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Many decisions, from foraging to financial, depend on the ability 
to infer a state of the world from both historical and newly arriving 
information. Such inferences are particularly challenging when they 
must account for multiple sources of uncertainty. When uncertainty 
results from noise, reflecting random fluctuations in the information 
generated by an otherwise stable state, the average overall historical 
information is most predictive of future observations. In contrast, 
when uncertainty results from a change in the state itself, only the 
most recent information pertains to the new state. Thus, historical 
information should be discounted and beliefs should be updated 
rapidly to maximize their predictive power. Under certain condi-
tions, human subjects appear to encode and respond appropriately 
to these different forms of uncertainty when making inferences in a 
dynamic environment1–3. We examined whether this ability is gov-
erned, at least in part, by arousal systems that affect pupil diameter, 
which are thought to include the noradrenergic brainstem nucleus  
locus coeruleus4–7.

Nonluminance-mediated changes in pupil diameter have long been 
used as indicators of clinical, cognitive and arousal states8–11. One 
interpretation of these pupil changes is that they reflect the amount 
of cognitive effort exerted at a given time, which can be related to 
task uncertainty11. Accordingly, changes in pupil diameter can be 
elicited via manipulations of the uncertainty associated with pos-
sible actions in certain choice tasks6,12. Changes in pupil diameter 
can also reflect perceived changes in the world, including perceptual 
switches during perceptual rivalry, detection of targets in oddball 
or near-threshold tasks, responses to low-probability go signals in 
a go/no-go task and perceived changes in task utility that can affect 
task engagement7,12–15.

These kinds of uncertainty- and change-related signals are thought 
to contribute to rational inference in a dynamic environment, including  

helping to regulate the relative influence of historical and newly arriv-
ing information on existing beliefs2,3. Such regulation is an important 
feature of cognitive flexibility and can be equivalent to adjusting the 
learning rate in a reinforcement-learning framework1,16. We sought to 
determine how such learning-rate adjustments relate to pupil-linked 
arousal systems. We found that the arousal system, and possibly the 
locus coeruleus, can have important and computationally complex 
roles in rationally regulating the influence of incoming information 
on beliefs about a dynamic world.

RESULTS
Behavior
We measured pupil diameter in 30 human subjects while they per-
formed an isoluminant version of a predictive-inference task2. The 
predictive-inference task required subjects to minimize errors in pre-
dicting the next number (outcome) in a series. The outcomes were 
picked from a Gaussian distribution with a mean that changed at 
random intervals (change points) and a s.d. (set to either 5 or 10) that 
was stable over each block of 200 trials (Fig. 1). After each predic-
tion was recorded, the new outcome was shown using an isoluminant 
display for 2 s, during which the subject maintained fixation and 
pupil diameter was measured (Fig. 1). After this interval, the outcome 
disappeared and the previous prediction reappeared, to be updated 
for the subsequent trial. Payment scaled inversely with the subject’s 
mean absolute error during the session2.

We quantified the extent to which each new outcome influenced 
the subsequent prediction as the learning rate in a simple delta-rule 
model (equation (3))2. The learning rate is equal to the magnitude of 
change in the prediction expressed as a fraction of the error made on 
the previous prediction. Thus, a learning rate of 1 indicates abandon-
ment of the previous prediction in favor of the most recent outcome.  
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A learning rate of zero indicates maintenance of the previous predic-
tion despite a nonzero prediction error.

Subjects tended to use variable learning rates that spanned the 
entire allowed range, from zero to 1. In this range, learning rates 
tended to be higher for larger errors, scaled by the noise of the genera-
tive distribution (Fig. 2a). Learning rates also tended to be highest 
on the trial after a change point and then decayed for several trials 
thereafter (Fig. 2b). These basic trends were similar across subjects, 
although individual subjects used markedly different distributions of 
learning rates (Fig. 2c).

Reduced Bayesian model
The learning rates used by subjects were consistent with both a full 
and a simplified version of the optimal (Bayesian) model2,17–19. One 
advantage of the reduced Bayesian model is that it updates beliefs 
according to a delta rule in which the learning rate depends on only 
two parameters computed per trial: change-point probability and  
relative uncertainty (Fig. 3a).

Change-point probability approximates the posterior probability 
that the mean of the generative distribution has changed since the 
previous trial, given all previous data. If the mean does change, then 
previous outcomes should be unrelated to future ones and should 
not contribute to an updated prediction. Accordingly, the model uses 
learning rates that scale linearly toward 1 (thus, discarding historical 
information) as the change-point probability approaches 1 (Fig. 3a). 
Change-point probability is computed by comparing the probability 
of each new outcome given either the current predictive distribution 
or the occurrence of a change point (equation (5)). Its value increases 
monotonically as a function of the absolute difference between pre-
dicted and actual outcome, scaled according to the s.d. of the genera-
tive distribution (equation (6); Fig. 3b).

Relative uncertainty is a function of total uncertainty, which in our 
task arises from two sources. The first source, noise, reflects the unre-
liability with which a single sample can be predicted from a distribu-
tion with a known mean. The second source reflects the unreliability 
of the current estimate of the mean, which decreases as more data are 
observed from a distribution. Relative uncertainty is the magnitude of 

this second form of uncertainty as a fraction of total uncertainty, analo-
gous to the gain in a Kalman filter. Relative uncertainty determines 
the learning rate when change-point probability is zero and sets the 
y intercept of the relationship between change-point probability and 
learning rate otherwise (Fig. 3a). The effects of relative uncertainty 
on model learning rates are greatest on the trials following a change 
point, when its value peaks at 0.5 and then decays over several trials 
(equation (7); Fig. 3c).

Like the human subjects, the model tended to compute learning rates 
that were highest just following a change point in the mean of the gene-
rative distribution and then decayed for several trials independently of 
noise. When applied to the exact same outcome sequences as the subjects, 
the model also tended to produce similar learning rates (Fig. 3d).

We related change-point probability and relative uncertainty 
computed in the model to the mean pupil diameter (pupil average) 
and change in pupil diameter (pupil change) measured during the 
2-s outcome-viewing period (Fig. 1), using two linear regression 
models. The first, simpler model had four parameters: change-point 
probability and relative uncertainty computed from the reduced 
Bayesian model, the s.d. of generative distribution and a binary 
variable describing whether or not the prediction error was exactly 
zero. The second model included all of these parameters, as well as 
several potential confounding factors, such as eye position and veloc-
ity (see Online Methods). The models are complementary: the first 
avoids potential interactions between large numbers of parameters 
and therefore has coefficients that are more readily interpretable, 
whereas the second avoids missing out on the many factors that, in 
principle, could affect our pupil measurements. Both models cap-
tured a significant amount of variability in the pupil data (for pupil 

average/pupil change data, an F test rejected 
the null model relative to the small model for 
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Figure 1 Predictive-inference task sequence and pupillometry. Learning 
rate was computed by dividing the difference in the prediction from one 
trial to the next by the difference between the current outcome and the 
current prediction. Inset, mean ± s.e.m. pupil diameter, averaged across  
z scores computed per subject, aligned to outcome presentation (time = 0).  
Pupil average was computed for each trial as the mean pupil diameter, 
z-scored by subject, across the entire 2-s fixation window (vertical dashed 
lines). Pupil change was computed for each trial as the difference in mean 
diameter, z-scored by subject, measured late (time = 1–2 s) versus early 
(time = 0–1 s) during fixation.

0 20 40
0

0.2

0.4

0.6

0.8

Error magnitude

Le
ar

ni
ng

 r
at

e

a

−5 0 5
0.2

0.4

0.6

0.8

1.0

Trials after change point

b

s.d. = 5
s.d. = 10

0 10 20 30
0

0.2

0.4

0.6

0.8

1.0

Subject

c

Figure 2 Task performance. (a) Learning rates were 
highest after subjects made larger errors, scaled by 
noise (as indicated). Points and error bars represent 
mean ± s.e.m. from all subjects. (b) Learning rates 
were highest on change-point trials and decayed 
thereafter, similarly for both noise conditions. 
Points and error bars represent mean ± s.e.m. from 
all subjects. (c) Learning-rate distributions across 
all trials from each of the 30 subjects (abscissa), 
sorted by median learning rate. Horizontal line, 
box and whiskers indicate median, 25th/75th 
percentiles and 5th/95th percentiles, respectively.
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27/15 of the 30 subjects, and a nested F test rejected the small model 
relative to the large model for 29/19 of the 30 subjects; P < 0.05).

Pupil change reflected change-point probability
The change in pupil diameter during the outcome-viewing period, 
similar to the change-point probability in our model, tended to 
increase as a function of error magnitude, scaled as a function of 
noise (Figs. 3b and 4a). Accordingly, when computed by the model 
using the same sequence of outcomes experienced by each subject, 
change-point probability tended to be positively predictive of z-scored 
pupil change (Fig. 4b). The complement was also true: change-point 
probability varied systematically as a function of pupil change for 
data pooled across the population (Fig. 4c). In contrast, there was no 
consistent relationship between change-point probability and pupil 
average (Fig. 4b).

One notable exception to the positive relationship between pupil 
change and error magnitude occurred for trials in which the error 
was exactly zero, which corresponded to relatively large pupil changes 
(Fig. 4a). Accordingly, a binary variable added to the linear model that 
described whether or not the subject correctly predicted the outcome 
was related to pupil change (the mean value of the regression coefficient 
was 0.180 z-scored pupil change (zPC) for the four-parameter regres-
sion model and 0.156 zPC for the larger model; P < 0.05 for H0, mean = 0  
for each model), but not pupil average (mean regression coefficient =  
–0.076 and –0.092 z-scored pupil average (zPA) for the smaller and 
larger regression models, respectively; P > 0.05). Thus, pupil change 
reflected not only change-point probability, but also whether or not 
the subject correctly predicted the observed outcome.

Average pupil diameter reflected belief uncertainty
The average pupil diameter during the outcome-viewing period, as 
with the relative uncertainty (RU) in our model, tended to peak on the 
trial after a change point and then diminish in magnitude as more rele-
vant information reinforced the existing belief (Figs. 2b, 3c and 5a). 
Accordingly, when computed by the model using the same sequence 
of outcomes experienced by each subject, relative uncertainty tended 
to be positively predictive of pupil average (Fig. 5b). This result did 
not simply reflect differences in motor output following change points 
(for example, longer button presses to choose a learning rate near 
1), as similar results were obtained in a control experiment in which 
subject predictions were reset using a learning rate of 0.5 on each 
trial, thus requiring the same motor act to choose a learning rate of 
either zero or 1 (mean regression coefficient = 0.30 and 0.35 zPA/RU 
for the smaller and larger regression models, respectively; P < 0.05).  
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Figure 3 Reduced Bayesian model. (a) Learning rate as a function of 
change-point probability (abscissa) and relative uncertainty (line shading), 
as computed by the model. (b) Change-point probability computed by the 
model as a function of error magnitude (abscissa) for the two different 
noise conditions, as indicated, computed for a given relative uncertainty 
(equal to 0.02 for this figure). (c) Mean ± s.e.m. relative uncertainty 
computed by the model aligned to change points (vertical dashed line 
at zero) from all sequences experienced by the subjects for the two 
different noise conditions. (d) Trial-by-trial comparison of subject and 
model learning rates. Model learning rates were computed using the same 
sequence of outcomes experienced by each subject. Points and error 
bars represent mean ± s.e.m. data from all subjects grouped into 20 five-
percentile bins according to the corresponding model learning rate. The 
solid line is a linear fit to the unbinned data (r = 0.33, P < 0.001).

Figure 4 Relationship between pupil change 
and change-point probability. (a) Mean ± s.e.m. 
pupil change from all trials and all subjects  
for running bins of 150 trials, binned according 
to the absolute prediction error and sorted by 
noise, as indicated. (b) Regression coefficients 
describing the linear relationship between 
change-point probability (pCH) and z-scored  
pupil change (zPC, ordinate) versus the regression  
coefficients describing the linear relationship 
between pCH and z-scored pupil average (zPA,  
abscissa). Points are regression coefficients  
computed for each subject individually,  
using the four-parameter regression model.  
Arrows indicate mean values from this model  
(dark, equal to 0.174 zPC/pCH, t test for H0: mean = 0, P < 0.001 for the ordinate, –0.022 zPA/pCH, P = 0.58 for the abscissa) or from the full model 
(light, equal to 0.148 zPC/pCH, P < 0.001 for the ordinate, –0.014 zPA/pCH, P = 0.70 for the abscissa). Dark arrows are partially occluded by light ones. 
(c) Change-point probability from the reduced Bayesian model versus pupil change. Points and error bars represent mean ± s.e.m. data from all subjects 
grouped into 20 five-percentile bins. The solid line is a linear fit to the unbinned data (slope = 0.012 pCH/zPC, P < 0.001 for H0: slope = 0).
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The complement was also true: relative uncertainty varied systemati-
cally as a function of pupil average for data pooled across the pop-
ulation (Fig. 5c). In contrast, there was no consistent relationship 
between relative uncertainty and pupil change (Fig. 5b).

Overall uncertainty in our task depends on not only relative uncer-
tainty, but also on noise, which we manipulated by varying the s.d. of  
the generative distribution in blocks (s.d. = 5 or 10). Consistent with 
our model, in which noise is only used to compute change-point 
probability (equations (5) and (6)), these manipulations of noise were 
reflected in pupil change, but only insofar as pupil change represented 
change-point probability (Fig. 4a). These manipulations of noise did 
not have any other systematic effects on either pupil change or pupil 
average (P > 0.1 for H0, a mean value of zero for the regression coef-
ficient describing the influence of noise on the given pupil measure-
ment for both regression models). Thus, for this task, pupil average 
did not appear to reflect overall uncertainty about a future outcome, 
but rather a specific form of uncertainty that arises after change points 
and signals the need for rapid learning.

Pupil metrics reflected individual learning differences
As noted above (Fig. 2c), there was a great deal of variability in the 
average learning rates used by individual subjects. These individual 
differences are thought to reflect biases that govern the extent to which 
subjects tend to interpret the cause of prediction errors in terms of 

either noise or change points2. One advantage of our reduced model 
is that it can simulate these individual differences in terms of the 
subjective hazard rate, which is the expected rate at which change 
points will occur. Accordingly, fitting the model to behavioral data 
from individual subjects with subjective hazard rate as a single free 
parameter yielded fit values that varied systematically with average 
learning rates (r = 0.93, H0: r = 0, P < 0.001; Fig. 6a).

These individual differences in the inferred (fit) subjective hazard 
rates correspond to individual differences in both the temporal dynamics  
and magnitude of outcome-locked pupil responses. We quantified the 
temporal dynamics using an index that related the pupil response on 
a given trial to a mean-subtracted version of the template shown in 
Figure 6b. This template describes the strength of the across-subject, 
linear relationship between pupil diameter and hazard rate in a sliding  
time window. This relationship was strongest soon after outcome 
onset, likely reflecting prior expectations about the newly arriving 
outcome. There was a positive relationship between the mean value of 
this index and fit hazard rate for individual subjects (r = 0.51, P < 0.01). 
In addition, there was a positive relationship between pupil average 
and fit hazard rate for individual subjects (r = 0.40, P < 0.05).

On the basis of these relationships, we constructed a linear regression 
model using the temporal-dynamics index and pupil average to explain 
individual differences in task performance. The model yielded strong, 
pupil-based predictions of per-subject values of both fit hazard rate  
(r = 0.59, P < 0.001) and average learning rate (r = 0.59, P < 0.001; Fig. 6c).  
Thus, individual differences in average learning rate, which can be 
described computationally as differing expectations about the rate of 
change points, can be predicted from the temporal dynamics and aver-
age magnitude of pupil diameter measured during outcome viewing.

Pupil metrics predicted trial-by-trial learning rates
The relationships between pupil metrics and parameters of the reduced 
Bayesian model suggest that measurements of pupil diameter during 
the outcome-viewing period can be used to predict the subsequent 
learning rate. For example, we found positive relationships between 
pupil change and change-point probability (Fig. 4) and between pupil 
average and relative uncertainty (Fig. 5). Thus, observing relatively 
high values of either pupil metric on a given trial should indicate that 
the subject will use a larger-than-average learning rate when adjusting 
beliefs according to the outcome observed on that trial. We tested this 
idea directly, as follows.

First, we examined the relationship between pupil change, pupil 
average and learning rate for individual subjects. We used a regression 
model to describe learning rate (z-scored per subject, zLR) in terms 
of pupil change and pupil average. On average, this linear regression 
computed per subject yielded a positive coefficient for pupil change 

Figure 5 Relationship between pupil diameter and relative uncertainty. 
(a) Mean ± s.e.m. pupil average from all subjects as a function of 
trials relative to task change points. Asterisk indicates trials differing 
significantly from all other trials (permutation test for H0, equal means 
after correction for multiple comparisons, P < 0.05). (b) Regression 
coefficients describing the relationship between relative uncertainty and 
z-scored pupil change (zPC, ordinate) versus the regression coefficients 
describing the relationship between relative uncertainty and z-scored 
pupil average (zPA, abscissa). Points are regression coefficients computed 
for each subject individually, using the four-parameter regression model. 
Arrows indicate mean values from this model (dark, equal to 0.135 zPC/
RU, t test for H0: mean = 0, P = 0.28 for the ordinate, 0.35 zPA/RU,  
P < 0.05 for the abscissa) or from the full model (light, equal to 0.127 
zPC/RU, P = 0.24 for the ordinate, 0.40 zPA/RU, P < 0.01 for the abscissa). Dark arrows are partially occluded by light ones. (c) Relative uncertainty 
from the reduced Bayesian model versus pupil average. Points and error bars represent mean ± s.e.m. data from all subjects grouped into 20 five-
percentile bins. The solid line is a linear regression to unbinned data (slope = 0.0055 RU/zPA, P < 0.001 for H0, slope = 0).
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Figure 6 Individual differences in learning rate, hazard rate and pupil 
diameter. (a) Mean learning rate per subject versus the hazard rate of 
the reduced Bayesian model that best fit that subject’s performance 
(points). The solid line is a linear fit (r = 0.93, P < 0.001). (b) Regression 
coefficients describing the relationship between fit hazard rates and 
bin-by-bin pupil measurements across subjects, computed in sliding 
8.3-ms bins and aligned to outcome presentation (time = 0). Dotted 
lines indicate 95% confidence intervals. (c) Relationship between pupil-
predicted hazard rate and average learning rate for each subject (points). 
Pupil-predicted hazard rates were computed using a linear regression 
model that included both shape and magnitude of the average pupil 
response for each subject (see Online Methods). The solid line is a linear 
fit (r = 0.59, P < 0.001).
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(mean = 0.108 zLR/zPC, P < 0.05 for H0: mean = 0) and a smaller,  
not statistically significant, positive coefficient for pupil average 
(mean = 0.085 zLR/zPA, P = 0.13; Fig. 7a).

Second, we used a simple, weighted sum of pupil change and pupil 
average to assess their combined predictive power across subjects. 
Using weights equal to the mean value of the per-subject regres-
sion coefficients from the previous analysis (Fig. 7a), the weighted 
sum was moderately predictive of learning rate across all subjects  
(r = 0.067, P < 0.001). However, this analysis did not take into account 
a systematic, negative dependence of the sum of these per-subject 
coefficients (which is related to the overall ability of the weighted sum 
to account for learning rate) on subjective hazard rate predicted by 
pupil dynamics (Fig. 7b). Subjects with low pupil-predicted hazard 
rates had pupil responses that were good predictors of learning rate. 
Subjects with increasingly high pupil-predicted hazard rates had pupil 
responses that were increasingly less predictive, and in some cases 
negatively predictive, of learning rate.

Third, we used a more complicated linear model that also included 
across-subject differences in pupil dynamics that related to subjective 
hazard rates, which markedly improved our overall ability to use pupil 
metrics to predict learning rates. This model had three terms: the sum 

of pupil change and pupil average computed per trial, weighted accord-
ing to average regression coefficients (Fig. 7a), the pupil-predicted  
hazard rate, computed per subject (Fig. 6c), and the multiplicative 
interaction between these two variables. Using this model, pupil 
measurements could effectively predict learning rates for all data 
from all subjects (r = 0.38, P < 0.001). These predictions accounted 
for variations in learning rates both across (Fig. 6b) and within  
(Fig. 7c) subjects.

Task-independent pupil manipulation altered behavior
To examine whether the correlations between pupil measures and 
learning behavior might reflect an underlying causal process, we used 
an arousal manipulation that affected pupil diameter and measured 
its effects on learning behavior. In particular, we occasionally and 
without warning switched the auditory cue that preceded fixation. 
Subjects were told that these auditory-cue switches were unrelated 
to the task and that they should therefore ignore the specific sounds. 
Nevertheless, this manipulation led to increases in both pupil aver-
age and pupil change on trials in which the fixation cue was switched  
(t test for H0: mean effect size = 0, P < 0.001 for both pupil average 
and pupil change; Fig. 8a). Thus, we caused consistent changes in the 
pupil measures that were correlated with the computational variables 
needed to solve the task.

This manipulation resulted in systematic changes in task perform-
ance that depended on baseline pupil diameter (Fig. 8b). For trials 
with relatively small baseline diameter (that is, less than its per-subject  
median value), individual subjects tended to use larger learning rates 
on auditory-switch trials than otherwise (mean across subjects = 
0.113, t test for H0: mean = 0, P < 0.01; Fig. 8b). For trials with rela-
tively large baseline diameter, subjects used slightly smaller learning 
rates on auditory-switch trials than otherwise, although this trend 
was not statistically significant (mean = –0.037, P = 0.35; Fig. 8b). 
The average difference in the size of these effects from small- versus 
large-diameter trials was greater than zero, implying that the effects of 
this manipulation depended on baseline pupil diameter (paired t test, 
P < 0.001; Fig. 8b). These effects were not the results of systematic 
differences in task conditions for switch versus nonswitch trials, as 
the same three analyses yielded no effects when applied to learning 
rates computed by our reduced Bayesian model (P > 0.5).

This dependence on baseline pupil diameter is suggestive of the 
Yerkes-Dodson ‘inverted U’ relationship between arousal and learn-
ing. According to this idea, learning is highest for moderate levels 
of arousal and lowest for either overly high or overly low levels of 
arousal20. Our subjects appeared to be consistently engaged during 
task performance, implying that we were probably not sampling overly 
low or high arousal states. Nevertheless, in a narrower range and 
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describing the linear, trial-by-trial relationships between pupil change and 
the subsequent learning rate (ordinate) and between pupil average and 
the subsequent learning rate (abscissa). Points are regression coefficients 
computed for each subject individually, using a four-parameter regression 
model that also included trial number and block number as covariates.  
(b) The relationship between learning rate and pupil parameters depended 
on the subject’s baseline pupil response. For each subject, the sum of the 
regression coefficients from a are plotted as a function of the pupil-predicted 
hazard rate from Figure 6c. The line is a linear fit (r = –0.059, P < 0.001).  
(c) Predicted versus actual learning rate (LR). Both values are z-scored per 
subject. Points and error bars represent mean ± s.e.m. values from 20 equally 
spaced bins of predicted learning rate across all subjects. The line is a linear fit to 
the unbinned data (slope = 0.052 zactual/zpredicted, P < 0.001 for H0, slope = 0).
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(abscissa) were z-scored across all trials. Each point represents the 
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relationship shown in Figure 4a. Each point represents the difference in 
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assuming a correspondence between arousal state and baseline pupil 
diameter, we found that the relationships between learning behavior 
and our arousal manipulation were qualitatively consistent with an 
inverted U. In particular, auditory-switch trials tended to correspond 
to the largest increases in learning rate when baseline pupil diameter 
was relatively low (steepest ascent in the inverted U) and the largest 
decreases in learning rate when baseline pupil diameter was relatively 
high (steepest descent in the inverted U; Fig. 8c).

This inverted U relationship was also apparent in our previous pupil 
measurements in two ways. First, across subjects, those with larger-
than-average pupil diameters during outcome viewing tended to use 
learning rates that were less, or even negatively, predicted by fluctua-
tions in pupil metrics relative to other subjects (Fig. 7b). Second, sub-
jects that had lower pupil-predicted hazard rates used learning rates 
that were positively correlated with pupil metrics when their base-
line pupil diameter was lowly, but negatively, correlated when their 
baseline pupil diameter was high (Fig. 8c). Thus, results from both 
our pupil-manipulation and pupil-measurement experiments were 
consistent with the arousal system being important for the rational 
regulation of learning.

DISCUSSION
We examined the relationship between pupil diameter, which is related 
to arousal and autonomic state, and learning rate, which describes the 
extent to which new information is used to adjust existing cognitive 
beliefs. Consistent with previous work2,21,22, we found that human 
subjects performing a predictive-inference task were most heavily 
influenced by outcomes that occurred shortly after a change point in 
the outcome-generating process. One possible mechanism for this 
effect is a dynamic regulation of the relative influence of incoming 
information on cortical processing3. Insights into the computations 
required for such a regulator are provided by a reduced model that 
approximates the ideal observer for the task, describes subject behav-
ior and bases learning rates on two parameters that we found to be 
represented in pupil measurements: change-point probability and 
relative uncertainty.

In our model, change-point probability depends on the abso-
lute value of the most recent prediction error and drives increased 
learning after surprisingly large errors. We found that change-point 
probability was positively correlated with changes in pupil diam-
eter. This relationship is consistent with early pupillometry studies 
that found an inverse relationship between stimulus-evoked pupil 
responses and stimulus probability, as well as with more recent work 
interpreting outcome-locked pupil responses in terms of the sur-
prise associated with errors in judging uncertainty, referred to as 
the risk prediction error22–24. We also found that pupil change was 
not always directly related to change-point probability, with particu-
larly large pupil changes on trials with exactly zero error that might  
have been surprisingly rewarding and/or reflected an association 
with an atypical consequence (that is, no possibility of updating the 
next prediction).

Relative uncertainty, the second parameter in our model, repre-
sents uncertainty about the true underlying mean and drives learning 
from outcomes that occur after a change point. We found that rela-
tive uncertainty was correlated with average pupil diameter. We also 
found that changes in another form of uncertainty that should not 
drive learning (that is, changes in the s.d. of the generative process 
in our task) did not lead to similar effects on pupil diameter. These 
results are consistent with the recent finding that pupil diameter tends 
to increase during exploratory decisions that occur during periods of 
uncertainty about the best available option6. These findings suggest 

that pupil-linked arousal systems encode an uncertainty signal that 
facilitates both learning and information-seeking behaviors.

We also found strong individual differences in task behavior that 
could be captured by fitting a prior expectation about the rate of 
change points (hazard rate) to behavioral data. We found that subjects 
who were fit by higher hazard-rate models tended to have larger pupil 
dilations during the outcome-viewing period. This physiological dif-
ference arose early in the viewing period, consistent with the idea that 
these individual differences reflected a prior expectation about the 
source of the upcoming error.

We used these relationships between pupil metrics and change-
point probability, relative uncertainty and the hazard-rate before 
predicting the extent to which subjects were influenced by each new 
outcome. We also manipulated pupil diameter using a task-irrelevant 
auditory manipulation that resulted in changes in task performance 
that were consistent with our measured relationships between pupil 
metrics and key task variables. These results provide new insights 
into the specific computations that are reflected in pupil diameter 
and establish their causal role in belief updating.

These computations likely involve, at least in part, neural activ-
ity in the locus coeruleus. One possibility is that the two impor-
tant variables from our model are encoded by two distinct modes of 
locus coeruleus activation5: change-point probability, reflected in 
pupil change, is encoded by phasic activation of the locus coeruleus, 
whereas relative uncertainty, reflected in pupil average, is encoded 
by tonic activation of the locus coeruleus. Although direct confirma-
tion is still needed, this idea is supported by several lines of evidence, 
including a compelling example of simultaneous measurements of 
locus coeruleus activity and pupil diameter in a monkey that are 
closely correlated5, similar modulations of pupil diameter and locus 
coeruleus activity under certain task conditions, such as changes 
in utility that affect behavioral engagement6,7, and a proposed  
anatomical substrate involving common activation from the nucleus 
paragigantocellularis, which contributes to both locus coeruleus and 
sympathetic nervous system function4,25. The consequence of locus 
coeruleus involvement would be the task-related release of norepine-
phrine throughout the nervous system. Consistent with our results, 
norepinephrine release is thought to permit or facilitate changes in 
behavior that follow unexpected changes in the environment and 
learning in general, possibly by modulating experience-dependent 
neural plasticity3,26–31.

More generally, our results are consistent with the idea that brain 
areas that regulate the influence of newly arriving information on 
existing beliefs are also strongly linked to arousal and autonomic 
function1,3,6,7,24,32,33. These areas likely include not just the locus 
coeruleus, but also the anterior cingulate cortex, which has strong 
reciprocal connections with the locus coeruleus and whose activity 
encodes several signals closely related to change-point probability, 
including unsigned prediction errors and learning rates1,5,34,35. This 
arousal system appears to govern not simply overall alertness or other 
nonspecific factors that might affect overall task performance, but 
rather a computationally sophisticated process that rationally regu-
lates the influence of new sensory information in a dynamic environ-
ment. These computations take into account both ongoing processing 
of task-relevant variables, such as change-point probability and rela-
tive uncertainty, and state variables, such as prior expectations about 
the rate of change. These factors are combined in a manner that is 
consistent with the Yerkes-Dodson inverted U relationship between 
arousal level and learning rate (Fig. 8c)20.

In summary, our findings suggest a relationship between arousal 
state and learning rate that is likely a result of a coordinated  
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learning-arousal network, including the locus coeruleus and anterior 
cingulate cortex. The representation of normative learning variables 
in this network suggests that subtle changes in arousal might reflect 
rational regulation of the influence of new information on ongoing 
inferences about a dynamic world.

METhODS
Methods and any associated references are available in the online 
version of the paper.
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ONLINE METhODS
Predictive-inference task. Human subject protocols were approved by the 
University of Pennsylvania Internal Review Board. Thirty subjects (19 female,  
11 male; age range = 19–29 years) participated in the primary study and an inde-
pendent sample of 29 subjects (17 female, 12 male; age range = 19–25 years) 
participated in the arousal manipulation study after providing informed consent. 
Both studies used a predictive-inference task that required subjects to predict 
each subsequent number to be presented in a series2. For each trial t, a single 
integer (Xt) was presented that was a rounded pick sampled independently and 
identically from a Gaussian distribution whose mean (µt) changed at unsignaled 
change points and whose s.d. (σt) was fixed to either 5 or 10 in each block of  
200 trials. Change points occurred with a probability of zero for the first three 
trials following a change point and 0.1 for all trials thereafter.

To facilitate measurements of nonluminance-mediated effects on pupil dia-
meter, we used a different visual display and task timing than in our previous 
study2. Subjects were shown a numeric representation of their current prediction 
at a central location on a CRT monitor. Background screen pixels were a check-
erboard of light and dark pixels (mean ± s.d. luminance in a circle with radius 
of 6.5 cm = 0.457 ± 0.010 cd m–2). Numbers were drawn in an intermediate gray 
color (0.445 ± 0.005 cd m–2). When viewed passively by a control group of four 
subjects outside of the context of the predictive-inference task, no individual 
stimulus (number) had a significant effect on average pupil diameter or evoked 
changes in pupil diameter (t test for H0: equal means between each stimulus 
and all others, P > 0.3 for all stimuli after correcting for multiple compari-
sons), nor did the number of digits contained in the stimulus affect either pupil  
variable (P > 0.4).

For each trial, the subject indicated his or her updated prediction using a 
video gamepad. Each prediction was constrained to be between the previous 
prediction and the most recent outcome, limiting learning rates to between zero 
and 1. After the new prediction was chosen, the numeric representation of this 
prediction disappeared, an auditory cue was played and a numeric representation 
of the new outcome was shown. Subjects were instructed to fixate centrally for  
2 s at this point; failure to do so (in a square window, 9° per side) resulted in a tone 
indicating a fixation error. After 2 s, the new outcome disappeared, the predic-
tion reappeared and an auditory cue was played to indicate that the prediction 
should be updated. 14 subjects also participated in a control version of the task 
in which the prediction was reset after viewing the new outcome to reflect an 
update equivalent to a learning rate of 0.5. For this task, the same motor output 
(in terms of number or duration of button presses) was required to use a learning 
rate of either zero or 1 on each trial.

Subjects were told that the numbers were generated from a noisy process and 
that several discreet change points would occur over the course of the task. They 
were instructed to make a prediction on each trial (Bt) such that the average error 
made on all predictions, B Xt t− , would be minimized. Payout depended on 
how well they achieved this goal, as described previously2.

The pupil-manipulation task was identical to primary version of the task, 
except that the auditory cue played at the beginning of fixation was occasionally 
switched to another sound from a library of 31 sound effects downloaded from 
an online library. Sounds were 0.09–1.4 s in duration (mean ± s.d. = 0.72 ± 0.42 s)  
and played at 56–70 dB (A-weighted; mean ± s.d. = 62.5 ± 3.9 dB). Switch tri-
als occurred at random, with a probability of 0.1 on the nine trials following a 
switch, 0.8 thereafter. On switch trials, the given sound was played, on average, 
7 dB louder than otherwise. We excluded 7 of 29 subjects completing the pupil-
manipulation task from further analyses because of an excessive number of fixa-
tion errors (blinks or lost fixation on >40% of trials).

Pupil-diameter measurements. Pupil diameter was sampled at 120 Hz and 
recorded throughout the task using an infrared video eye-tracker (ASL). Blinks 
were identified using a custom blink filter on the basis of pupil diameter and verti-
cal and horizontal eye position, then removed by linear interpolation of values 
measured just before and after each identified blink. Blink-filtered diameter was 
low-pass filtered using a Butterworth filter with a cutoff frequency of 3.75 Hz. 
These filtered measurements were then z-scored in each session.

All analyses excluded trials in which blinks or fixation errors during outcome 
viewing were detected online (these events were followed by a beep to remind the 
subject to minimize their occurrence). The first 20 trials from each block were 
also excluded to avoid possible changes in average luminance at block boundaries.  

Pupil average was computed for each trial by taking the mean of all 240 z-scored 
pupil measurements from the 2-s-long outcome-viewing period of the trial.  
Pupil change was computed for each trial by subtracting the average pupil mea-
surement from early in the outcome-viewing period (0–1 s after outcome pres-
entation) from the average pupil measurement from late in the outcome-viewing 
period (1–2 s after outcome presentation). Trials that included blinks that were 
detected offline (but not online) were used to compute pupil average by interpo-
lating values from just before and just after the blink. These trials were not used to 
compute pupil change, which was much more sensitive to the timing of blinks.

Reduced Bayesian model. Optimal performance on the predictive-inference 
task requires inferring the probability distribution over possible outcomes on 
the next time step, given all previous data and the process by which those data 
were generated, p X Xt t+( )1 1: . Because the relationship between the data on the 
next time step is independent of all previous data conditioned on the mean of the 
current distribution (µ), the solution can be formulated in terms of µ 

p X X p X p Xt t t t t t
t

+ +( ) = ( ) ( )∑1 1 1 1: :m m
m

and the probability distribution over possible means given previous data can be 
inverted according to Bayes’ rule 

p X
p X p
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t t t

t
m

m m
1

1

1
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Although computationally tractable solutions to this problem exist, these solu-
tions specify learning rates that are complicated functions of either the probability 
distribution over all possible means1 or over all possible ‘runs’ of nonchange-point 
trials19. To simplify the algorithm, the reduced model computes the posterior 
probability distribution over possible means as described above, but maintains 
only the first two moments of this distribution. This assumption massively reduces 
the number of required computations, but has minimal effects on performance2. 
An added advantage of this model is that it can be formulated as a delta rule 

B B
X B

t t t t

t t t

+ = + ×
= −
1 a d

d

where B is the belief about the mean of the underlying distribution, α is the 
learning rate and δ is the prediction error, which is the difference between the 
actual and predicted outcome. The learning rate depends on two variables that 
are updated on each trial 

a t tt t t t= + −( )1 W

where change-point probability (Ω) reflects the probability that µt is not equal 
to µt–1, and relative uncertainty (τ) reflects the variance on the predictive distri-
bution in µ (that is, uncertainty about the location of the mean) divided by the 
variance on the predictive distribution in X (that is, total uncertainty about the 
location of the next outcome).

Performance of the reduced Bayesian model also depends on an expectation 
about the prior probability on change points, or the hazard rate. Specifically, 
hazard rate directly influences the computation of change-point probability on 
each trial 

Wt
t

t t t t
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U X H N X B H
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0 300
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where U and N represent uniform and normal distributions, respectively; H is the 
hazard rate, Bt is the model’s prediction on trial t and σ2 is the total variance of the 
predictive distribution. We incorporated hazard rate into the model in two ways: 
using the true generative hazard rate for trials in which a change point did not 
recently occur (0.1), or by fitting the model to behavior by minimizing the total 
squared difference between subject and model predictions using a constrained 
search algorithm (fmincon in MATLAB) with hazard rate as a free parameter.

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)
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The total variance on the predictive distribution in the model comes from 
two sources 

s t
tt

t
t

N N2 2
2

1
= +

−

The first source is the s.d. on the outcome-generating distribution (N). The 
second source is uncertainty about the mean of that distribution and depends on 
both N and relative uncertainty (τ). Here we set N to be the actual experimental 
s.d., but we updated τ after each outcome according to the variance on the predic-
tive distribution over possible means 
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such that if a change point occurs, relative uncertainty is reset to 0.5 (first term 
in numerator); if a change point does not occur, relative uncertainty is reduced 
(second term in numerator), and if the model is uncertain about whether a change 
point occurred, relative uncertainty is increased to reflect this uncertainty (third 
term in numerator).

statistical analyses. Trial-by-trial values of pupil average and pupil change were 
each z-scored for the full session (zPA and zPC, respectively) and then fit with a lin-
ear regression model using four parameters: change-point probability (computed 
by the reduced Bayesian model for each trial), relative uncertainty (computed 
by the reduced Bayesian model for each trial), noise (the s.d. of the outcome- 
generating distribution) and a binary vector specifying whether or not the subject 
correctly predicted the outcome on that trial. We also used a larger model that, in 
addition to the above four parameters, included the average horizontal and verti-
cal eye position, and the change in horizontal and vertical eye position measured 
during the outcome-viewing period, the subject’s prediction and the computer- 
generated outcome from the current trial, the pupil change measured on the 
previous trial, and the trial number within the block and within the session.

Pupil-predicted hazard rates were derived from pupil measurements and 
the reduced Bayesian model as follows. First, we inferred the subjective hazard 
rate used by each subject by fitting his or her behavioral data to the reduced 
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Bayesian model with hazard rate (H) as the only free parameter. Next, we fit 
a linear regression model explaining H in terms of pupil measurements. That 
model had two terms, computed per subject: the mean value of pupil average 
and an index of pupil dynamics. The index was computed as the mean value of 
the dot product of trial-by-trial pupil measurements and the mean-subtracted 
curve (Fig. 6b). Finally, we used the coefficients from a linear fit that excluded 
the data from an individual subject to combine the mean pupil average and 
pupil–dynamics index (from the excluded subject) into a pupil-predicted hazard 
rate for that subject.

Pupil-predicted learning rates were computed using a regression model that 
incorporated both within- and across-subject differences in pupil responses to 
predict trial-by-trial learning rates. The terms in the regression model were a 
weighted average of pupil average and pupil change for each trial (with weights 
proportional to average regression coefficients across subjects; see Fig. 7a), the 
pupil-predicted hazard rate assigned to each subject (Fig. 6c) and the multiplica-
tive interaction between these two variables. This regression model was used to 
compute a pupil-predicted learning rate for each trial for each subject. 

Arousal-induced learning effects for the inverted U analyses were computed 
separately for sound-manipulation and nonmanipulation sessions. For sound-
manipulation sessions, learning rates were fit to a cumulative Weibull as a func-
tion of error magnitude for each subject and noise condition, to account for 
the relationship shown in Figure 4a. Residuals from this fit, which reflected 
error-independent variability in learning rate, were z-scored per subject. Initial 
pupil diameter, as measured by the average diameter during the first 100 ms 
of the outcome phase, was also z-scored per subject. Data were binned across 
subjects according to the initial diameter z score. The effect of the sound manip-
ulation was computed as a signed d’ describing the difference in the z-scored 
residual learning rates used on auditory shift versus nonauditory shift trials. For 
nonmanipulation sessions, the relationship between pupil metrics and learning 
rate was characterized only for subjects with low pupil-predicted hazard rates 
(<0.6). Subjects with high pupil-predicted hazard rates tended to have small or 
negative relationships between pupil metrics and learning rate, and thus were 
omitted from this analysis. Arousal effect size was computed as the correlation 
coefficient between the weighted sum of pupil metrics and learning rate, each 
z-scored per subject (positive/negative values indicate that learning rates tended 
to increase/decrease as pupil effects increased) for equally sized bins of baseline 
pupil diameter (z-scored per subject).
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