
� �

The Effects of Predicated Execution on Branch Prediction

Gary Scott Tyson
Department of Computer Science

University of California, Davis
Davis, CA 95616

tyson@cs.ucdavis.edu

Abstract

High performance architectures have always had to
deal with the performance-limiting impact of branch
operations. Microprocessor designs are going to have to
deal with this problem as well, as they move towards
deeper pipelines and support for multiple instruction
issue. Branch prediction schemes are often used to allevi-
ate the negative impact of branch operations by allowing
the speculative execution of instructions after an
unresolved branch. Another technique is to eliminate
branch instructions altogether. Predication can remove
forward branch instructions by translating the instructions
following the branch into predicate form.

This paper analyzes a variety of existing predica-
tion models for eliminating branch operations, and the
effect that this elimination has on the branch prediction
schemes in existing processors, including single issue
architectures with simple prediction mechanisms, to the
newer multi-issue designs with correspondingly more
sophisticated branch predictors. The effect on branch
prediction accuracy, branch penalty and basic block size
is studied.

Keywords: High-performance, Predication, Branch
Prediction, HP-RISC, Alpha, ATOM, Pentuim, PowerPC

1. Introduction and Background
All architectures that support some degree of

instruction level parallelism must deal with the
performance-limiting effects of changes in control flow
(branches). This is certainly not a new problem -- pipe-
lined processors have been struggling with this problem
for decades, and with the advent of multiple-issue archi-
tectures the problem has become even more critical. Most
���

This work was supported by National Science Foundation
Grants CCR-8706722 and CCR-90-11535.
���

of the problem can be eliminated if conditional branches
can either be correctly predicted or removed entirely.
This paper will focus on two techniques to achieve this
goal, Branch Prediction and Predication.

Branch prediction eliminates much of the branch
delay by predicting the direction the branch will take
before the actual direction is known, and continuing
instruction fetch along that instruction pathway. This has
been an active area of research for many years, and con-
tinues to be to this day [Smit81] [LeS84] [FiFr92]
[YeP93]. There are two main approaches to branch pred-
iction - static schemes, which predict at compile time, and
dynamic schemes, which use hardware to try to capture
the dynamic behavior of branches. In either case, if the
branch is predicted incorrectly, there is a penalty that
must be paid to undo the incorrect prediction and proceed
down the proper path. (the misprediction penalty).

Predication, on the other hand, is a technique for
completely removing conditional branches from the
instruction stream via the conditional execution (or com-
pletion) of individual instructions based on the result of a
boolean condition. This is a much more recent area of
research [CMCW91, DeHB89] although vector machines
like the CRAY [Russ78] have long supported a type of
predicated execution with their vector masks. This is a
very promising area of research because, in addition to
removing the branch itself from instruction stream, it pro-
vides the additional benefit of improving scheduling capa-
bility.

Branch Prediction and Predication can be used
together in a complimentary fashion to minimize perfor-
mance impacts of branches. For example, the number of
cycles lost due to incorrectly predicted branches can be
reduced if the number of instructions that are tagged with
a false predicate is smaller than the branch misprediction
penalty itself. In addition, overall dynamic branch predic-
tion accuracy may improve, if the branches removed by
predication are some of the least predictable branches.

This paper will examine the effect of augmenting
branch prediction schemes found in a number of existing
processors with the ability to do predicated execution.
The focus will be on how predication affects the accuracy
and branch penalty of the branch prediction schemes and
the increase in basic block size. Different predication
models will also be examined to determine their effective-
ness in removing branches. Emphasis will be placed on

� �

whether the newer architectural designs, with their more
accurate predictors, will show the same degree of
improvement from removing short forward branches.
Section 2 presents the different branch prediction tech-
niques we studied, which is followed by a description of
various predication schemes, an analysis of the effects of
predication on branch prediction, branch penalty and
basic block size, and a conclusion.

2. Branch Prediction Schemes
Branch prediction schemes range in accuracy (and

complexity) from simple static techniques exhibiting
moderate accuracy (≈ 60%) to sophisticated dynamic
prediction methods that achieve prediction accuracies of
over 97%. In this study, seven approaches are modeled -
five used in existing commercially available products, and
two others included for the sake of completeness. Each
approach has an associated branch misprediction penalty,
indicating the number of cycles lost when a branch is
incorrectly predicted.

The simplest of schemes predicts that all branches
will be taken - thus the processor will always attempt to
fetch instructions from the target of the branch.

The Hewlett Packard Precision RISC Architecture
(PA-RISC) [AADM93] uses a static prediction method
for calculating the direction of instruction flow across
branches termed Branch Backward. In this scheme, all
forward branches are predicted not to be taken and all
backward branches are predicted to be taken. This
scheme performs better than branch always when applica-
tions contain forward branches that are not taken more
often than they are taken.

The Alpha processor [McLe93, Site92] supports
three different prediction methods: opcode specified hints,
a branch backward strategy, and a one bit branch history
table. While a given implementation of the Alpha archi-
tecture may use any or all of these methods, in this study
only the last two were modeled. The branch backward
strategy used in the Alpha operates the same way as in the
HP-RISC. The one-bit branch history table approach
used in the Alpha features a direct mapped, 2048 entry,
single bit history table. In this scheme, the low order bits
of the address of a branch instruction are used to select a
one bit entry in the history table, which is in turn used to
predict the branch direction. The entry is later updated to
reflect the actual condition of the branch.

The prediction approach used by the Pentium pro-
cessor [AlAv93] features a 256 entry Branch Target
Buffer (BTB). Each BTB entry contains the target
address of the branch and a two bit counter used to store
previous branch activity associated with that address.
The BTB is 4-way set associative and uses a random
replacement strategy. Branches which are not in the BTB
are assumed to be not taken.

The PowerPC 604 processor [94] uses a fully asso-
ciative, 64 entry BTB and a separate direct mapped, 512
entry, 2 bit branch history table in the following manner:

When a branch is encountered, the BTB is searched (by
branch address) in an attempt to locate the target address
of the branch. If an entry is found corresponding to the
branch address, the branch is predicted taken from that
address; otherwise it is predicted not taken and instruc-
tion flow continues sequentially.

Once the branch outcome has been determined, the
branch history table is updated. If the resulting history
table value will predict taken on the next execution of the
branch, then the branch address is added to the BTB. If
the history table value predicts not taken, then the branch
address is removed from the BTB (if it currently resides
there).

The final branch prediction strategy modeled is the
two level adaptive strategy developed by Yeh and Patt
[YeP91]. This strategy requires considerably more
hardware resources than the other methods, but provides
greater branch prediction performance than any of the
other methods.

This scheme features a set of branch history regis-
ters in addition to a branch history pattern table. When a
branch instruction is executed, the lower bits of the
branch address are used to index into the set of history
registers. Each history register (implemented as a shift
register) contains information about the branch history of
those branches that map into that register. This informa-
tion is then used to index into the branch history pattern
table, which contains the information necessary to deter-
mine the actual branch prediction.

In the model used in this study the branch history
register file contains 512 13-bit entries (which limits the
branch history pattern table to 8192 entries) and each
branch history pattern table entry is a 2 bit history
counter.

3. Predicated Execution Models
As mentioned in the introduction, predicated execu-

tion refers to the conditional execution (or completion) of
instructions based on the result of a boolean condition.
Several different approaches to providing predicated exe-
cution have been proposed and implemented. They fall
into two broad categories referred to as restricted and
unrestricted.

In the restricted model a limited number of new
predicate instructions are introduced which are used to
explicitly delay the effect of executing a statement on
program variables. This is achieved by moving the state-
ment in question up to before the branch, modifying it to
write to a free register instead of a program variable, and
then using one of the special predicate operations to con-
ditionally update the active program variables. This is the
approach used in the Alpha and HP-RISC processors.

In the unrestricted predication model, all instruc-
tions can be predicated. This can be accomplished in a
number of ways. One way is to include an additional
operand field for each instruction, as was done in the
Cydra 5. Another way is to introduce a special instruction

� �

which controls the conditional execution of following
(non-predicated) instructions. An example of this
approach is seen in the guarded execution model pro-
posed by Pnevmatikatos and Sohi [PnSo94], which
includes special instructions whose execution specify
whether following instructions should or should not be
executed.

This section will present 4 different existing predi-
cation models, those used in the Alpha processor, the
HP-RISC, guarded execution model and the Cydra 5.

The Alpha processor supports the restricted model
of predication via a conditional move instruction. A stan-
dard move instruction only requires 2 operands (source
and destination), leaving one field free to specify the con-
ditional value in the conditional move. If the condition is
satisfied then the register movement is allowed, otherwise
a state change is prevented.

The Alpha compiler uses the conditional move
instruction in the following way: An expression calcula-
tion is moved up to before a conditional branch, and is
modified to write to a free register instead of a live pro-
gram variable. A conditional move is then used in place
of the original branch instruction to transfer the temporary
value into the live register. If the condition is satisfied,
the original destination of the expression will contain the
result; if the condition is not satisfied, then the conditional
move operation is not performed, and the active state of
the application being executed is unchanged.

There are several restrictions on this form of predi-
cation. First, the compiler must ensure that no exceptions
will be generated by boosting the expression code (e.g.
division by zero must be excluded). Other instructions
that cannot be predicated include some memory access
instructions and flow control operations. Second, the
compiler must allocate free registers to store any results
prior to the conditional move instruction(s). This may not
be feasible if it results in register spilling.

The HP Precision Architecture uses instruction
nullification to provide a less restricted form of predica-
tion. In this architecture, control flow (branch) and arith-
metic instructions can specify whether the following
instruction should execute. The ability of arithmetic
instructions to nullify the following instruction allows the
compiler to remove branch instructions. A transformation
similar to that of the Alpha’s can be performed with the
added capacity to include additional skip instructions over
exception producing instructions.

Pnevmatikatos and Sohi propose the use of a guard
instruction to control the execution of a sequence of
instructions. A guard instruction specifies two things - a
condition register and a mask value to indicate which of
the following instructions are dependent on the contents
of that condition register. The processor hardware then
uses this information to create a dynamic scalar mask
which is used to determine whether a given instruction
should be allowed to modify the state of the processor.
Support for multiple guards can be provided by allowing

additional guard instructions to modify those entries in the
scalar mask that have not been previously marked for
elimination. This approach is reminiscent of the vector
mask register approach used on earlier vector processors
[Russ78], with the bit mask controlling the issue of a
sequence of instructions in the instruction stream instead
of the ALU operations in vector instruction. It is unclear
how guarded branch instruction can be handled or what
effect guarding will have on fetch latency.

The Cydra 5 system supports the most general form
of predicated execution. Each Cydra 5 operation can be
predicated by specifying which of the 128 boolean predi-
cate registers contains the desired execution condition.
An operation is allowed to complete (writeback) and
modify the state of the machine if the selected predicate
register evaluates to non-zero. Since all instructions can
(and must) reference a predicate register, all instruction
sequences can be predicated.

4. The Experiments
Studies have shown that a large percentage of

branches are to a destination less than 16 instructions
away ([HePa90] pg 106). However, these studies only
look at total branch distance, not directed distance. In
order to examine the relationship between predication and
branch prediction accuracy, it was necessary to begin by
focusing on the characteristics of short forward branches
(backward branches cannot be -directly- transformed by
predication) and to calculate the prediction accuracy of
the different schemes before predication.

4.1. The Simulation Environment
The benchmarks selected for this experiment were

the fourteen floating point and five of the integer pro-
grams from the SPEC92 suite of programs. Each pro-
gram was compiled on an Alpha-based DEC 3000/400
workstation, using the native compiler and -O2
-non_shared compiler flags. The ATOM [SrWa94]
toolkit was used to generate and help analyze the data
gathered for this study. Branch instructions were instru-
mented to simulate the branch prediction schemes out-
lined in section 2. Predicate transformation was then
implemented on the instrumented code to account for the
removal of some branches.

As mentioned earlier, the Alpha compiler is able to
eliminate some branches using the conditional-move
instruction. In order to make fair comparisons between
the different predication schemes, these operations were
transformed back into branch operations by trapping
those instructions and treating them as conditional
branches of unit distance. (Almost all of the conditional-
move instructions were found in system libraries.)

Table 1 shows the benchmarks programs and the
inputs used, the total number of instructions executed, the
number of branches executed and the total number of
jumps executed.

� �

Table 1: SPEC Benchmark Information
� ���

Benchmark Input Instructions Branches Jumps� ���
alvinn * 3554909199 167524380 30274280
doduc doducin.in 1149864381 84622229 13463476
ear args.ref 17005800990 896667195 481185420
fpppp natoms 4333190502 115692876 6508987
hydro2d hydro2d.in 5682547494 347131563 9876849
mdljdp2 input.file 6856424748 320407455 71051
mdljsp2 input.file 2898940578 352481636 1024674
nasa7 * 6128388226 165573273 23201959
ora params 6036097727 365260354 87096763
spice2g6 greycode.in 16148172367 1933779718 93549064
su2cor su2cor.in 4776761988 178137872 30247847
swm256 swm256.in 11037397686 182031528 407016
tomcatv N/A 899655110 30183243 27571
wave5 N/A 3554909199 167524380 30274280� ���
compress in 92628682 12379188 502775
espresso bca.in 424397814 74371674 3603641
espresso cps.in 513006475 83519772 4051876
espresso ti.in 568262371 89791260 5083215
espresso tial.in 983531458 167375187 12731193
gcc cexp.i 23535507 3098517 506777
gcc jump.i 143737833 6901206 1063385
gcc stmt.i 51359229 19426084 2947663
xlisp li-input.lsp 6856424748 867585743 316747153
eqntott int_pri_3.eqn 1810542679 199198053 9669793
sc loada1 1450169424 277556127 29920923
sc loada2 1634276007 328405132 46912615
sc loada3 412097081 91802679 6375876� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

4.2. Branch Characteristics of SPEC Benchmarks
Examining the branch characteristics of these pro-

grams in more detail shows how predication may help
performance. Figure 1 shows the total number of
branches taken by the distance (in instructions) between
the branch instruction and the target for the integer and

|

-96
|

-84
|

-72
|

-60
|

-48
|

-36
|

-24
|

-12
|

0
|

12
|

24
|

36
|

48
|

60
|

72
|

84
|

96

|0
|2

|4

|6

|8

|10

 Branch Distance

 P
er

ce
nt

 o
f

T
ot

al
 B

ra
nc

he
s

Floating Point Branch Distribution and Frequency Taken
Total # of Branches
Total # of Taken Branches

|

-96
|

-84
|

-72
|

-60
|

-48
|

-36
|

-24
|

-12
|

0
|

12
|

24
|

36
|

48
|

60
|

72
|

84
|

96

|0

|2

|4

|6

|8

|10

 Branch Distance

 P
er

ce
nt

 o
f

T
ot

al
 B

ra
nc

he
s

Integer Branch Distribution and Frequency Taken
Total # of Branches
Total # of Taken Branches

Figure 1: Branch Distribution

floating point benchmarks. These figures include both
conditional and unconditional branches, but exclude sub-
routine calls.

Notice that in both integer and floating point appli-
cations there is a high percentage of short forward
branches. These are prime candidates for predication.
Also of note is the percentage of branches taken; almost
all backward branches are taken, while many forward
branches are not taken. Of the forward branches, those
between distance 1 and 12 show the greatest frequency of
execution.

Figure 2 shows the branch prediction accuracy of
the 7 branch prediction schemes analyzed, separated into
three components: the prediction accuracy of all back-
ward branches, the accuracy of branches in the range 0-
12, and the accuracy of forward branches of distance 13
or more.

This figure shows that the prediction schemes are
all able to predict backward branches accurately. This is
because backward branches are almost always taken
(figure 1), which is what the static schemes assume and
the table based schemes quickly determine. In addition,
for most prediction schemes the accuracy is lowest for
branch distances in the range 0-12. This is because these
branches have the highest rate of changing branch condi-
tion between branch executions. This was measured by
counting the number of times the branch chose the oppo-
site path from its previous execution and averaging this
with total executions of that branch. There were several
benchmarks that showed greater predictability in the 0-12
range than outside this range. This was generally due to

� �

| | | | | | | | ||0

|20

|40

|60

|80

|100

 P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)
Floating Point Branch Prediction Accuracies (<0, 0-12, 12+, Ave)

<0
0-12
12+
Ave

Branch
Always

Alpha
Backwards

Alpha
1-bit

Pentium
2-bit

PowerPC
604

2-Level
Adaptive

HP
Backwards

| | | | | | | | ||0

|20

|40

|60

|80

|100

 P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Integer Branch Prediction Accuracies (<0, 0-12, 12+, Ave)
<0
0-12
12+
Ave

Branch
Always

Alpha
Backwards

Alpha
1-bit

Pentium
2-bit

PowerPC
604

2-Level
Adaptive

HP
Backwards

Figure 2: Branch Accuracies Before Predication

branches around function exit conditions - that were
almost always taken. Since the 0-12 range branches are
those most eligible for predication, and approximately 1/3
of all branches fall in this range, it would appear that
removing these branches may lead to an overall improve-
ment in branch prediction accuracy.

Branch accuracy alone is not a sufficient metric,
some schemes incur a greater penalty for predicting
incorrectly than others, and this information must be con-
sidered. Table 2 shows the different branch prediction
schemes and the number of cycles lost each time a branch
is incorrectly predicted. In addition the number of
instruction slots lost is provided. In a single issue
machine the cycle penalty and the instruction penalty are
the same; In multiple issue architecture the cycle penalty
is multiplied by the issue width to determine the number
of instruction slots lost due to misprediction.

4.3. Predication Models
In order to measure the effect of predication on

branch prediction, two translation schemes are studied:

Table 2. Branch Misprediction Penalty
���

Branch Prediction Scheme Penalty
Cycles Instr���

Branch Always 1 1
HP-RISC Branch Backward 1 1
Alpha Branch Backward 4 8
Alpha 1-bit 4 8
Pentium 2-bit 3 6
PowerPC 604 3 12
2-Level Adaptive 3 12���

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

(1) The Aggressive scheme translates all short forward
branches with a branch distance less than or equal
to the predication distance to predicate form. This
allows the removal of a significant portion of the
branch misprediction penalty, and also enables the
joining of small basic blocks into much larger ones.
This approach is referred to as aggressive because
it will translate the greatest number of branches.

(2) The Restricted scheme transforms only branches
that contain no instructions between the branch in
question and the branch’s target that may generate
exceptions or change control flow (load, store,
branch and division instructions). This is modeled
to analyze the effectiveness of some current predi-
cation mechanisms (e.g. Alpha).

4.4. Characteristics of Predication Approaches
Predication has the potential to remove all forward

branches. However, each time a branch that jumps for-
ward over a number of instructions is transformed into a
predicated set of instructions, the total number of instruc-
tions that must be executed is increased. We refer to this
cost as the Predication Cost, and is calculated as the
number of times a branch is taken multiplied by the
branch distance. For example, if a branch that jumps over
5 instructions is transformed via predication, then the 5
instructions that were previously skipped will now have
to be executed. In the event that the branch would have
been taken, these 5 instructions do not need to be exe-
cuted but are issued due to predication. Clearly longer
branch distances incur much larger predication costs.

Table 3 shows the number of branches in each

� �

application and how many of those branches were
removed by the predication schemes. The Total column
shows the number of branch instructions (both conditional
and unconditional) that are in the application. The 100%
column shows how many of those branches could be
predicated using the aggressive (A) and Restricted (R)
strategies. Three other columns show how many of the
forward branches must be predicated to account for 80%,
95% and 99% of all branch executions. The A field
shows the number of branches required and the R field
show how many of those could be predicated using a res-
tricted predication scheme. Very few branches need to be
predicated to achieve almost complete coverage of the
available branch executions. Yet, as seen in the next sec-
tion, the removal of these branches can achieve a substan-
tial reduction in the branch penalty.

Aggressive predication is capable of removing
approximately 30% of the total branches in the program.
Restricted predication is capable of removing only about
5% of the branches. The inability to predicate loads and
stores account for about half of the restricted branches.
The remaining restrictions are due to the appearance of
additional branches (that could not be predicated)
between the original branch instruction and its branch tar-
get address. The effect of this restriction is remarkably
similar for each benchmark.

5. Analysis
The removal of branches via predication will affect

several of aspects of program performance. Primarily,
performing predicate transformations will affect two
things; the number of cycles spent dealing with a
program’s branches, and a program’s average basic block
size. In order to quantify these effects, we investigated the
relationship between predication, branch prediction

Table 3: Removal of Branches by Predication
� ���

Bench- Total 80% 95% 99% 100%
Mark Branch A R A R A R A R� ���

alvinn 11150 13 6 22 10 35 11 3292 580
doduc 10129 7 2 49 8 71 12 3346 495
ear 2599 2 0 2 0 2 0 831 121
fpppp 9202 9 8 17 13 26 17 3147 478
hydro2d 10152 17 2 32 11 41 14 3250 494
mdljdp2 10034 8 3 13 6 17 6 3368 498
mdljsp2 10013 8 0 10 0 12 0 3343 482
nasa7 9660 36 1 112 7 175 9 3155 470
ora 8749 3 3 3 3 4 3 3024 433
spice 12736 13 2 22 5 36 5 3648 588
su2cor 10428 4 2 7 3 8 4 3276 492
swm256 8976 2 2 3 3 3 3 3043 438
tomcatv 8060 2 2 2 2 2 2 2747 412
wave5 11150 13 6 22 10 36 12 3292 580� ���
compress 1539 3 1 4 1 5 1 490 66
eqntott 4254 1 0 4 0 15 1 1194 166
espresso 5803 10 0 49 1 90 3 1879 275
gcc 21500 315 17 775 58 1345 99 6188 569
sc 6584 21 1 51 5 110 16 1701 271
xlisp 3391 12 0 27 0 41 0 197 14� ���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

accuracy, the branch penalty, and the average basic block
size.

Branch prediction accuracy is an important measure
of how well an architecture deals with branches; however,
just as cache hit rates are not in and of themselves an ade-
quate measure of cache performance, prediction accuracy
by itself ignores some essential components of overall
branch handling performance. For example, the number
of cycles lost due to a mispredicted branch (the mispred-
iction penalty) varies from machine to machine, and
grows with pipeline depth. Architectures that issue multi-
ple instructions per cycle also pay a high misprediction
penalty because, even though they may lose fewer cycles,
each cycle is capable of doing more work.

Straight branch prediction accuracies also do not
include the total number of branches that the figure is
based on. For instance, if half of the branches are
removed from the execution via predication, maintaining
the same prediction rate will in reality yield a 50%
decrease in the cycles lost to mispredicted branches.
Therefore, any attempt to measure the relationship
between predication and branch performance must
include an examination of the branch penalty.

Finally (and perhaps most importantly), the effect
that predication has on average basic block size is impor-
tant because it directly relates to the amount of parallel-
ism that can be extracted by the code scheduler. By
increasing the number of instructions that are executed
between branch decisions, the scheduler (hardware and
software) can more easily find independent instruction to
fill issue slots in the pipeline.

5.1. Effects of Predication on Branch Prediction
In this study, the effect of removing short forward

branches of distances 2, 4, 6, 8, 10 and 12 instructions
was examined. Removing these branch instructions from
the instruction stream affects the prediction schemes in
two ways:

(1) Predication removes branches that have less than
average prediction accuracy.

(2) For those schemes that perform table driven
dynamic prediction, the reduction in the number of
branches encountered can ease contention for
branch table access.
Figures 3 and 4 show the the effects of predication

(by distance) on branch misprediction rates. The figures
show the change in misprediction rate relative to branch
accuracy before predication. So, a level of 80% indicates
that the prediction accuracy has improved by reducing the
misprediction rate 20%. Misprediction rates are
presented instead of accuracy rates to highlight the
improvement in accuracy. The accuracy of branches in
the range 0-12 is not displayed, because the number of
branches remaining in that range after predication
decreases to the point where meaningful representation is
not possible.

� �

This figure shows that several schemes experience
reductions of up to 30% in the misprediction rate. The
fact that many of the schemes do not experience
significant accuracy changes also indicates that many
current table driven schemes contain enough state infor-
mation space and do not suffer from resource (table
space) contention. The majority of the reduction in
branch penality comes from the removal of a significant
number of branches int the 0-12 instruction range.

5.2. Effects of Predication on Branch Penalty
A branch handling scheme that has a very high

branch prediction rate but a correspondingly high branch
penalty may very well cost more cycles than a simple
scheme on a processor with a shorter pipeline. Measuring
the relationship between the branch penalty and predica-
tion requires some definitions. We made the following:

branch penalty = cost of executing a branch (1)
* total number of branches executed
+ misprediction penalty
* number of mispredicted branches

predication cost = Branch distance of removed Branch
* branches taken taken pre-removal

The branch penalty equation is composed of two
fairly straightforward components- each branch must be
issued (using an issue slot), and each time a branch is
predicted incorrectly, some number of cycles are lost to
squashing instructions in progress and redirecting the
fetch logic. This misprediction penalty varies from

| ||50
|60

|70

|80

|90

|100

 M
is

pr
ed

ic
tio

n
R

at
e

%

Floating Point

<0

12+

Ave

Alpha
1-bit

Alpha
1-bit

Pentium
2-bit

Pentium
2-bit

PowerPC
604

PowerPC
604

2-level
Adaptive

2-level
Adaptive

Predication Distance 4 Predication Distance 10

| ||50

|60

|70

|80

|90

|100

 M
is

pr
ed

ic
tio

n
R

at
e

%

Integer

<0

12+

Ave

Alpha
1-bit

Alpha
1-bit

Pentium
2-bit

Pentium
2-bit

PowerPC
604

PowerPC
604

2-level
Adaptive

2-level
Adaptive

Predication Distance 4 Predication Distance 10

Figure 3. Change in Branch Misprediction Rate for Aggressive Predication

scheme to scheme (see table 2). (Note that the mispredic-
tion penalty is in cycles, and not instructions. This will
clearly impact a multiple-issue machine more than a pipe-
lined machine.)

The predication cost equation is a bit more compli-
cated and depends heavily on the predication mechanism
employed. The basic cost is the number of instructions
issued that are not performing useful work. The first con-
sideration is whether an additional instruction is required
to specify the predicate value (if so, then this is analogous
to the branch issue required for each branch execution).
Some predication mechanisms do not require the insertion
of additional instructions, utilizing additional source fields
in the instruction format to convey the predicate value
instead. A second source of extra cost due to predication
is the fact that all predicated instruction are issued regard-
less of their predicate value. If a forward branch of dis-
tance N is taken M times, for example, then N*M instruc-
tions are bypassed and not executed. Once predication
removes the branch instruction, then the N instructions
will no longer be bypassed, but will have to be executed
and this cost will have to be included.

Figure 5 shows the total branch penalty calculated
for each predication distance for each predication scheme.
Note that as the predication distance increases, the
number of cycles spent handling branches decreases.
This is due to two factors -- predication is removing
branches and therefore reducing the first term of the equa-
tion, and the branch prediction accuracy of the remaining
instructions is increased (and the misprediction rate is
correspondingly decreased) forcing the second term of the

� �

| ||50

|60

|70

|80

|90

|100

 M
is

pr
ed

ic
tio

n
R

at
e

%

Floating Point

<0

12+

Ave

Alpha
1-bit

Alpha
1-bit

Pentium
2-bit

Pentium
2-bit

PowerPC
604

PowerPC
604

2-level
Adaptive

2-level
Adaptive

Predication Distance 4 Predication Distance 10

| ||50

|60

|70

|80

|90

|100

 M
is

pr
ed

ic
tio

n
R

at
e

%

Integer

<0

12+

Ave

Alpha
1-bit

Alpha
1-bit

Pentium
2-bit

Pentium
2-bit

PowerPC
604

PowerPC
604

2-level
Adaptive

2-level
Adaptive

Predication Distance 4 Predication Distance 10

Figure 4. Change in Branch Misprediction Rate for Restricted Predication

equation down as well.
Branch penalty accounts for only a portion of the

effect of predication; the cost of predication should be
factored in to determine the overall effect on perfor-
mance. Figure 6 shows what happens when this number
is included. There are several things to note about this
figure. For example, as you would expect, the greater the
predication distance the less effective predication is in
reducing the overall number of instructions issued. This
is due to the direct relation the predication cost has to the
distance of the branch (the branch penalty is independent
of the branch distance). Each of the prediction schemes
follows the same pattern, a drop in the number of instruc-
tions issued as very short branches are predicated, fol-
lowed by a gradual rise in instruction issues as predication
cost rises for greater branch distances.

Two facts of note about this figure are the perfor-
mance of the Alpha Backward scheme and relative per-
formance of the newer multi-issue architectures to the
single-issue architectures using simple prediction schemes
but having smaller misprediction penalties.

First, the Alpha utilizing a branch backward predic-
tion scheme is an unusual case and worth further exami-
nation. In this scheme forward branches are predicted not
taken, so a misprediction penalty is incurred each time the
branch is taken. If this misprediction penalty is greater
than the predication penalty generated by transforming
the branch, it is a win to perform the transformation.
Since the predicate penalty is smaller than the mispredic-
tion penalty for all branches under 8 instructions (4 cycle
misprediction penalty * 2 issues), a substantial improve-
ment can be made by predicating ALL branches up to

distance 9 on an Alpha with this configuration.
The second point demonstrated in figure 5 is that

the newer architectures benefit from predication more
than old designs even though the newer branch prediction
schemes are better. Intuitively, it is clear that after
scheduling these multi-issue architecture would receive a
greater benefit from predication, but due to the greater
misprediction penalty, this improvement is seen before
scheduling as well. In fact the PowerPC 604 shows an
overall improvement in instruction issue even in the most
aggressive scheme up to branch distance 12. This is
excluding the much greater benefit that the removal of
30% of the branches will have on static and dynamic
scheduling.

The Restricted scheme also shows improvement in
total instructions issued, but it is more conservative in
approach and the corresponding limit in effectiveness is
proportional. Very few branches of distance greater than
4 are predicated.

The trend is towards more and more aggressive
predication. The newer architectures can tolerate the
greater predication cost caused by increasing the branch
distance.

� �

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|30

|40

|50

|60

|70

|80

|90

|100

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Aggressive Predication (FP)

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|30

|40

|50

|60

|70

|80

|90

|100

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Restricted Predication (FP)

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|30

|40

|50

|60

|70

|80

|90

|100

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Aggressive Predication (Int)

 Branch Always
 Alpha Backwards
 Alpha 1-bit
 Pentium 2-bit
 PowerPC 604
 2-level Adaptive
 HP

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|30

|40

|50

|60

|70

|80

|90

|100

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Restricted Predication (Int)

Figure 5. Percent of Branch Penalty per Predication Dist

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|35

|45

|55

|65

|75

|85

|95

|105

|115

|125

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Aggressive Predication (FP)

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|40

|50

|60

|70

|80

|90

|100
|110

|120

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Restricted Predication (FP)

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|35

|45

|55

|65

|75

|85

|95

|105

|115

|125

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Aggressive Predication (Int)

|

0
|

2
|

4
|

6
|

8
|

10
|

12

|40

|50

|60

|70

|80

|90

|100

|110

|120

 Predication Distance

 B
ra

nc
h

Pe
na

lty
 (

%
) Restricted Predication (Int)

Figure 6. Total Cost of Branches

� �

5.3. Effects of Predication on Basic Block Size
Control dependencies restrict the ability of multi-

issue architectures to fill instruction slots. Branch predic-
tion schemes are used to help alleviate this problem by
providing a set of candidate instructions with a high pro-
bability of execution that can be used to fill vacant slots.
Unfortunately, many compiler transformation are still
precluded.

By removing the control dependency entirely via
predication, the compiler has more flexibility in reorder-
ing the code sequence. This can achieve a more efficient
code schedule. An average of 30% of branch instructions
are short forward branches and are good candidates for
predicate transformation. The removal of these branches
leads to a significant increase in basic block size, and thus
an increase in the efficiency of the scheduler.

Figure 7 shows the results of the Aggressive
transformation on the integer SPEC benchmarks. This
figure shows that as the predication distance increases, the
basic block size increases as well, and that a branch dis-
tance of 12 provides a 40% increase in basic block size.
This is almost half of the total increase achievable if all
forward branches were removed. The Restricted predica-
tion scheme provides a much more limited improvement
in basic block size (4% to 6% increase).

It is also possible to use predication in conjunction
with other transformations to remove even a wider range
of branches. For example, a loop unrolling transforma-
tion removes backward branches by duplicating the body
of the loop and iterating (and therefore branching) fewer
times. If the number of iterations can be determined at
compile time, then the unrolling is a simple duplication.
However, if the number of iterations cannot be deter-
mined at compile time, then care must be taken to not
overshoot the terminating condition of the loop. This can
be accomplished by placing conditional branches exiting
the loop between the duplicated copies of the loop body,

 float low
 float high
 integer low
 integer high

|

0
|

16
|

32
|

48
|

64
|

80
|

96
|

112
|

128

|0

|20

|40

|60

|80

|100

|120

 Predication Distance

 %
 I

nc
re

as
e

in
 B

as
ic

 B
lo

ck
 S

iz
e

Figure 7. Affects of Predication on Average Block Size

and using predication to transform these conditional
branches into predicated instruction sequences. Using
these two transformations together, the compiler can
modify a small loop containing a maze of if-then-else
conditionals into a long sequence of predicated instruc-
tions that can then be more efficiently scheduled to fill
instruction slots.

6. Conclusions
Supporting the conditional execution of instructions

is a technique that can have a significant impact on the
performance of most high-performance architectures. It
accomplishes this by providing a mechanism for remov-
ing control hazards (branches) which are well-known
impediments to achieving greater amounts of instruction
level parallelism (ILP). The short forward branches
amenable to predication also have relatively poor predic-
tion rates. Therefore, their removal can lead to an increase
in the overall branch prediction accuracies for even the
most sophisticated dynamic branch prediction strategies.

In order to measure some of the above effects, we
studied the relationship between predication and branch
performance for the SPEC92 benchmark suite. Our study
shows that an aggressive approach to predicating
branches of distance less than or equal to 12 can reduce
the count of instruction slots lost to executing branches by
as much as 50%. A reduction in instruction slots of 30%
to 50% holds true for each of the branch prediction
schemes studied. This indicates that improved branch
prediction accuracies exhibited by some newer architec-
tures do not offset their branch misprediction penalty.
For example, the PowerPC 604 uses a highly accurate
branch prediction mechanism but pays a greater mispred-
iction penalty (4 cycles) than the HP-RISC, which uses a
simple less accurate branch-backward scheme with a
much lower misprediction penalty (1 cycle). Both of
these processors receive almost identical benefits from
predication.

The instruction slots lost due to unfilled instruction
slots in multi-issue architectures can far exceed the
instruction slots lost due to branch misprediction. How-
ever, aggressive predication also increases average basic
block size by up to 45%, providing the code scheduler
with more instruction to fill the execution pipeline and
significantly reducing pipeline stalls.

In addition to the aggressive predication scheme,
we examined two other more restrictive approaches.
Results indicate that current predication schemes that
allow for expression boosting but not full instruction set
predication show dramatically less ability to reduce
branch misprediction penalty and increase basic block
size than the more aggressive approach. While these
schemes can be useful in certain applications (e.g. tuned
OS routines), they provide only a limited benefit in
improving more general applications.

We feel adding architectural support for the condi-
tional execution of instructions is going to continue to
grow in importance for the following reasons:
1) Branch misprediction penalties will continue rising as

pipeline depths and issue widths increase

� �

2) The predicate cost is in terms of instructions, and
therefore not dependent on issue width. As issue
widths increase, the performance penalty for branch
prediction becomes greater, where the predication
cost remains constant.

3) Branches transformed by predication have worse than
average prediction accuracy

4) Predication allows for a significant increase in basic
block size.

7. Future Work
This study was done using the ATOM tools on an

Alpha. We would like to look at the branch characteris-
tics of some other architectures as well. For example, it
would be interesting to see how well predication works on
a CISC architecture that has a higher ratio of branches.
Using code generated for each architecture would allow
for the effect on pipeline stalls to be factored in the total
penalty. In this paper, only branch penalty and predica-
tion cost were analyzed, by performing pipeline level
simulation on each architecture we can factor in basic
scheduling capabilities to more finely describe the predi-
cation penalty.

Aggressive predication introduces an important
new transformation into code optimization. The use of
predication will increase the applicability of other
transformation techniques. The interaction of these tech-
niques should yield new opportunities for optimization.

8. References
[AlAv93] D. Alpert and D. Avnon, ‘‘Architecture of the

Pentium Microprocessor’’, IEEE Micro(June
1993), pp. 11-21.

[AADM93] T. Asprey, G. S. Averill, E. DeLano, R. Mason, B.
Weiner and J. Yetter, ‘‘Performance Features of
the PA7100 Microprocessor’’, IEEE Micro(June
1993), pp. 22-35.

[CMCW91] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J.
Warter and W. Hwu, ‘‘IMPACT: An
Architectural Framework for Multiple-
Instruction-Issue Processors’’, Proceedings of the
Eighteenth Annual International Symposium on
Computer Architecture, Toronto, Canada (May
27-30, 1991), pp. 266-275.

[DeHB89] J. C. Dehnert, P. Y. T. Hsu and J. P. Bratt,
‘‘Overlapped Loop Support for the Cydra 5’’,
Proceedings of the 17th Annual Symposium on
Computer Architecture(May 1989), pp. 26-38.

[FiFr92] J. A. Fisher and S. M. Freudenberger, ‘‘Predicting
Conditional Branch Directions from Previous Runs
of a Program’’, Proceedings of the Fifth
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Boston, MA (October 12-15, 1992), pp.
85-95.

[HePa90] J. Hennessy and D. Patterson, Computer
Architecture: A Quantitative Approach, Morgan
Kaufman, San Mateo, California, (1990).

[LeS84] J. K. L. Lee and A. J. Smith, ‘‘Branch Prediction
Strategies and Branch Target Buffer Design’’,
Computer, vol. 17, no. 1 (January 1984), pp.
6-22.

[McLe93] E. McLellan, ‘‘The Alpha AXP Architecture and
21064 Processor’’, IEEE Micro(June 1993), pp.
35-47.

[PnSo94] D. N. Pnevmatikatos and G. S. Sohi, ‘‘Guarded
Execution and Branch Prediction in Dynamic ILP
Processors’’, Proceedings of the 21th Annual
Symposium on Computer Architecture, Chicago,
Illinois (April 18-21, 1994), pp. 120-129.

[Russ78] R. M. Russell, ‘‘The CRAY-1 Computer System’’,
Communications of the ACM, vol. 21, no. 1
(January 1978), pp. 63-72.

[Site92] R. L. Sites, ‘‘Alpha Architecture Reference
manual’’, Digital Press(1992).

[Smit81] J. E. Smith, ‘‘A Study of Branch Prediction
Strategies’’, Proceedings of the Eighth Annual
International Symposium on Computer
Architecture, Minneapolis, Minnesota (May 1981),
pp. 135-148.

[SrWa94] A. Srivastava and D. W. Wall, ‘‘Atom: A system
for building custonized program analysis tools’’,
Proceedings of the ACM SIGPLAN Notices 1994
Conference on Programming Languages and
Implementations(June 1994), pp. 196-205.

[YeP91] T. Yeh and Y. Patt, ‘‘Two-Level Adaptive
Training Branch Prediction’’, Proceedings of the
24th Annual International Symposium on
Microarchitecture, Albuquerque, New Mexico
(November 18-20, 1991), pp. 51-61.

[YeP93] T. Yeh and Y. Patt, ‘‘A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch
History’’, Proceedings of the Twentieth Annual
International Symposium on Computer
Architecture, San Diego, CA (May 16-19, 1993),
pp. 257-266.

[94] ‘‘PowerPC 601 RISC Microprocessor Users’s
Manual Addendum for 604’’, Motorola / IBM
Microelectronics(1993, 1994).

