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Midbrain dopamine neurons signal errors in reward prediction1–3. 
These error signals are required for learning in a variety of theo-
retical accounts4–6. By definition, calculation of these errors requires 
information about the value of the rewards expected in a given cir-
cumstance or ‘state’. In temporal difference reinforcement learning 
(TDRL) models, such learned expectations contribute to compu-
tations of prediction errors and are modified on the basis of these 
errors. However the neural source of this expected value signal has 
not been established for dopamine neurons in the ventral tegmental 
area (VTA). Here we tested whether one contributor might be the 
orbitofrontal cortex (OFC), a prefrontal area previously shown to be 
critical for using information about the value of expected rewards to 
guide behavior7–11.

RESULTS
To test whether OFC contributes to reward prediction errors, we 
recorded single-unit activity from putative dopamine neurons in the 
VTA in rats with ipsilateral sham (n = 6) or neurotoxic lesions (n = 7)  
of OFC (Fig. 1). Lesions targeted the ventral and lateral orbital and 
ventral and dorsal agranular insular areas in the bank of the rhinal 
sulcus, resulting in frank loss of neurons in 33.4% (23–40%) of this 
layered cortical region across the seven subjects (Fig. 1c, inset). 
Neurons in this region fire in anticipation of an expected reward12 and 
interact with VTA to drive learning in response to prediction errors13. 
Notably, sparse direct projections from this part of OFC to VTA are 
largely unilateral14, and neither direct nor indirect input to VTA 

from contralateral OFC is sufficient to support normal learning13. 
Therefore, ipsilateral lesions should severely diminish any influence 
of OFC signaling on VTA in the lesioned hemisphere while leaving 
the circuit intact in the opposite hemisphere to avoid confounding 
behavioral deficits.

Neurons were recorded in an odor-guided choice task used pre-
viously to characterize signaling of errors and outcome expectan-
cies12,13,15. On each trial, rats responded at one of two adjacent wells 
after sampling one of three different odor cues at a central port (Fig. 1a).  
One odor signaled sucrose reward in the right well (forced choice 
right), a second odor signaled sucrose reward in the left well (forced 
choice left), and a third odor signaled the availability of reward at 
either well (free choice). To generate errors in the prediction of 
rewards, we manipulated the timing (Fig. 1b, blocks 1 and 2) or size 
of the reward (Fig. 1b, blocks 3 and 4) across blocks of trials. This 
resulted in the introduction of new and unexpected rewards, when 
immediate or large rewards were instituted at the start of blocks 2sh, 
3bg, 4bg (Fig. 1b), and omission of expected rewards, when delayed or 
small rewards were instituted at the start of blocks 2lo and 4sm (Fig. 1b).  
Sh, lo, bg and sm indicate short delay, long delay, big reward and small 
reward conditions, respectively.

As expected, sham-lesioned rats changed their choice behavior across 
blocks in response to the changing rewards, choosing the higher value 
reward more often on free-choice trials (t-test, t100 = 18.91, P < 0.01;  
Fig. 1c, inset) and responding more accurately (t-test, t100 = 10.77,  
P < 0.01; Fig. 1d) and with shorter reaction times (t-test, t100 = 13.32, 

1Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. 2Department of Psychology, University of 
Maryland College Park, College Park, Maryland, USA. 3Program in Neuroscience and Cognitive Science, University of Maryland College Park, College Park, Maryland, 
USA. 4Department of Psychology, Princeton University, Princeton, New Jersey, USA. 5Neuroscience Institute, Princeton University, Princeton, New Jersey, USA. 
6Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA. 7National Institute on Drug Abuse Intramural Research Program, 
Baltimore, Maryland, USA. 8These authors contributed equally to this work. Correspondence should be addressed to Y.K.T. (ytaka001@umaryland.edu) or  
G.S. (schoenbg@schoenbaumlab.org).

Received 14 July; accepted 15 September; published online 30 October 2011; doi:10.1038/nn.2957

Expectancy-related changes in firing of dopamine 
neurons depend on orbitofrontal cortex
Yuji K Takahashi1, Matthew R Roesch2,3, Robert C Wilson4,5, Kathy Toreson1, Patricio O’Donnell1,6, Yael Niv4,5,8 & 
Geoffrey Schoenbaum1,6–8

The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information 
is essential for associative learning, which relies on comparisons between expected and obtained reward for generating 
instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex 
contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning 
task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a 
simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to 
reflect internal information about the impending response that distinguished externally similar states leading to differently valued 
future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based 
behavior and suggest an unexpected role for this information in dopaminergic error signaling.
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P < 0.01; Fig. 1e) on forced-choice trials when the high value reward 
was at stake. Rats with unilateral OFC lesions showed similar behav-
ior (t-test: percent choice, t84 = 14.51, P < 0.01; percent correct, t84 =  
9.88, P < 0.01; reaction time, t84 = 8.32, P < 0.01; Fig. 1c–e), and 
direct comparisons of all three performance measures across groups 
revealed no significant differences (ANOVA, sham versus lesioned; 
percent choice, F1,184 = 0.16, P = 0.68; percent correct, F2,183 = 2.11, 
P = 0.12; reaction time, F2,183 = 2.92, P = 0.06).

We identified dopamine neurons in the VTA by means of a cluster  
analysis based on spike duration and amplitude ratio (Fig. 2). Although 
the use of such criteria has been questioned16, the particular analysis 
used here isolates neurons whose firing is sensitive to intravenous 
infusion of apomorphine15 or quinpirole17. Additionally, neurons 
identified by this cluster analysis are selectively activated by optical 
stimulation in tyrosine hydroxylase–channelrhodopsion-2 mutants17 
and show reduced bursting in tyrosine hydroxylase–striatal-specific 
NMDAR1 knockouts17. Although these criteria may exclude some 
dopamine neurons, only neurons in this cluster signaled reward pre-
diction errors in appreciable numbers in our previous work15.

This analysis identified 52 of 481 recorded neurons as dopaminer-
gic in shams (Fig. 2a) and 76 of 500 as dopaminergic in OFC-lesioned 
rats (Fig. 2b). These neurons had spike durations and amplitude ratios 
that differed significantly (>3 s.d.) from those of other neurons. Of 
these, 30 in sham and 50 in OFC-lesioned rats increased firing in 
response to reward (compared with baseline during the inter-trial 
interval; t-test, P < 0.05; proportions did not differ in sham versus 
lesioned: chi-squared test, χ2 = 0.86, degrees of freedom (d.f.) = 1,  
P = 0.35). There were no apparent effects of OFC lesions on the wave-
form characteristics of these neurons (Fig. 2c, t-test: amplitude ratio, 
t127 = 0.53, P = 0.59; duration, t127 = 0.78, P = 0.43). The average baseline 
activity of reward-responsive and nonresponsive dopamine neurons, 
taken during the 500 ms before the light onset that signaled start of a 
trial, was also similar in the two groups (Fig. 2f; sham versus lesioned, 
t-test: reward-responsive dopamine neurons, t78 = 0.49, P = 0.62;  
reward-nonresponsive dopamine neurons, t46 = 1.57, P = 0.12),  

as was the distribution of the baseline firing (Fig. 2d,e; sham versus 
lesioned, Wilcoxon: reward-responsive dopamine neurons, P = 0.86;  
reward-nonresponsive dopamine neurons, P = 0.09). Thus, OFC 
lesions did not affect the firing of dopaminergic neurons (also see 
Supplementary Fig. 1). Of note, non-dopaminergic neurons fired 
significantly more slowly in the OFC-lesioned rats (sham versus 
lesioned, t-test: t851 = 3.81, P < 0.01; see Supplementary Fig. 2).

OFC supports dopaminergic error signals
Previous work has shown that prediction-error signaling is 
largely restricted to reward-responsive dopamine neurons15 (see 
Supplementary Figs. 1 and 2 for analysis of other populations).  
As expected, activity in these neurons in sham-lesioned rats increased 
in response to unexpected reward and decreased in response to omis-
sion of an expected reward. As seen from unit examples and popula-
tion responses (Fig. 3a), neural activity increased when a new reward 
was introduced (start of block 2sh) and decreased when an expected 
reward was omitted (start of block 2lo). In both cases, the change in 
activity was maximal at the beginning of the block and then dimin-
ished with learning.

These patterns were substantially muted in OFC-lesioned rats. 
Although dopamine neurons still showed phasic firing to unexpected 
rewards, this response was not as pronounced at the beginning of the 
block, nor did it change substantially with learning. In addition, the 
suppression of activity normally caused by unexpected reward omis-
sion was largely abolished (Fig. 3b).

These effects are quantified in Figure 3c,d, which plots the aver-
age activity across all reward-responsive dopamine neurons in each 
group, on each of the first and last ten trials in all blocks in which we 
delivered a new, unexpected reward (blocks 2sh, 3bg, 4bg) or omitted an 
expected reward (blocks 2lo and 4sm). In sham-lesioned rats, reward-
responsive dopamine neurons increased firing upon introduction of a 
new reward and suppressed firing on omission of an expected reward. 
In each case, the change in firing was maximal on the first trial and 
diminished significantly thereafter (Fig. 3c). Two-factor ANOVAs 

Figure 1 Apparatus and behavioral results.  
(a) Odor port and fluid wells. (b) Time course  
of stimuli (odors and rewards) presented to  
the rat on each trial. At the start of each 
recording session (block 1), one well was 
randomly designated as short (a 0.5 s delay 
before reward) and the other, long (a 1–7 s 
delay before reward). In the second block 
of trials, these contingencies were switched 
(block 2). In blocks 3 and 4, the delay was 
held constant while the number of the rewards 
delivered was manipulated. Expected rewards 
were thus omitted on long and small trials 
at the start of blocks 2 (2lo) and 4 (4sm), 
respectively, and rewards were delivered 
unexpectedly on short and big trials at the  
start of blocks 2 (2sh) and 3 and 4 (3bg and 
4bg), respectively. (c) Choice behavior in trials 
before and after the switch from high-valued 
outcome (averaged across short and big) to 
a low-valued outcome (averaged across long 
and small). Inset bar graphs show average 
percentage choice for high-value (black) versus 
low-value (white) outcomes across all free-
choice trials. Inset brain sections illustrate  
the extent of the maximum (gray) and minimum 
(black) lesion at each level in OFC in the 
lesioned rats. (d,e) Behavior on forced-choice trials. Bar graphs show percentage correct (d) and reaction times (e) in response to the high and low 
value cues across all recording sessions. *P < 0.05 or better (see main text); NS, nonsignificant. Error bars, s.e.m.
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comparing firing to unexpected reward (or reward omission) to back-
ground firing (average firing during inter-trial intervals) showed sig-
nificant interactions between trial period and trial number in each 
case (reward versus background, F19,532 = 4.37, P < 0.0001; omission 
versus background, F19,532 = 3.57, P < 0.0001). Post hoc comparisons 
showed that activity on the first five trials differed significantly from 
background, as well as from activity on later trials, for both unex-
pected reward and reward omission (P values < 0.01). Furthermore, 
the distribution of difference scores comparing each neuron’s firing 
early and late in the block was shifted significantly above zero for 
unexpected reward (Fig. 3e; Wilcoxon signed-rank test, P < 0.01) 
and below zero for reward omission (Fig. 3f; Wilcoxon signed-rank 
test, P < 0.01), and there was a significant inverse correlation between 
changes in firing in response to unexpected reward and reward omis-
sion (Fig. 3g; r = 0.43, P < 0.05). These results are consistent with 
bidirectional prediction error signaling in the individual neurons at 
the time of reward in the sham-lesioned rats.

By contrast, the activity of reward-responsive dopamine neurons in 
OFC-lesioned rats did not change substantially across trials in response 
to reward omission (Fig. 3d). Two-factor ANOVAs comparing these 
data to background firing revealed a main effect of reward (F1,48 = 46.3, 
P < 0.0001) but no effect of omission nor any interactions with trial 
number (F values < 1.29, P values > 0.17), and post hoc comparisons 
showed that the reward-evoked response was significantly higher than 
background on every trial in Figure 3d (P values < 0.01), whereas the 
omission-evoked response did not differ on any trial (P values > 0.05).

Examination of the difference scores across individual neurons in 
OFC-lesioned rats showed similar effects. For example, although the 
distribution of these scores was shifted significantly above zero for 
unexpected reward (Fig. 3h; Wilcoxon signed-rank test, P < 0.01), the 
shift was significantly less than that in shams (Fig. 3e versus Fig. 3h; 
Mann-Whitney U test, P < 0.001), as was the actual number of individual  
neurons in which reward-evoked activity declined significantly with 
learning (Fig. 3e versus Fig. 3h; chi-squared test, χ2 = 5.12, d.f. = 1,  
P = 0.02). Furthermore, not a single neuron in the lesioned rats suppressed 
firing significantly in response to reward omission (Fig. 3i), and the  

distribution of these scores was less shifted than in shams (Fig. 3f versus 
Fig. 3i; Mann-Whitney U test, P < 0.001) and did not differ from zero 
(Fig. 3i; Wilcoxon signed-rank test, P = 0.12). There was no significant  
inverse correlation between changes in firing in response to unexpected 
reward and to reward omission (Fig. 3j; r = 0.10, P = 0.47).

Thus, ipsilateral lesions of OFC substantially diminished the nor-
mal effect of learning on firing in response to unexpected reward and 
reward omission in VTA dopamine neurons. This effect was observed 
even though the rats’ behavior indicated that they learned to expect 
reward at the same rate as controls (see Fig. 1). These results, along 
with a parallel analysis of activity at the time of delivery of the delayed 
reward in blocks 1 and 2 (see Supplementary Fig. 3), all point to a 
critical contribution of OFC to the prediction errors signaled by VTA 
dopamine neurons at the time of reward.

According to prevailing frameworks such as TDRL, prediction error 
signals should also be evident in response to cues. Consistent with this, 
reward-responsive dopamine neurons in sham-lesioned rats responded 
phasically during and immediately after sampling of the odors, and this 
phasic response differed according to the expected value of the trial 
(Fig. 4). Thus, on forced-choice trials, the average firing rate was higher 
during (and immediately after) sampling of the high value cue than 
during sampling of the low value cue (Fig. 4a). This difference was not 
present in the initial trials of a block but rather developed with learn-
ing. A two-factor ANOVA comparing firing to the odor cues across 
all neurons showed a significant main effect of value (F1,28 = 12.2,  
P < 0.01) and a significant interaction between value and learning 
(F1,28 = 18.0, P < 0.001). We also quantified the effect of value by 
calculating the difference in firing to the high and low value cues for 
each neuron before and after learning; the distribution of this score 
was shifted significantly above zero after (Fig. 4a, late distribution; 
Wilcoxon signed-rank test, P < 0.01) but not before learning (Fig. 4a, 
early distribution; Wilcoxon signed-rank test, P = 0.68).

This pattern was also evident on free-choice trials, in which a single 
odor cue was presented but either of the two rewards could be selected 
by responding to the appropriate well. Dopaminergic activity in  
sham-lesioned rats increased during sampling of the single cue and 

Figure 2 Identification, waveform features  
and firing rates of putative dopamine and  
non-dopamine neurons. (a,b) Results of  
cluster analysis based on the half time of the 
spike duration and the ratio comparing the 
amplitude of the first positive and negative 
waveform segments ((n – p)/(n + p)). The 
center and variance of each cluster was 
computed without data from the neuron of 
interest, and then that neuron was assigned  
to a cluster if it was within 3 s.d. of the 
cluster’s center. Neurons that met this  
criterion for more than one cluster were not 
classified. This process was repeated for 
each neuron. Reward-responsive dopamine 
neurons (rew DA), black; reward-nonresponsive 
dopamine neurons (non-rew DA), gray;  
neurons that classified with other clusters,  
no clusters or more than one cluster, open 
circles. Insets in each panel indicate  
location of the electrode tracks in  
sham (a) and OFC-lesioned rats (b).  
(c) Bar graphs indicating average amplitude 
(amp) ratio and half duration (1/2 dura) of 
putative dopamine neurons in sham (S)  
and OFC-lesioned rats (L). (d–f) Distribution and average baseline firing rates for reward-responsive (black) and nonresponsive (gray) dopamine 
neurons in sham (d,f) and OFC-lesioned rats (e,f). NS, nonsignificant (see main text). Error bars, s.e.m.
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then diverged in accordance with the future choice of the rat, increas-
ing more before selection of the high value well than the low value 
well. ANOVA comparing firing between odor offset (when the rat was 
still in the odor port) and earliest well response confirmed this effect 
(Fig. 4c; F1,28 = 8.33, P < 0.01), as did the distribution of the difference 
scores comparing firing during this period on high minus low value 
trials for each neuron (Fig. 4c; Wilcoxon signed-rank test, P < 0.01).

These cue-evoked effects were also altered in OFC-lesioned rats. On 
forced-choice trials, reward-responsive dopamine neurons fired dif-
ferentially based on cue value (Fig. 4b; two-factor ANOVA: significant 

main effect of value, F1,48 = 10.4, P < 0.01; significant interaction 
between value and learning, F1,48 = 6.36, P < 0.05), and the distri-
bution of the difference scores comparing firing to the high and low 
value cues after learning was shifted significantly above zero (Fig. 4b,  
late distribution; Wilcoxon signed-rank test, P < 0.01). However, the 
differential firing in OFC-lesioned rats on forced-choice trials was 
weaker than in shams, and the number of neurons in which firing  
showed a significant effect of cue value was significantly lower in 
OFC-lesioned than sham-lesioned rats (Fig. 4a versus Fig. 4b;  
chi-squared test, χ2 = 5.19, d.f. = 1, P = 0.02).

Figure 3 Changes in activity of reward-responsive dopamine neurons in response to unexpected reward delivery and omission. (a,b) Activity in a 
representative neuron (raster) or averaged across all reward-responsive dopamine neurons (heat plot) in sham (a) and OFC-lesioned rats (b) in response 
to introduction of unexpected reward in block 2sh (top plots, black arrows) and omission of expected reward in block 2lo (bottom plots, gray arrows). 
(c,d) Average firing during the period 500 ms after reward delivery or omission in reward-responsive dopamine neurons in sham (c) and OFC-lesioned 
rats (d) in blocks in which an unexpected reward was instituted (blocks 2sh, 3bg and 4bg, black lines) or an expected reward omitted (blocks 2lo and 
4sm, gray lines). Dashed lines indicate background firing. Error bars, s.e.m. (e–j) Distribution of difference scores and scatter plots comparing firing 
to unexpected reward and reward omission early versus late in relevant trial blocks in sham (e–g) and OFC-lesioned rats (h–j). Difference scores were 
computed from the average firing rate of each neuron in the first 5 minus the last 15 trials in relevant trial blocks. Black bars represent neurons in 
which the difference in firing was statistically significant (t-test; P < 0.05). The numbers in upper left of each panel indicate results of Wilcoxon  
signed-rank test (P) and the average difference score (u).
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In addition, on free-choice trials, the difference in firing that 
emerged after cue-sampling in sham-lesioned rats was wholly absent 
in OFC-lesioned rats (Fig. 4d); a two-factor ANOVA comparing firing 
during this post-cue-sampling period in OFC-lesioned rats with that 
in shams showed a significant interaction between group and value 
(Fig. 4c versus Fig. 4d; F1,78 = 4.05, P < 0.05), and post hoc test-
ing showed that the significant difference present in shams was not 
present in lesioned rats (Fig. 4d; F1,48 = 1.71, P = 0.2).

OFC modulates dopaminergic activity in vivo
The data above suggest that OFC modulates the firing of VTA 
dopamine neurons. To test this directly, we recorded juxta-
cellularly from VTA neurons in anesthetized rats. We identified 15  
neurons with amplitude ratios and spike durations similar to those 
of the putative dopamine neurons recorded in the awake, behav-
ing rats. These neurons showed low baseline firing rates (3.54 ± 
1.35 Hz) as well as bursting patterns characteristic of dopaminergic 
neurons18. Six stained with Neurobiotin and colocalized tyrosine  
hydroxylase (Fig. 5a).

Eleven (73.3%) showed a statistically significant suppression of 
firing during and immediately after electrical stimulation of the 
OFC (five-pulse, 20-Hz trains; Fig. 5b,c), including all six tyro-
sine hydroxylase–positive neurons (Fig. 5c, bottom). In each case, 
inhibition began during the 200-ms period of OFC stimulation and 
lasted for several hundred milliseconds, averaging 393.3 ± 184.9 
ms (range 220–740 ms). Inhibition was sometimes followed by a 
rebound excitation. Inhibition was not observed during the inter-
stimulation interval in these neurons and thus was a specific effect of  
OFC stimulation.

Of the four neurons that did not show a significant suppression, two 
showed a significant increase in firing in response to OFC stimulation, 
suggesting that OFC can excite as well as inhibit firing in dopamine 
neurons, whereas two showed significant suppression epochs only 
after the end of stimulation; these were considered nonresponsive. 
The average latency of onset of the OFC-dependent responses was 
93.9 ± 106.9 ms (range, 0–980 ms).

OFC does not convey value to VTA
Our results show that the OFC contributes to intact error signal-
ing by dopamine neurons in VTA. To understand the nature of this 
contribution, we used computational modeling. In all models, we 
used the TDRL framework4 that has been used extensively to describe 
animal learning in reward-driven tasks and the generation of phasic 
dopaminergic firing patterns19. In this framework a prediction error 
signal δt at time t is computed as δt= rt+ V(St) – V(St–1), where rt is the 
currently available reward (if any), St is the current state of the task 
(the available stimuli and so forth), V(St) is the value of the current 
state—that is, the expected amount of future rewards—and V(St–1) 
is the value of the previous state; that is, the total predicted rewards 
before this time point. The prediction error is used to learn the state 
values through experience with the task, by increasing V(St–1) if the 
prediction error δt is positive (indicating that obtained and future 
expected rewards exceed the initial expectation) and decreasing 
V(St–1) if the prediction error is negative (indicating over-optimistic 
initial expectations that must be reduced). These prediction errors are 
the signals thought to be reported by dopamine neurons19 and were 
indeed well-matched to the neural data from VTA dopamine neurons 
recorded in sham-lesioned rats (Fig. 6a).

Owing to the involvement of OFC in signaling reward expectan-
cies7–10, we initially hypothesized that OFC might convey to dopamine 
neurons the value of states in terms of the expected future reward V(St) 
at each point in time. However, modeling the OFC lesion by removing 
expected values from the calculation of prediction errors failed to 
replicate the experimental results (Fig. 6b, model 1; for details of this 
and subsequent models, see Online Methods). Specifically, although  
removal of (learned) values accurately predicted that firing in dopamine 
neurons at the time of unexpected reward or reward omission  
would remain unchanged with learning, this model could not account 
for the reduced initial response to unexpected rewards in OFC- versus  
sham-lesioned rats (Fig. 3c versus Fig. 3d), nor could it generate 
differential firing to the odor cues on forced-choice trials (Fig. 4b). 
Thus, a complete loss of value input to dopamine neurons did not 
reproduce the effects of OFC lesions on error signaling.

Figure 4 Changes in activity of reward-
responsive dopamine neurons during and after 
odor cue sampling on forced- and free-choice 
trials. (a–d) Neural activity during forced-
choice (a,b) and free-choice (c,d) trials in 
shams (a,c) and OFC-lesioned rats (b,d).  
Line plots show average activity synchronized 
to odor offset or well entry across all blocks  
on trials involving the high and low value cues.  
*P < 0.05 or better on post hoc testing  
(see main text); NS, nonsignificant. The 
numbers indicate results of Wilcoxon signed-
rank test (P) and the average difference score 
(u). In a,b, activity is shown separately for  
the first 15 (early) and the last 5 trials (late)  
in each block, corresponding to the time  
during and after learning in response to 
a change in the size or timing of reward. 
Histograms show the distribution of difference 
scores comparing firing during sampling  
of the high minus the low value cues, early 
(outlined bars) and late (filled bars) in the 
blocks. Black bars represent neurons in  
which the difference in firing in late trials  
was statistically significant (t-test; P < 0.05). 
In c,d histograms show the distribution of difference scores comparing firing between odor offset and earliest well response on high minus low value 
trials. Black bars represent neurons in which the difference in firing was statistically significant (t-test; P < 0.05).
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We next considered whether a partial loss of the value signal might 
explain the observed effects of OFC lesions. A partial loss might occur 
if the lesions were incomplete (as they were) or if another brain region, 
such as contralateral OFC and/or ventral striatum, were also provid-
ing value signals. Although this produced slower learning, it did not  
prevent asymptotically correct values from being learned for the low and 
high reward port, as well as for the two choices in the free-choice trials.  
This occurs because the remaining value-learning structures still update 
their estimates of values on the basis of ongoing prediction errors and 
are thus able to compensate for the loss of some of the value-learning  
neurons. Thus, according to this model, prediction errors to reward 
should still decline with training, and prediction errors to cues and 
choices should still increase with training, predictions at odds with the 
empirical data (Fig. 6b, model 2).

A second way a partial loss of the value signal might occur is if only 
some of the rats had lesions sufficient to prevent value learning, whereas 
others had enough intact neural tissue to support value learning.  
This would amount to a partial loss of values between, rather than 

within, subjects (Fig. 6b, model 3). This model did accurately predict 
some features of the population data, such as diminished (but still 
significant) differential firing to the odor cues on forced-choice trials 
(Fig. 4b). However, it too failed to explain the reduced initial response 
to unexpected rewards in OFC- versus sham-lesioned rats (Fig. 3c 
versus Fig. 3d), and it could not explain the absence of differential 
firing as a result of future expectation of low or high rewards on free-
choice trials (Fig. 4d). Moreover, this between-subjects account was 
at odds with the observation that none of the individual neurons in  
OFC-lesioned rats showed intact error signaling (Fig. 3h–j).

OFC signals state information to VTA
Our models thus did not support the hypothesis that the OFC conveys 
some or all information about expected reward value to VTA neurons. 
Models in which this value signal was completely or even partially 
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Figure 5 Changes in dopamine neuron activity in response to OFC 
stimulation. (a) An example of putative dopamine neuron labeled with 
Neurobiotin (left, red) and tyrosine hydroxylase (TH; middle, green). This 
neuron had morphological characteristics of dopamine neurons (bipolar 
dendritic orientation) and showed colocalization of Neurobiotin and TH 
(right, merged). Scale bar, 50 µm. (b) Raster plot and peri-stimulus 
histogram showing activity in the TH+ neuron from a before, during 
and after OFC stimulation. Top: each line represents a trial and dots 
indicate time of action potential firing; gray box indicates period of OFC 
stimulation. Bottom: cumulative histogram depicting firing across all trials 
and revealing a pause during the stimulation. (c) Firing rate plots showing 
activity in each of the 15 recorded neurons before, during and after OFC 
stimulation. Arrow indicates neuron shown in a,b. Each line shows the 
average firing rate per stimulation trial for a given neuron. Activity is 
aligned to onset of OFC stimulation (vertical gray line). Thirteen neurons 
showed periods of significant (P < 0.001; see Online Methods) inhibition 
(red bars) or excitation (blue bars) that began during the stimulation. 
Excluding secondary or rebound excitation or inhibition evident in the 
figure, these neurons did not show significant epochs elsewhere in the 
inter-stimulus interval (not shown). Gray rate plots, putative dopamine 
neurons; black rate plots, TH immunopositive neurons.
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Figure 6 Comparison of model simulations and experimental data. (a) The unlesioned TDRL model and experimental data (± s.e.m.) from the sham-
lesioned rats. Top: at the time of unexpected reward delivery or omission, the model predicts positive (black) and negative (gray) prediction errors 
whose magnitude diminishes as trials proceed. Bottom: at the time of the odor cue, the model reproduces the increased responding to high value (blue) 
relative to low value (red) cues on forced trials. Likewise, the model predicts differential firing at the time of decision on free-choice trials. (b) Lesioning 
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removed had particular difficulty accounting for both the residual 
differential firing based on the learned value of the odor cues on 
forced-choice trials (Fig. 4b) and the loss of differential firing based 
on the value of the impending reward on free-choice trials (Fig. 4d).  
In each model, these were either both present or both absent.

The fundamental difference between forced-choice and free-choice 
trials is that in the former, two different cues were available to signal 
the two different expected values, whereas in the latter, signaling of the 
different values depended entirely on internal information regarding 
the rats’ impending decision to respond in one direction or the other. 
Based on this distinction, we hypothesized that OFC might provide not 
state values per se, but rather more complex information about internal 
choices and their likely outcomes necessary to define precisely what 
state the task is in, particularly for states that are otherwise externally 
ambiguous (as is the case on free-choice trials). The provision of this 
information would allow other brain areas to derive more accurate value 
expectations for such states and to subsequently signal this informa-
tion to VTA. Thus, in our fourth model, we hypothesized that the OFC 
provides input regarding state identity to the module that computes and 
learns the values, rather than directly to dopamine neurons. Removing 
the OFC would therefore leave an intact value learning system, albeit 
one forced to operate without some essential state information.

Consistent with this hypothesis, removing choice-based disam-
biguating input and leaving value learning to operate with more rudi-
mentary, stimulus-bound states (Supplementary Fig. 4a) produced 
effects that closely matched empirical results from OFC-lesioned rats 
(Fig. 6b, model 4). Specifically, this model reproduced the patterns  
of cue selectivity evident in dopamine neurons in lesioned rats: 
on forced-choice trials, learning using only stimulus-bound states 
resulted in weaker differential prediction errors to the two odor cues; 
however, on free-choice trials, the lesioned model did not show diver-
gent signaling at the decision point because it lacked the ability to 
use internal information about the impending choice to distinguish 
between the two decision states. Values for the two choices in the free-
choice trials could not be learned no matter the size of the learning 
rate parameter or the duration of learning.

Notably, however, the consistency of this model with the neural 
data went beyond the effects on free-choice trials that motivated 
the model. In particular, the lesioned model showed firing to unex-
pected rewards and to reward omission that changed only very mildly 
through learning, which is similar to the neural data. Additionally, 
firing to an unexpected reward early in a block was lower than in the 
unlesioned model, again closely matching the neural results (Fig. 6b, 
data). Overall, this fourth model best captured the contribution of 
OFC to learning and prediction error signaling in our task (please see 
Supplementary Results for more discussion of modeling results).

DISCUSSION
Here we have shown that OFC is necessary for normal error sig-
naling by VTA dopamine neurons. Dopamine neurons recorded in  
OFC-lesioned rats showed a muted increase in firing to an unexpected 
reward, and this firing failed to decline with learning as in sham-
lesioned rats. These same neurons also failed to suppress firing when 
an expected reward was omitted, showed weaker differential firing to 
differently valued cues, and failed to show differential firing based on 
future expected rewards on free-choice trials. Computational mode-
ling showed that while several of these features could be approximated 
by postulating that OFC provides predictive value information to sup-
port the computation of reward prediction errors, they were much bet-
ter explained by an alternative model in which OFC was responsible 
for conveying information about impending actions to disambiguate 

externally similar states leading to different outcomes. This suggests 
that rather than signaling expected values per se, the OFC might signal 
state information, thereby facilitating the derivation of more accurate 
values, particularly for states that are primarily distinguishable on the 
basis of internal rather than external information.

These results have important implications for understanding OFC 
and the role of VTA dopamine neurons in learning. Regarding OFC, 
these results provide a mechanism whereby information relevant to 
predicting outcomes, signaled by OFC neurons and critical to out-
come-guided behavior, might influence learning20. Although the 
involvement of OFC as a critical source of state representations is 
different from the role previously ascribed to OFC in learning (that 
of directly signaling expected reward values20 or even prediction 
errors21), it would explain more clearly why this area is important for 
learning in some situations but not others, inasmuch as the situations 
requiring OFC, such as over-expectation and rapid reversal learn-
ing8,13,22,23, are ones likely to benefit from disambiguation of similar 
states that lead to different outcomes. In these behavioral settings, 
optimal performance would be facilitated by the ability to create new 
states based on internally available information (that is, recognition 
that contingencies have changed)24. Recent models suggest that state 
representations of tasks are themselves learned25,26. Whether OFC is 
necessary for this learning process is not clear, but our results show 
that OFC is key for representing the resulting states. This idea is con-
sistent with findings that OFC neurons encode all aspects of a task in 
a distributed and complex manner27–29 and with data showing that 
the OFC is particularly important for accurately attributing rewards 
to preceding actions30,31, as this depends critically on representation 
of previous choices. In this regard, it is worth noting that OFC neu-
rons have been shown to signal outcome expectancies in a response-
dependent fashion in this and other behavioral settings12,32–36.

The proposed contribution of OFC is also complementary to pro-
posals that other brain regions, especially the ventral striatum, are 
important for value learning in TDRL models37. OFC has strong pro-
jections to ventral striatum38. Thus, information from OFC may facili-
tate accurate value signals in the ventral striatum, which might then 
be transmitted to midbrain dopaminergic neurons through inhibitory 
projections to contribute to prediction error signaling. Such a relay 
would seem essential to explain how glutamatergic output from the 
OFC acts to inhibit activity in VTA dopamine neurons, as demon-
strated here and elsewhere39. Other potential relays might include 
rostromedial tegmental nucleus, lateral habenula or even GABAergic 
interneurons in VTA, all of which receive input from OFC and can act 
to inhibit VTA dopamine neurons. Notably non-dopaminergic neurons 
in VTA, many of which are likely to be GABAergic, did show signifi-
cantly lower baseline firing rates in OFC-lesioned rats than in controls 
(sham versus lesioned, t-test; t851 = 3.81, P < 0.01; Supplementary 
Fig. 2). These different pathways are not mutually exclusive, and each 
would be consistent with the long-latency, primarily inhibitory effects 
of OFC stimulation on dopamine activity shown here in vivo.

Finally, these results expand the potential role of VTA dopamine 
neurons in learning, by showing that the teaching signals encoded 
by these neurons are based, in part, on prefrontal representations. 
These prefrontal representations are critical for goal-directed or 
model-based behaviors40; OFC in particular is necessary for changes 
in conditioned responses after reinforcer devaluation and other 
behaviors7,8,41,42 that require knowledge of how different states (cues, 
responses and decisions, rewards, and internal consequences) are 
linked together in a task. However, with the exception of two recent 
reports43,44, this knowledge has not been thought to contribute to the 
so-called cached values underlying dopaminergic errors. Our results 
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show that these prefrontal representations do contribute to the value 
signal used by dopamine neurons to calculate errors. Correlates with 
action sequences, inferred values and impending actions evident 
in recent dopamine recording studies could derive from access to 
these states and the transitions between them thought to reside in 
orbital and other prefrontal areas45,46. Full access to model-based task  
representations—the states, transition functions and derived values—
would expand the types of learning that might involve dopaminergic 
error signals to complex associative settings47–49 more likely to reflect 
situations in the real world.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Behavioral and single-unit recording methods. Subjects. Thirteen male Long-
Evans rats (Charles Rivers, ages 4–6 months) were tested at the University of 
Maryland School of Medicine in accordance with the University of Maryland 
School of Medicine Animal Care and Use Committee and US National Institutes 
of Health guidelines.

Surgical procedures. Recording electrodes were surgically implanted under stere-
otaxic guidance in the one hemisphere of VTA (5.2 mm posterior to bregma, 
0.7 mm lateral and 7.0 mm ventral, angled 5° toward the midline from vertical). 
Some rats (n = 7) also received neurotoxic lesions of ipsilateral OFC by infusing 
NMDA (12.5 mg ml–1) at four sites in each hemisphere: at 4.0 mm anterior to 
bregma, 3.8 mm ventral to the skull surface, 2.2 mm (0.1 µl) and 3.7 mm (0.1 µl) 
lateral to the midline; and at 3.0 mm anterior to bregma, 5.2 mm ventral to the 
skull surface, 3.2 mm (0.05 µl) and 4.2 mm lateral to the midline (0.1 µl). Controls  
(n = 6) received sham lesions in which burr holes were drilled and the pipette tip 
lowered into the brain but no solution delivered.

Behavioral task, single-unit recording, statistical analyses. Unit recording and 
behavioral procedures were identical to those described previously15. Statistical 
analyses are described in the main text.

Juxtacellular recording methods. Subjects. Nine male Long-Evans rats (Charles 
Rivers) were tested on postnatal day 60 at the University of Maryland School 
of Medicine in accordance with the University and US National Institutes of 
Health guidelines.

Surgical and recording procedures. Rats were anesthetized with chloral hydrate 
(400 mg per kilogram body weight, intraperitoneal) and placed in a stereotaxic 
apparatus. A bipolar concentric stimulating electrode was placed in the OFC 
(3.2 mm anterior and 3.0 mm lateral to bregma, and 5.2 mm ventral to the brain 
surface) connected to an Isoflex stimulus isolation unit and driven by a Master-8 
stimulator (A.M.P.I.). Electrical stimulation of the OFC consisted of a five-pulse, 
20-Hz train delivered every 10 s (pulse duration 0.5 ms, pulse amplitude 500 µA). 
Recording electrodes (resistance 10–25 MΩ) were filled with a 0.5 M NaCl, 2% 
(vol/vol) Neurobiotin (Vector Laboratories) solution, then lowered in the VTA 
(5.0–5.4 mm posterior to bregma, 0.5–1.0 mm lateral and 7.8–8.5 mm ventral). 
Signals were amplified tenfold (intracellular recording amplifier, Neurodata 
IR-283), filtered (cutoff 1 KHz, amplification tenfold;, Cygnus Technologies 
Inc.), digitized (amplification tenfold, Axon Instruments Digidata 1322A) 
and acquired with Axoscope software (low-pass filter 5 KHz, high-pass filter  
300 Hz, sampling 20 KHz). Baseline activity measurements were taken from the 
initial 5-min recording of the neuron, including mean firing rate, burst analysis, 
and duration and amplitude ratio of action potentials. Neurons with a mean 
baseline firing rate <6 Hz and a long-duration action potential (>1.5 ms) were 
considered to be putative dopamine neurons and were subjected to burst fir-
ing analysis based on established criteria18. Using these criteria, the majority of 
neurons recorded showed bursting activity (5/7, 71.42%). To assess the response 
to OFC stimulation, the mean value and s.d. of baseline activity was calculated 
using the 2,000 ms before the stimulation. Onset of inhibition (or excitation) 
was considered to be two consecutive bins after stimulation began in which the 
spike count was 2 s.d. or more below (or above) the mean bin value (P < 0.001). 
Offset of the response was considered to be two consecutive bins in which the 
bin values were no longer 2 s.d. from the mean bin value. When the value of  
2 s.d. below the mean fell below zero, the number of consecutive bins required 
to signify the onset of inhibition was increased to maintain the same criterion 
for significance (P < 0.001).

Histology. Cells were labeled with Neurobiotin by passing positive current pulses 
(1.0–4.0 nA, 250-ms on/off square pulses, 2 Hz) and constant positive current 
(0.5–5.0 nA) through the recording electrode. For Neurobiotin and tyrosine 
hydroxylase immunohistochemistry, tissue was sectioned at 40 µm on a freezing 
microtome and collected in 0.1 M phosphate buffer in saline. After a 1-h pretreat-
ment with 0.3% (vol/vol) Triton X-100 and 3% (vol/vol) normal goat serum in 
PBS, the sections were incubated overnight with Alexa 568–conjugated strepta-
vidin (1:800, Molecular Probes) and a monoclonal mouse antibody to tyrosine 
 hydroxylase (1:5,000, Swant). The sections were then rinsed in PBS several times 

and incubated with a FITC-conjugated goat anti-mouse for 90 min (1:400, Jackson 
Laboratories). After rinsing in PBS, the sections were mounted on glass slides and 
coverslipped in Vectashield (Vector Laboratories), then examined under fluores-
cence on an Olympus FluoView 500 confocal microscope. Confocal images were 
captured in 2-µm optical steps. To confirm stimulating electrode placements, the 
OFC was sectioned at 50 µm and Nissl stained.

computational modeling methods. Task representation. Supplementary 
Figure 4a shows the state-action diagram of the task in the intact model. Although 
simplified, this state-action sequence captures all of the key aspects of a trial. To 
account for errors, and in line with the behavioral data (Fig. 1d), we also included 
a 20% probability that the rat would make a mistake on a forced-choice trial—for 
example, going to the right reward port after a left signal.

Note that having the ‘enter left port’ state be the same on both forced and free 
trials allows our model to generalize between rewards received on free trials and 
those received on forced trials; that is, if a rat receives a long-delay reward by 
turning left on a forced trial, this architecture allows it to expect that the same 
long-delay reward will be delivered after turning left on a free trial.

After the rat moves to the reward port, it experiences state transitions 
according to one of two wait-for-reward state sequences (designated left rew 1  
to left rew 3 or right rew 1 to right rew 3). These states indicate all the possible 
times that the reward could be delivered by the experimenter. Specifically, 
left rew 1 is the state at which a reward drop is delivered to the left port on 
the ‘small’ and ‘short’ trials, and at which the first drop of reward is deli-
vered on ‘big’ trials. Left rew 2 is the time of the second reward drop on big  
trials. Rewards are never delivered at the wait left state, but this state, and the 
probabilistic self transition returning to wait left, implements a variable delay 
between the time of the early rewards and the long reward delivered at left 
rew 3. Finally, after the left rew 3 reward state, the task transitions into the 
end state, which signifies the end of the trial. State transitions are similar for 
the right-reward sequence.

Update equations. We modeled the task using an actor/critic architecture and a 
decaying eligibility trace4. We chose this framework because of its common use 
in modeling reinforcement learning in the brain; however, the same pattern of 
results was obtained when modeling state-action values (rather than state values) 
and the state-action-response-state-action (SARSA) temporal difference learn-
ing algorithm4,46,50. Thus our results do not depend strongly on the particular 
implementation of TDRL.

At the start of the experiment, we set the critic’s initial values for each  
state, V(s), and the actor’s initial preferences for action a, B(s,a), to zero.  
At the beginning of each trial all eligibility traces e(s) were set to zero, except 
that of the initial state s1, which was set to 1. The model dynamics were then 
as follows:

At each time step t of a trial, the model rat is in state st. First, the actor chooses 
action at with probability π(st,at) given by 

p(s a
B s a

B s at t
t t

ta

, )
exp( ( , ))

exp( ( , ))
=

∑
where B(st,x) are the actor’s preference weights for action x in state st, and  
a  enumerates all possible actions at state st. After taking action at, the model rat 
transitions to state st+1 (whose value is V(st+1)) and observes reward rt+1. The 
prediction error, δ, is then computed according to 

d g= + −+ +r V s V st t t1 1( ) ( )

where 0 < γ < 1 is the discount factor. At each time step, the prediction error signal 
is used to update all state values in the critic according to 

V s V s e s( ) ( ) ( )← + hd

where 0 < η < 1 is the critic’s learning rate and e(s) is the eligibility of state s for 
updating (see below). The actor’s preference for the chosen action at at state st is 
also updated according to the same prediction error: 

B s a B s at t t t( , ) ( , )← + bd

(1)(1)

(2)(2)

(3)(3)

(4)(4)
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where 0 < β < 1 is the actor’s learning rate. Finally, the eligibility trace of the last 
visited state, e(st+1), is set to 1 and all nonzero eligibility traces decay to 0 with 
rate 0 < λ < 1 according to 

e s e s s
e st

( ) ( )
( )

← ∀
=

l
1

The free parameters of the model (γ, η, β) were set manually to accord quali-
tatively with the data from the sham-lesioned rats and were not altered when 
modeling the OFC-lesioned group.

Value lesion (model 1). In this model, we removed all values from the critic: that 
is, we replaced all instances of V(s) with 0 in the above equations. This resulted 
in prediction errors given by 

d = +rt 1

which are only nonzero at the time of reward presentation.

Partial lesion within subjects (model 2). In this model, we assumed that f is the 
fraction of the critic that has been lesioned in each subject, leaving only (1 – f) of 
the value intact. The prediction error was thus 

d g= + − −+ +r f V s V st t t1 2 1 21( ) ( ( ) ( ))M M

and this prediction error was used as a teaching signal for the intact parts of the 
critic. Crucially, this led to learning of values VM2(s) in the intact parts of the 
critic, albeit at a slower rate than the unlesioned model. As a result of the error-
correcting nature of TDRL, ultimately the learned values were 

V s
V s

ft
t

M2 1
( )

( )
=

−

and the prediction errors at the end of training were similar to those of the 
unlesioned model, showing that the intact parts of the critic were able to fully 
compensate for the loss of parts of the critic, at least if training continued for 
enough trials.

Partial population lesion (model 3). In this model, we assumed that some frac-
tion f of the population of rats had been successfully lesioned according to 
the value lesion model (model 1), whereas the other rats were unaffected. 

(5)(5)

(6)(6)

(7)(7)

(8)(8)

The unlesioned fraction thus learn according to the prediction error of the 
unlesioned model, equation (2), whereas the lesioned fraction experience the  
prediction error of model 1, equation (6). Thus, averaged over the population, 
the prediction error is 

d g= + − −+ +r f V s V st t t1 3 1 31( ) ( ( ) ( ))M M

Superficially, this prediction error resembles that of model 2. Unlike model 
2, however, this prediction error is not directly used as a teaching signal; rather, 
each part of the population learns from a different prediction error signal (see 
above), and the learned values in the intact part of the population are simply 
VM3(st) = V(st).

OFC encoding of states (model 4). In this model we hypothesized that the effect 
of lesioning OFC is to change the state representation of the task. Specifically, we 
suggest that the OFC allows the rat to disambiguate states that require internal 
knowledge of impending actions but are otherwise externally similar, such as 
the state of “I have chosen the large reward in a free-choice trial” versus “I have 
chosen the small reward in a free-choice trial.” We thus simulated the OFC lesion 
by assuming that the lesioned model no longer distinguishes between states 
based on the chosen action and cannot track correctly which type of reward is 
associated with which wait-for-reward state. Note that this ambiguity is caused 
not because the left and right reward ports are physically indistinguishable, 
but because, without knowledge of the mapping between the physical location 
of the ports and the abstract reward schedules at each port (in itself a type of 
internal ‘expectancy’ knowledge), the rat cannot tell which of the two possible 
wait-for-reward sequences it is in.

Mapping between prediction errors and VTA neural response. To facilitate compari-
son between the model results and those of the experiments, we transformed the 
prediction errors (which can be positive or negative) into predicted firing rates 
using a simple linear transformation, 

neural firing baseline scale factor predictionerror= + ×

with 5 spikes per second as the value for the baseline and negative prediction 
errors having a lower scale factor of 0.8 and positive prediction errors having 
a scale factor of 4.

(9)(9)

(10)(10)

50. Niv, Y., Daw, N.D. & Dayan, P. Choice values. Nat. Neurosci. 9, 987–988 
(2006).
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