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Abstract 
In realistic environments, organisms are frequently faced with multiple resource alternatives, and must 
balance the tradeoff between pursuing the known options (exploitation), and searching the environment for 
unknown opportunities (exploration).  Exploration can be most beneficial in the presence of environmental 
uncertainty - when the range and benefits of all reward options are not fully known, exploration can lead to 
the discovery of new, better resources and an ultimately higher overall reward. However, uncertainty can 
take many forms, and it is unclear how different types of uncertainty impact people's exploratory 
behaviour. We used a 'wheel of fortune' task to separate two well-established sources of uncertainty: risk 
(when outcomes are stochastic, but the probabilities of outcomes are known) and ambiguity (when the 
probabilities and/or the outcomes are unknown), and examine how they impact exploration.  The results 
suggest that the presence of ambiguity in the environment drives people to explore in order to acquire more 
information and reduce the ambiguity. Conversely, a higher risk level in the environment increases 
exploration by increasing decision noise and making people less sensitive to the reward values of the 
available options.  We examined these effects under two different decision horizons, and found that 
ambiguity-, and not risk-related exploration increases with decision horizon. These findings imply that 
different sources of uncertainty impact exploration differently, and may shed light on the mechanisms 
behind two distinguishable types of exploration that have been previously identified: random 
(characterized by an increase in decision noise) and directed (information-seeking) exploration.   
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1 Introduction 

Imagine you are driving home from work during evening rush hour. Just as you are about to turn onto the 
freeway, you see a side road that looks like it might avoid the rush hour traffic jam, and potentially get you 
home faster. Do you continue onto your usual freeway route, or do you take the unknown side road which 
might reduce your commute time, or might cause you to get lost? This is an example of the "exploration - 
exploitation dilemma": the trade-off between choosing a certain resource alternative (in our example, the 
freeway) and searching the environment for other options (the side road), that may or may not be better.  

This kind of scenario is not restricted to humans. A foraging animal, such as a bee for instance, might 
choose between searching for nectar in a nearby food patch, or searching farther away for a potentially 
better patch [1]. Whether we are discussing animals foraging for food, or people driving home from work, 
the question is the same. With limited time and energy to spend, how should an organism best choose 
between exploiting what is known and exploring less known options?  This open question is encountered 
across fields, from cognitive neuroscience [2], to animal cognition [3], to ecology [4], economics[5], and 
reinforcement learning [6]. Nevertheless, due to the complex nature of realistic environments, the precise 
cognitive and neural mechanisms that drive exploration have not yet been fully discovered.  

Psychological and economic theories identify two different types of exploration: random - an increase in 
decision noise which makes people less sensitive to the values of the available options -, and directed 
exploration - a result of intentionally sampling unknown options to acquire information. The exact 
mechanisms behind these two types of exploration, as well as the factors that might lead a decision-maker 
to choose one over the other, are not known. However, evidence suggests that the decision to explore is 
related to environmental uncertainty - numerous studies found that uncertainty regulates exploratory 
behaviour [2,7], and relates to the neural underpinnings of the exploration - exploitation dilemma [8,9].  

Uncertainty is a broad term, and the literature has differentiated at least two separable concepts contained 
within it. Expected uncertainty, or risk, is associated with choices where the decision-maker knows the 
possible outcomes, and their probabilities. The uncertainty stems from the stochastic nature of the choice, 
which makes it impossible to predict the exact outcome. Unexpected uncertainty, or ambiguity, appears 
when the decision-maker does not know the probabilities, and may not even know all of the multiple 
possible outcomes [10, 11]. Ambiguity makes it impossible to directly calculate the expect reward associated 
with a choice, because the outcome probabilities are unknown.  

It is likely that people incorporate these two sources of uncertainty differently into their decision processes, 
which may bias them either toward exploration or away from it. Whether the current choice is risky or 
ambiguous is a crucial difference for deciding a strategy. Several studies argue that this distinction is 
important enough for the brain to maintain separate representations of risk and ambiguity [9, 12], and that 
different neural substrates respond to risk (orbito-frontal cortex, striatum) and ambiguity (lateral prefrontal 
cortex), and that different neurotransmitters are released in the presence of risk (acetylcholine) and 
ambiguity (norepinephrine).  

Despite this important distinction, there have not been many attempts to establish how risk and ambiguity 
independently influence the degree to which people explore, or whether they impact random and directed 
exploration differently. Many studies that examine the neural and behavioural responses to risk and 
ambiguity pay little attention to the exploration framework, and instead search for evidence that people 
have separate risk- and ambiguity preferences [10, 12]. Studies investigating people's exploration strategies, 
on the other hand, often focus heavily on the effect of relative reward magnitude, and either disregard the 
ambiguity framework, or pool risk and ambiguity together under the broader uncertainty heading [7, 13].  
To bridge this gap, we designed a task that allowed for a clear separation and empirical manipulation of 
risk and ambiguity, and examined how these two factors impact exploratory behaviour.  
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2 Methods 

2.1. Behavioural Task 

Participants played multiple games of a sequential decision task that required them to choose between two 
virtual wheels of fortune (figure 1A). The rewards (number of points) that each wheel could pay out were 
written on the slices.  One wheel, referred to as the ambiguous wheel, always had some of the reward 
values covered with a question mark. This design made it possible to clearly operationalize reward, risk and 
ambiguity, and allowed each of the three parameters to be manipulated individually, while the other two 
were kept fixed.  

The mean reward of each wheel was given by the mean of the numbers on the slices.  Risk in this task was 
operationalized as the variance of the numbers on the wheel, and could take five different values that 
ranged from no risk (all numbers were the same) to high risk (the variance of the numbers was high). 
Ambiguity was operationalized as the number of question marks on the wheel, and could be either zero (all 
the wheel slices remained uncovered) or four (four slices were covered by the question mark).  

The decision horizon was manipulated as the length of a game: each game consisted of either one choice 
between two wheels (horizon 1), or five sequential choices (horizon 5). The number of choices left in a game 
was always displayed on the screen (figure 1A). The wheels remained the same within a game, but they 
changed between games.  The changes were always signalled.  

 

Figure 1:A. Wheel of fortune task. The blue rectangle around the left wheel show that it was the chosen 
wheel. The pin stopped on the slice with the number '50', earning the participant 50 points for that spin. B. 
Example choice curve generated using model. The black curve is described by the parameters β (slope) and 
ξ (centre), which in the choice model correspond to gain (inverse decision noise) and ambiguity bonus. The 
dotted blue line shows what the choice curve would be if the participant chose exclusively based on mean 
reward, and had no decision noise.  

Each trial began with the two wheels being displayed on the screen. When participants made their choice, 
the chosen wheel spun a random number of times before landing on a slice, and the computer displayed the 
number on the slice as the reward earned for that trial. If that slice had been covered, the computer 
generated a value for it based on a Gaussian distribution that maintained the variance of the rewards on the 
wheel. The reward was displayed on the corresponding slice, and stayed visible for the remaining trials in 
that game.  

2.2. Model and Analysis 

We modelled participants' behaviour by assuming that they assign a value 𝑉(𝑊௜) to each wheel 𝑊௜ , and 
then make their choices using a softmax function that assigns a choice probability 𝑃(𝑊௜)to each option, 
according to:  
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𝑃(𝑊௜) =    ଵ
௘ഁ௱௏(ௐ೔)

      (1) 

where β is the gain parameter which determines how sensitive the choice probabilities are to the values. The 
value of an option was modelled as the expected value of the rewards (both the known - the uncovered 
slices in the wheel of fortune task - and the unknown, or the covered slices). In addition to mean reward, an 
ambiguity bonus parameter, ξ , was added to the value computation, to quantify how much reducing the 
ambiguity about that particular option is worth in units of value.  

𝑉(𝑊௜) =   𝐸𝑉[𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑  𝑠𝑙𝑖𝑐𝑒𝑠] +   𝐸𝑉[𝑐𝑜𝑣𝑒𝑟𝑒𝑑  𝑠𝑙𝑖𝑐𝑒𝑠] +   ξ         (2) 

The β and ξ  parameters define a choice curve for each participant (figure 1B), which shows, for any given 
difference in mean reward between the two wheels, how frequently the participant chose the ambiguous 
wheel. The gain parameter in the choice model was used to quantify decision noise - a measure of random 
exploration - in the participants' behaviour. The ambiguity bonus parameter was used as a measure of 
information-seeking. Exploration was defined as choosing the ambiguous wheel.  

3  Results 

Participants' choice curves (see figure 2A) show that they were generally sensitive to the mean reward 
values of the two wheels, with their probability of choosing the ambiguous wheel increasing as the 
difference in means between the two wheels increased. Overall average exploration on the first trial of a 
game was significantly higher in the horizon 5 condition than in the horizon 1 condition (𝑃௘௫௣,௛௢௥௜௭௢௡ଵ =
0.38   ± 0.15  , 𝑃௘௫௣,௛௢௥௜௭௢௡ହ = 0.56 ± 0.19).  

There was a significant main effect of risk level (F(5,24) = 5.62, p<0.01) on the fit decision noise parameter, 
with the participants' decision noise higher in high-risk conditions (fig 2C). This effect is also visible as the 
choice curves becoming flatter at increased risk level (fig. 2A). There was also a main effect of decision 
horizon (F(2,24) = 3.12, p<0.05), with decision noise higher in the horizon 5 condition; the interaction was 
not significant.   

 

Figure 2: A. Choice curves showing the probability of choosing the ambiguous wheel as a function of the 
difference in mean rewards, across risk levels, for decision horizon 5. B. Choice curves from a control task in 
which both wheels were non-ambiguous superpose. C. Decision noise increases as a function of risk, in both 
horizon 1 (black) and horizon 5 (orange). D. Ambiguity bonus decreases (curves move further to the right) 
as a function of risk level in horizon 5 (top), not in horizon 1 (bottom panel).  

For the fit ambiguity bonus, there was a main effect of horizon, with ambiguity-seeking significantly higher 
for the longer horizon, a main effect of risk level, with ambiguity-seeking significantly higher in lower risk 
conditions,  and an interaction: the decreasing trend in ambiguity bonus values was present only in the 
horizon 5 condition (figure 2D).  
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4  Discussion 

These results offer evidence for the separate roles of risk and ambiguity in exploratory decision-making. 
Higher risk levels were associated with a lower gain parameter in the choice function (figure 2A,C), 
suggesting that risk might influence the strength of people's preference for the more rewarding option by 
modulating decision noise. A control task run with no ambiguous options showed no effect of risk level, 
suggesting that it is not simply a computational load that causes increased decision noise in higher-risk 
conditions - rather, the presence of ambiguity (and thus the potential benefit of exploration) seems to be 
necessary for risk to affect exploration (figure 2B).  
 
A longer decision horizon was associated with a higher ambiguity bonus parameter, suggesting that the 
degree to which ambiguity biases value increases when there is more opportunity to use the acquired 
information to make better choices. These results are consistent with the idea that the degree to which 
ambiguity drives exploration is strongly correlated with the value of information [2, 7].   
 
Interestingly, the ambiguity bonus decreased with risk level - suggesting that people become less ambiguity 
seeking when the environment becomes more variable. This effect, however, is only present in the long-
horizon condition, when information acquired by exploring can be usefully employed in future choices. 
This, along with the increasing decision noise in high risk conditions, indicates a potential trade-off between 
random and directed exploration, with more risky environments driving increased randomness and 
decreased information-seeking, while more ambiguous environments bias people toward information-
seeking. The current findings suggest that both risk and ambiguity should be taken into account when 
modelling exploratory behaviour, and future work is required to describe a more precise mechanism of how 
these two factors interact to affect exploration. 
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