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Abstract 
We describe a methodology for classification of gait (walk, 

run, jog, etc.) and recognition of individuals based on gait 

using two successive stages of principal component 

analysis (PCA) on kinematic data. In psychophysical 

studies we have found that observers are sensitive to 

specific “motion features” that characterize human gait.  

These spatiotemporal motion features closely correspond to 

the first few principal components (PC) of the kinematic 

data.  The first few PCs provide a representation of an 

individual gait as trajectory along a low-dimensional 

manifold in PC space. A second stage of PCA captures 

variability in the shape of this manifold across individuals 

or gaits.  This simple eigenspace based analysis yields 

excellent classification across subjects. 
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INTRODUCTION 
Biological motion—the characteristic movements of 

humans and animals—provides a challenging paradigm for 

understanding spatiotemporal pattern recognition.  Human 

gait is characterized by a pattern of relative motions of the 

articulated parts of the body, each of which has constrained 

relative positions and ranges of motion. Much remains to 

be understood concerning the intermediate and high level 

visual features used for recognition. However, evidence 

suggests that both form and motion features are used for 

recognition.  The ability to recognize human movements 

from motion cues was demonstrated by Johansson [1] who 

introduced the study of point-light walkers.  Small lights 

are attached to different body parts (shoulders, elbows, 

hands, hips, knees, feet, and head) of subjects moving in a 

dark room--from the motion of these “point-lights” 

observers can robustly discriminate different gaits 

(walking, strutting, limping, running), the direction of gait, 

and to some degree the gender [2] and identity of the 

walker [3].  Structural information is minimized in a point-

light video—in a single static frame, no form is 

recognizable.  Nevertheless, observers are able to detect a 

walker or runner in such videos within a small fraction of 

the gait cycle [4].  Gait recognition is an area of extensive 

research in computer vision as well. Research in detection 

and tracking of people from real videos have employed 

different approaches ([5], [6], [7] [8]). The use of gait as a 

biometric has also received  attention, particularly as part of 

the HumanID research initiative [9]. Both Silhouette based 

([10], [11], [12], [13]) and marker based ([14], [15]) 

approaches have been used. 

Most gait recognition research has concentrated either on 

image processing/machine learning methodology, or on 

psychophysical aspects of the perception of biological 

motion (such as the role temporal information [16], or the 

contributions of structural vs. kinematic cues [3]).  A key to 

progress will be to identify human psychophysical 

mechanisms and incorporate efficient versions of these 

mechanisms into recognition systems [12].  

In psychophysical studies [17], we have found that the 

perception of human gait depends upon the detection of 

specific “motion features” that characterize the relative 

motion of body parts. Focusing on the legs, we identified 

three particular motion features that are necessary and 

sufficient to identify gait: (1) anti–symmetrical movement 

of the thighs, (2) knee flexion followed by extension during 

the swing phase of gait, and (3) relative absence of knee 

movement during the pivot phase of gait.  Interestingly, 

these three features are the core features of Cutting’s [18] 

algorithm for generating realistic looking point light 

displays of human gait. While the visual system most likely 

makes use of additional motion features, these three motion 

features define a low-dimensional manifold of motion 

parameters that can be used for accurate recognition and 

classification.  

We tested human observers’ sensitivity to perturbations in 

these motion features in upright vs. inverted point-light 

walker displays. Since it is well known that display 

inversion impedes recognition [19], we hypothesized that 

observers should be more sensitive to features used for 

recognition in upright displays than in inverted displays. 

This is indeed what we found psychophysically [17]. In 

these experiments, perturbations to a variety of potential 

motion features were introduced.  Perturbations that led to 

distortions of the low-dimensional manifold were 

detectable at much lower thresholds than similar motion 

perturbations that did not distort the manifold—suggesting 

that the low-dimensional manifold represents critical 

information used by the visual system for recognition. Most 

critically for the present study, we found that the first two 

principal components of gait data have close 

correspondence with the identified motion features [20]. It 

has been shown that PCA can be successfully employed to 

represent movement data in a low-dimensional space ([21, 

22]). We can therefore use the low-dimensional manifold 

defined by the first few principal components to perform a 

second stage of principal component analysis that describes 

deviations in the manifold across individuals or types of 



gait.  This second PCA stage primarily distinguishes the 

temporal characteristics of the motion. We demonstrate 

high accuracy for gait and identity discrimination tasks, and 

show that the two-stage PC representation yields insights 

into the contributions of various parameters to different 

recognition tasks.  

METHODS 
Gait data was obtained using the ReActor2 motion capture 

system (http://www.ascension-tech.com). Six human 

subjects (3 male, 3 female) walked, jogged, ran and limped 

on a Quinton Hyperdrive Club Track treadmill. Limping 

was simulated by tying weights to one ankle of the subject. 

Infrared emitters placed at 30 body positions provided 3D 

spatial positions of markers at 33 frames/s with a spatial 

resolution of 3 mm. The locations of 13 major body parts 

(shoulders, elbows, hands, hips, knees, feet, and head) were 

calculated from this data and projected to the sagittal plane. 

Angles and angular velocities were calculated from the data 

using angles as defined in  

Figure 1. We concentrate on the lower limbs, as they 

provide more salient information on gait than other body 

parts [23]. An example of how the thigh and knee angles 

vary with time during two consecutive gait cycles is shown 

in Figure 2. 

 

 
 

Figure 1. Subject running on a treadmill. The thigh angle  is 

defined as the relative orientation of the thigh with respect to 

the vertical – it is negative for thigh behind the torso and 

positive for thigh in front of the torso. The knee angle  is 

defined as the joint angle at the knee – zero means a fully 

extended knee, a positive angle means flexed knee. 

Two Stage PCA 
In the first stage, we performed principal component 

analysis [24] on a 6-dimensional dataset consisting of left 

and right thigh angles, the inter-thigh angle and inter-thigh 

angular velocity, and the knee angle and knee angular 

velocity. 60 seconds of data for each subject was used for 

each treadmill speed and type of gait (running, walking 

etc.). Each data point is a 6-dimensional vector consisting 

of values xij  of variable i  (= 1, 2, …, 6) at time j.  If each 

such data point is denoted by X j = [x1 j ,  x2 j ,...,x6 j ] and 

the principal components are denoted by Pk (k =  1..6), 

then the projections Ykj  of X j  on Pk  are given by 

                     Ykj = X j ,  Pk                             ..(1) 

where  ,   represents the dot product.  For every 60 

second segment, Pk  and Ykj  were calculated separately.  

In the second stage, the projections Y1 j  and Y2 j  of the 

original data onto the first two principal components were 

considered. Y1 j  and Y2 j  represent a “D” shaped 2D 

manifold (Figure 3). In order to capture information about 

the temporal variability of the data throughout the gait 

cycle, the projection values for each cycle of gait were 

considered as a time series. If we represent the gait cycle by 

N uniformly spaced time points, each data point ˆ Y l  
constructed from the lth  gait cycle for the second PCA is 

given by 

                                ˆ Y l = [ ˆ Y 1
l   ˆ Y 2

l ]                            ..(2) 

where we have introduced the variables 

ˆ Y 1
l

= [Y11
l  Y12

l ... Y1N
l ] and ˆ Y 2

l
= [Y21

l  Y22
l ... Y2N

l ] which 

represent the time series of projections onto the first and 

second PCA dimensions. 

We now perform a second PCA decomposition with each 

data point ˆ Y l  representing a gait cycle. The principal 

components thus obtained after the second stage of PCA 

are denoted by 

                            ˆ Q m  =  [ ˆ Q 1
m   ˆ Q 2

m ]                          ..(3) 

where  m =  1..2N  is the second stage principal 

component number and ˆ Q 1
m

= [Q11
m  Q12

m ... Q1N
m ] is the part 

of component ˆ Q m  that acts on the first dimension (i.e. ˆ Y 1
l
) 

and ˆ Q 2
m

= [Q21
m  Q22

m ... Q2N
m ] is the part that acts on the 

second dimension, ˆ Y 2
l
.  Therefore, the projection ˆ Z lm  of 

ˆ Y l  on ˆ Q m  is given by 

                       

ˆ Z lm = ˆ Y l ,  ˆ Q m

= ˆ Y 1
l , ˆ Q 1

m
+ ˆ Y 2

l , ˆ Q 2
m

                 . .(4) 

All results presented here are based on projections onto the 

first three principal components of this second PCA stage, 

viz. ˆ Z l1, ˆ Z l 2
, and ˆ Z l 3

. A similar two-stage PCA method 

has been used for classification of spatiotemporal patterns 

of neuronal activity in turtle cortex [25]. 

 



 
Figure 2. Thigh and knee angles over one gait cycle. The left 

and right thigh angles vary antisymmetrically. The knee angle 

flexes then extends during the swing phase. 

RESULTS 
We used projections in the eigenspace after two-stage PCA 

to perform various classification tasks. For all the results 

reported here, linear discriminant analysis [26] based on the 

first three principal components was performed. Figure 3 

shows the variation of the projections Y1 j  and Y2 j  after the 

first stage of PCA. The appearance of the “D” like 

manifold contains information about the type of gait, the 

identity of the subject, etc. The manifolds are aligned so 

that the stems of the “D” are parallel to each other. The “D” 

is traversed in the counterclockwise direction once every 

gait cycle indicated by the color change from deep blue to 

deep red. The vertical stem of the “D” corresponds to the 

pivot phase and the semicircular arc corresponds to the 

swing phase of gait [27].  

Gait Classification 
The presence of a “D”-like manifold in PC space is the 

signature of a gait-like motion.  The “D” manifolds for 

walking versus running, shown in figure 3, differ subtly in 

their shape characteristics. Differentiation between similar 

manifolds representing gaits or individuals is extracted by a 

second stage of PCA.  Figure 4 shows the results of gait 

classification for four types of gait – walking, running, 

jogging and limping for one subject. There are 

distinguishable clusters representing different gaits. 

Identity Recognition 
Figure 5 shows results of identity classification on 6 

running subjects. The variations in the appearance of the 

“D” manifold and the temporal dynamics of how the 

manifold is traversed during a gait cycle are even more 

subtle in this case (compare the two panels in the top row 

of Figure 3). Nevertheless, more than 90% accuracy in 

classification was obtained in most cases. 

 

 

Figure 3.  Manifolds in PC space after first stage of PCA. Top 

row running, bottom row walking. Left column subject 1, 

right column subject 2.  Manifold is traversed once every gait 

cycle in the counterclockwise direction, color represents the 

phase of gait cycle. 2000 frames of gait data were used in each 

panel. 

 

 

Figure 4 Clusters for gait classification. The classification rate 

was 99% in this case. 

It is informative to consider the characteristics of the “D” 

manifold that are relevant for identity recognition. For 

example, each panel in Figure 6 plots the same 2D 

manifold defined by the projections ˆ Y 1 (y axis) and ˆ Y 2  (x 

axis) of 528 gait cycles from 6 different people. However, 

the different panels have different color codings 

proportional to ˆ Q 1 j
1

 (top left), ˆ Q 2 j
1

 (top right), ˆ Q 1 j
2

 



(bottom left), and ˆ Q 2 j
2

 (bottom right) respectively, where 

j =  1..N . 

 
Figure 5.  Recognition of different people from their running 

gaits.  Points corresponding to gait cycles of each individual 

are color coded in the second-stage PC space—points for each 

individual are distinguishably clustered.   Classification 

accuracy for 528 gait cycles in these 6 subjects was 96.7%. 

Specifically, color codings in the top left panel signify 

relative contributions of y locations ( ˆ Y 1 values) on the 

manifold towards projection ˆ Z l1 .  The top right panel 

shows relative contributions of x locations ( ˆ Y 2  values) 

towards ˆ Z l1 . The bottom left panel shows relative 

contributions of y locations ( ˆ Y 1 values) towards ˆ Z l 2
. 

Finally, the bottom right panel shows relative contributions 

of x locations ( ˆ Y 2  values) towards ˆ Z l 2
. 

Hence, as we traverse the gait cycle on the manifold at N  

equally spaced time points, the color coded loadings 

convey the relative importance of information at different 

phases that is crucial for recognition. Red shades indicate 

positive loadings and blue shades indicate negative 

loadings – both of which contribute significantly towards 

ˆ Z lmvalues that aid discrimination. Green indicates loadings 

close to zero – signifying little contribution to 

discrimination. 

Observe that ˆ Q 1  has high positive loadings on the y 

locations during the mid-swing part of the gait cycle (top 

left). This would correspond to a measure of variability of 

limb positions around the midpoint of the swing. ˆ Q 1  has 

significant positive and negative loadings on the x locations 

around the bottom and top extremities of the manifold (top 

right) respectively. Since the x coordinates ( ˆ Y 2  values) at 

both of these manifold locations are positive, this would 

produce an estimate of the amount of tilt in the semi-

circular part of the “D”. On the other hand, ˆ Q 2  has a high 

positive loading on the stem of the “D” – this would 

correspond to a measure of how the leg moves during the 

pivot phase (bottom left).  

Thus, by looking at the loadings of the PCs on the 

information available at different phases of the gait cycle, 

one can infer the information present in the data that is 

useful for a particular recognition task. 

Figure 7 depicts the relationship between a specific 

manifold shape (given by ˆ Y l ) and its projections ˆ Z l1 and 

ˆ Z l 2
on the first two PCs, ˆ Q 1 and ˆ Q 2 respectively. The 

left panel shows the ˆ Z  plane on which different clusters of 

individual running gaits have been projected. To see what 

happens as we span the axes on the projection space, we 

consider four points approximately located at four corners 

of the rectangular region enclosing the actual data set. The 

corresponding manifolds back-projected onto the ˆ Y  space 

are shown on the right panel. Color coding in the right 

panel represents the phase of the gait cycle. The gamut of 

shapes and the variation in the location of a given color 

across the different manifolds capture the discriminating 

power of the principal components. 

 

Figure 6. Loadings of first two of the second stage principal 

components on different parts of the “D” manifold (i.e. 

different times in the gait cycle) for identity recognition from 

running gaits. Red saturation levels indicate positive loadings 

and blue saturation levels indicate negative loadings. Green 

indicates loadings close to zero. We can see that the second 

stage PCs combine the variability of first stage PC projections 

at different phases of the gait cycle with different weights. 



 
Figure 7. Left panel shows the projection plane defined by the 

first two PCs of second stage that discriminate subjects from 

their run. Different colored clusters represent different 

people. The four orange markers denote approximate 

boundary points of the classification space. Their back-

projections to “D” manifold space are plotted on the right 

panel with corresponding marker types. 

It is also interesting to note that depending on the type of 

gait used for identity recognition, different parts of the gait 

cycle and/or different properties of the manifold contain 

discriminating information. One way to look at the 

importance of different parts of the gait cycle for 

recognition is to use data from only part of the gait cycle in 

the second stage PCA. The results for this for identity 

recognition using only half of the gait cycle are shown in 

Figure 8. Observe that discriminating individuals from their 

running gait is in general easier than from other gaits. Also, 

the first half of the gait cycle seems to contain more 

discriminating information for running compared to 

walking or jogging (lower error rates). Note that the 

relatively higher error rates for certain conditions are due to 

only half of the gait cycle being used. 

A similar analysis can be done for gait type recognition.  In 

Figure 9, data was provided for different fractions of a gait 

cycle, with the cycle beginning at various phases of gait 

(e.g., start of swing, midway through swing, etc..).  The 

initial portions of the cycle contain more discriminatory 

information about the type of gait than the later parts. 

DISCUSSION 
We have developed a PCA-based gait representation that 

arises from psychophysically-identified features used in 

visual recognition of biological motion. We perform a two-

stage principal component analysis where the first stage 

extracts salient information, in the form of the “D” 

manifold, concerning the relative motion of limbs.  This is 

followed by a second PCA stage that discriminates 

differences in the temporal trajectory of data points along 

the manifold. Despite this straightforward eigen-approach, 

promising recognition accuracies are obtained for 

classifying both gait type and identity, and informative 

task-specific discriminating properties emerge.  

 

 
Figure 8. Average identity recognition error rates using 

different gaits when data were taken from early (starting 

phase = 0), middle (starting phase = 0.25), and late (starting 

phase = 0.5) half of the gait cycle. 

 
Figure 9. Error rates for gait type recognition when different 

starting phases and different fractions of gait cycle were used. 

Note that the error increases as we go towards later parts of 

the cycle. 

Note that our manifold representation normalizes the range 

of original angle variables as well as temporal evolution of 

PCs in a gait cycle. This makes the representation time-

warp invariant ([28]) but throws away potentially 

discriminating information like stride length – instead 

focusing on the relative motion of limbs on a normalized 

time scale – yet the classification performance is good. 

A more sophisticated classification technique may improve 

performance further. The set of variables used are a 

minimal set that describes the relative motions of limb 

segments. Including more variables may also improve 

performance. Our dataset is relatively small, and for large-

scale biometric applications, the representations and/or 

algorithms may have to be extended, for example by 

including more form information, to achieve maximal 

performance. Also, we have used motion capture data, with 

the assumption that accurate joint position and gait cycle 

data are available. Our intention is to present a proof of 

concept based on the use of perceptually salient 

information. This two-stage analysis can be applied to any 



spatiotemporal sequence dataset.  Future work may reveal 

that this approach has utility for a wider class of problems 

in motion-based recognition.  
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