-
ers, C-17(8):746-757, August 1968.

[4] Mark Bohr. Silicon trends and limits for advanced micropro-
cessors. Communications of the ACM, 41(3):30-87,
March 1998.

[S] David Brooks and Margaret Martonosi. Dynamically
exploiting narrow width operands to improve processor
power and performance. HPCA-5, 1999.

[6] Douglas C. Burger and Todd M. Austin. The simplescalar
tool set, version 2.0. Technical Report CS-TR-97-1342, Uni-
versity of Wisconsin, Madison, June 1997.

[71 Sam Fuller. Motorola’s altivec technology.

[8] Norman P. Jouppi and David W. Wall. Available instruction-
level parallelism for superscalar and superpipelined
machines. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS-III),
pages 272-282, 1989.

[91] Samuel Larsen and Saman Amarasinghe. Exploiting super-
word level parallelism with multimedia instruction sets.
Technical Report LCS-TM-601, MIT Laboratory for Com-
puter Science, Cambridge, MA, November 1999.

[10] Samuel Larsen and Saman Amarasinghe. Exploiting super-
word level parallelism with multimedia instruction sets.
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2000.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

C. G. Lee and M. G. Stoodley. Simple vector microproces-
sors for multimedia applications. In Proceedings of the
31st Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO-98), pages 25-36, Los
Alamitos, November 30—December 2 1998. IEEE Computer
Society.

Ruby Lee. Subword parallelism with max-2. [EEE Micro,
16(4):51-59, August 1996.

Stuart Oberman, Greg Favor, and Fred Weber. 3dnow! tech-
nology: Architecture and implementations. /[EEE Micro,
19(2):37—48, March 1999.

Alex Peleg, Sam Wilkie, and Uri Weiser. Intel MMX for
multimedia PCs. Communications of the ACM, 40(1):24—
38, January 1997.

Paul Rubinfeld, Bob Rose, and Michael McCallig. Motion
video instruction extensions for alpha. http:/
www.europe.digital.com/semiconductor/alpha/papers/
pmvi.ps, 1996.

Mark Stephenson, Jonathan Babb, and Saman Amarasinghe.
Bitwidth analysis with application to silicon compilation.
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2000.

P. Tang and N. Gao. Vectorization beyond data depen-
dences. In ACM, editor, Conference proceedings of the
1995 International Conference on Supercomputing,
Barcelona, Spain, July 3—7, 1995, Conference Proceed-
ings of the International Conference on Supercomputing
1995; 9th, pages 434443, New York, NY 10036, USA,
1995. ACM Press.

Shreekant Thakkar and Tom Huff. The internet streaming
simd extensions. IEEE Computer, 32(12):26-34, Decem-
ber 1999.

Marc Tremblay, J. Michael O’Connor, Venkatesh Maray-
anan, and Liang He. Vis speeds new media processing.
IEEE Micro, 16(4):10-20, August 1996.

David Wall. Limits to instruction level parallelism. 4¢h
Architectural Support for Programming Languages
and Operating Systems, pages 176188, April 8-11, 1991.
David W. Wall. Limits of instruction-level parallelism.
Technical Report 93/6, DEC, Palo Alto, CA, November
1993.

M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, Redwood City, CA, 1996.

Proceedings of the 2000 International Conference on Parallel Architectures and Compilation Techniques
0-7695-0622-4/00 $10.00 © 2000 IEEE

