
Motion as Shape: A Novel Method for the
Recognition and Prediction of Biological Motion

Abstract

We introduce a method for the recognition and prediction of motion,
based on the idea that different motions trace out different shapes in some
state space. In the recognition step we use a multidimensional generalization
of the shape context [2] to find the closest prototype motion to the observed
data. When tested against motion capture data, our model yields excellent
(99%) recognition of gait and good (83%) recognition of identity. In addition
to recognition, this process also allows us to find an aligning transform TDP
that maps the observed data D onto the prototype P. Given this transform,
and its inverse TPD, we use a Bayesian approach to make optimal predictions
about the data in the prototype space and then map these predictions back
into data space. This approach gives accurate predictions over several gait
cycles despite the fact that there is often a significant difference between the
observed data and the prototype manifold.

1 Introduction
Consider a movie of a person performing a particular motion. Each frame of the movie
can be thought of as a point in an N-dimensional pixel space, where N is the number of
pixels. As each picture is a point in pixel space, the movie defines a set of such points
and traces out a trajectory within this space. More generally we can consider any state
space S and think of a motion as tracing out a shape in that space. If S is ‘well chosen’
(e.g. to represent salient features of the motion - such as thigh and knee angles for gait
recognition), then we can expect to find that similar motions trace out similar shapes
and dissimilar motions trace out dissimilar shapes in S . Therefore, given S we can
approach the problem of motion recognition from the perspective of shape recognition.
In particular, if we define a set of prototype motions, then we can recognize a motion
simply by finding the ‘most similar’ prototype shape to the measured data.

In this paper we use a state space defined by the left and right thigh and knee angles
(illustrated in the middle panel of figure 1) of various human subjects. Within this space
we introduce a multidimensional generalization of the shape context [2] to compute an
aligning transform TDPM between the observed angle data D (in data-space D) and each
prototype PM for motion M (in prototype space P). By looking at the details of these
transformations (in particular the affine part of each transformation) we can use super-
vised linear discriminant analysis [8] to achieve excellent (99%) recognition of gait and
fairly good (83%) recognition of individuals.

Given that we have recognized the motion, we then tackle the problem of motion
prediction by making the simplifying assumption that all future data will continue to be
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Figure 1: Left: Walking figure illustrating the positions of the markers over time. Darker
lines correspond to more recent time points. Middle: Definitions of the thigh, θ , and
knee, κ , angles as used in this paper. Right: Two dimensional projections of the prototype
motion manifolds used in this paper.

mapped reliably onto PM via TDPM . Hence to predict future values of D we simply project
D onto PM via TDPM ; solve the prediction problem in P and then project the predictions
back into D using TPMD.

This approach allows us to make accurate predictions of future thigh and knee angles
over several gait cycles, despite often quite large differences between the data and the
prototype manifolds.

1.1 Related work
There have been many varied approaches to the problem of action recognition and pre-
diction, see [1] for a review. Our recognition approach is perhaps most similar to that of
Elgammal and Lee [3]. In their paper they use a nonlinear manifold learning algorithm to
embed silhouette data into a low dimensional subspace. They managed to align the low
dimensional projections from several different subjects by using a thin-plate spline trans-
formation to achieve separation of style (the person’s identity) from content (the activity).
The main problem with their approach is that there is no straightforward way to apply this
algorithm quickly to a new person.

Probabilisitic models are not new to tracking (e.g. [11]). Urtasun et al. [13, 12] have
developed models based on motion priors to aid tracking of golf swings and walking from
video data. While similar in some ways to our prediction step, they are limited by the fact
that their predictions are necessarily less accurate for motion ‘far away from’ the training
set. Thanks to the aligning transform, we suffer this problem less.

2 Data Acquisition
Gait data was obtained using the ReActor motion capture system. Infra-red emitters were
placed at 13 body positions (head, shoulders, elbows, wrists, hips, knees, ankles) on 6
human subjects (3 male). 3D spatial positions of markers were acquired at 33 frames/s.
Subjects walked or ran at different set speeds on a treadmill. From this position data we
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Figure 2: Left: p(xi|φ ,M), the prior probability, learned from the data, that each low level
variable i (e.g. left thigh angle) takes on the value xi given that the phase angle is φ and
the motion is M. Right: p(x1,x2|M), the joint distribution over the left thigh and knee
angles for the walking prototype.

calculate the thigh (θ ) and knee (κ) angles as shown in the middle panel of figure 1.

3 Defining prior probabilities and prototype manifolds
The first step in building the model is to get a good set of prototypes from the data. To do
this we calculate a probability distribution over possible manifold shapes for a particular
person performing the motion of interest (e.g. running or walking) and then take the ‘most
likely’ manifold as our prototype.

We begin by labeling each point in the data set with a phase angle φ . This is done
very simply by defining the start and end of each gait cycle by the extrema of the low-level
variables and then interpolating φ as a linear function of time between φ = 0 at the start
of the gait cycle and φ = 2π at the end of each gate cycle.

Next we estimate p(xi|φ ,M), the probability that the low level variable i takes on the
value xi given that the motion is M and that the phase angle is φ . To do this we first
bin each of the data points into one of 100 equally spaced bins based on their assigned
phase. Then we make the assumption that the distribution over xi within each bin is a
Gaussian and calculate the mean and standard deviation of the distribution. The results
of this process for the left and right thigh and knee angles for the walking prototype are
shown in the left hand panel of figure 2.

Assuming that all the low level variables are independent given φ , the prototype, PM ,
for motion M is then the set of N dimensional vectors {q j} defined by the means {µi(φ j)}
of the p(xi|φ j,M) distributions, i.e. PM = {q j}; q j = [µ1(φ j),µ2(φ j), ...,µN(φ j)], where
φ j is the phase angle at the center of the jth bin and the number of dimensions, N = 4.
Two dimensional projections of the prototypes for run and walk are shown on the right of
figure 1; such a projection is also known as a cyclogram [6, 5].

It is also interesting to calculate the prior distribution over the low level variables for
motion M, p(x1,x2, ...,xN |M). This is easily done if we make the assumption that p(φ |M)
is uniform (which is ensured by our choice of φ as a linearly increasing function of time)
and the result for the walk prototype is shown in figure 2.



Finally, for the prediction step we will need p(φ |xi,M). Since p(φ |M) is a constant,
p(φ |xi,M) is readily obtained by renormalizing p(xi|φ ,M) with respect to φ .

4 Recognition with deformable templates
Recognition is achieved in three steps. First we use a multidimensional generalization of
the shape context to solve the correspondence problem between the observed data D and
the various prototype manifolds PM . Next we estimate a set of aligning transformations
TDPM to align the data to the prototype. Finally we use the details of the transformations
TDPM to achieve recognition.

4.1 Two dimensional shape context
The two dimensional shape context [2] was introduced by Belongie et al. as a rich de-
scriptor of shape that was used to solve the correspondence problem between two related,
but not necessarily identical shapes.

Given a set of points {pi} lying on shape S1, we can describe the shape completely
(up to a translation) simply by calculating the set of differences di j = pi−p j for some
point j on the shape. The two dimensional shape context for point j is then calculated
by expressing the di j in polar coordinates di j = (ri j,θi j) and computing the histogram h j
over r and θ .

The correspondence between two shapes is then calculated by using the Hungarian
method [9, 7] to find the set of correspondences Ci j between point i on shape 1 and point
j on shape 2 that minimizes the sum of the ‘differences’ ∆i j between the shape contexts of
corresponding points. In the current work, as in [2], ∆i j is defined by the χ2 test statistic.

In order to deal with outliers and potential differences in the numbers of points on
shape 1 and shape 2, the algorithm allows for the possibility of mapping points onto
dummy nodes whenever the cost of the best assignment is above some threshold εd . As
we shall see this is very important in our case as it allows us to calculate correspondences
between the densely sampled prototypes and the more sparsely sampled data.

4.2 Multidimensional shape context
The shape context is readily generalized to N dimensions. As before, for each point j
on the shape we calculate the set of differences di j = pi− p j, but this time the di j are
N dimensional vectors. In analogy with the two dimensional case, we express di j in hy-
perspherical coordinates and calculate the shape context as the histogram over the radius,
azimuthal angle and N−2 polar angles. We note that the case N = 3 was used in [4] Once
we have calculated the set of shape contexts for both shapes, then the correspondence
problem is solved as before.

The left hand panel of figure 3 shows two dimensional projections of the four dimen-
sional shapes for a sample of walking data (shown in blue) and the walking prototype
(shown in red). Correspondences calculated using the 4-dimensional shape context are
shown with black dashed lines. Note that despite significant differences in the paths of
the two manifolds and in the number of points on each manifold, the algorithm still man-
ages to find good correspondences.
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Figure 3: Left: Correspondences (black dashed lines) calculated with the four dimensional
shape context between the data (shown in blue) and the walk prototype manifold (shown
in red). Right: After the aligning transformation is applied to the data.

Note also that the ability to deal with different numbers of points on the data and
prototype manifolds is very important as it allows us to have a more densely sampled
prototype. This is useful as it allows the algorithm to find better correspondences than
would be possible if the prototype was as sparsely sampled as the data. We also note that
empirically we have observed the algorithm to find good correspondences even with very
few (i.e. less that half a gait cycle) data points.

4.3 Computing the aligning transform
Once we have computed the correspondences between the data and the prototype mani-
folds we then seek to find an aligning transformation TDPM (x) that will map the data points
pi in ‘data’-space D on or close to its corresponding point q j in ‘prototype’ space, P on
the prototype. To do this we restrict ourselves to the thin-plate spline (TPS) transforma-
tions [14]. Using the algorithm developed in [2]

TDPM (x) = [ fx1(x), fx2(x), ..., fxN (x)] (1)

fxi(x) = axi +Axi ·x+
n

∑
j=1

ω
(xi)
j U

(∥∥x j−x
∥∥) (2)

where U(r) = r2 log(r2). axi corresponds to a translation in the dimension defined by
variable i (e.g. left thigh angle); Axi is a four dimensional vector corresponding to the part
of the affine transformation that affects dimension i; the constants ω

(xi)
j determine the

amount of non-linear transformation or ‘bending’ of the prototype. All of the constants:
axi , Axi and ω

(xi)
j , are determined by minimizing the bending energy required to align

the two shapes subject to the constraints detailed in [2]. Note that at this stage we also
calculate the inverse transfrom i.e. TPMD that maps points in P onto points in D , via the
same algorithm. This will be useful in the prediction step.

Results of applying the aligning transform to the observed data in the left of figure 3
are shown in the right hand panel of 3.



4.4 Recognition
We recognize the motion by using the affine parts of all the calculated transformations, i.e.
{axi} and {Axi}. These components of the transformation contain most of the information
about the gait. More importantly, unlike the ω

(xi)
j , they do not directly depend on which

points on the prototype are found as correspondences to the data.
For our simple demonstration with just two prototypes we thus describe each mo-

tion with a 40 dimensional vector V = ({axi}walk,{Axi}walk,{axi}run,{Axi}run). We then
achieve recognition by using supervised linear discriminant analysis within this space [8],
training on half the data set and testing on the other half.

Note that we have taken a slightly different approach to recognition from [2] in which
the bending energy of the transformation was used as a distance metric. This is because
the bending energy does not take into account the affine part of the transformation, which
for us is where most of the information lies.

4.4.1 Experiments

We tested the algorithm on two different tasks. In the first we asked it to classify the
gait of 860 samples of 6 different people running or walking at speeds ranging from 3
to 5 mph for walking and 5 to 8 mph for running. Each sample consisted of just 20
data points, equivalent to 303ms of data; this is equivalent to about one gait cycle for the
motions performed at 5 mph and is significantly less than one gait cycle for the slower
motions. On this simple task we achieved a 99% success rate. Note that the speed of the
joint angles is not included as a parameter in the recognition process and that recognition
is achieved only by looking at the shape of the data.

In the second experiment we used the same data set to test whether the algorithm
could identify both the gait and the identity of the actor. Training, as before, on half the
data set and testing on the other half we achieved 83% recognition of identity and gait.

5 Prediction
After the recognition stage, we have the ‘closest’ prototype manifold PM to the data D
and a pair of transformations TDPM and TPMD that take us from data space D to prototype
space P . To make clear the distinction between the data represented in P and D , we
use yi to denote the low level variables in D and xi to denote their projections into P; i.e.
x = TDPM (y); y = TPMD(x). Thus, since we can easily go back and forth between D and
P , the prediction problem becomes one of making predictions about the data in P .

To make these predictions we make use of the phase angle φ . Since the low level
variables {xi} are essentially determined by φ then if we can determine the dynamics
of φ , we can fairly easily make predictions about the future by using a simple Taylor
expansion for φ(t). Since we purposefully defined φ to be a linearly increasing function
of time for the ‘typical’ prototype motion, this allows us to make good predictions with a
simple linear model.
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Figure 4: Schematic of the Bayesian model. See text for detailed description.

5.1 Model
Figure 4 shows an outline of the Bayesian model. It is not a belief network diagram in the
sense of [10] in that the arrows are strictly one way. To help explain the model we break
it down into four steps: bottom-up propagation of information; estimating the distribution
over φ̇ ; using past information to gain an optimal estimate for the phase angle; and finally
making top-down predictions.

5.1.1 Bottom-up propagation of information

At each time point t, low level data in the form of a set of observations ot
i of the thigh

and knee angles comes into the system as a set of probability distributions over xt
i , i.e.

p(xt
i |ot

i) = G (ot
i,si), where G (a,b) is a Gaussian with mean a and standard deviation b.

The si are set by the error in the measurement of the thigh and knee angles.
These are combined using the previously defined p(φ |xi) to obtain an estimate for the

distribution over φ t , i.e.

p(φ t |{ot
i},M) = ∏

i

∫
p(φ |xi,M)p(xt

i |ot
i)dxi (3)

However, this distribution does not take into account any prior knowledge about past
values of φ or φ̇ . To deal with this we must first estimate the phase velocity.

5.1.2 Estimating φ̇

We model each measurement of φ as independent, i.e. p(φ t |φ t−1) = constant, and esti-
mate a distribution over ∆φ t = φ t −φ t−1. This is given by the convolution

p(∆φ
t |{ot

i},{ot−1
i }) ∝ p(φ t |{ot

i})∗ p(φ t−1|{ot−1
i }) (4)

Clearly ∆φ is related to φ̇ and this is used to update the distribution over φ̇ via

p(φ̇ t |Ot) = p(∆φ
t |{ot

i},{ot−1
i })p(∆φ

t |∆φ
t−1)

[
p(φ̇ t |φ̇ t−1)∗ p(φ̇ t−1|Ot−1)

]
(5)



where Ot is the set of all observations up to and including time t and p(φ̇ t |φ̇ t−1) is the
transition probability that tells us how much we can rely on φ̇ t−1 to tell us anything about
φ̇ t . p(∆φ t |∆φ t−1) is important as it takes into account the correlations between ∆φ t and
∆φ t−1 which occur because ∆φ is defined as the difference between two independent
random variables (i.e. φ t and φ t−1). This is readily calculated as

p(∆φ
t |∆φ

t−1) =
∫

dφ
t−1 p

(
φ

t−1|{ot−1
i }

)
p
(
φ

t = φ
t−1 +∆φ

t |{ot
i}
)

× p
(
φ

t−2 = φ
t−1−∆φ

t |{ot−2
i }

)
(6)

5.1.3 Optimal estimate of the phase angle

Once we have calculated p(φ̇ t−1|Ot−1), it is then relatively straighforward to make pre-
dictions for the phase angle at the next time step. For clarity we introduce Φt to represent
the phase angle infered from all possible data. We do this to ensure that there is no confu-
sion when computing the distribution over ∆φ and that we do not count information twice
by using a predicted value of φ t to artificially increase our belief in our estimate of φ̇ t .

We make our prediction for Φt as

p(Φt |Ot−1) = p(Φt−1|Ot−1)∗ p(φ̇ t−1|Ot−1) (7)

where ∗ indicates a convolution. Then p(Φt |Ot) can be written as

p(Φt |Ot) = p(Φt |Ot−1)p(φ t |{ot
i},M) (8)

5.1.4 Top-down propagation of information

Finally we update our estimate for the low level variables by making the top down pre-
dictions

p(xi|Ot) = p(xi|ot
i)
∫

dφ
t p(xi|Φt ,M)p(Φt |Ot\ot

i) (9)

where p(xi|Φt ,M) = p(xi|φ ,M), i.e. the prior defined in section 3 and

p(Φt |Ot\ot
i) =

p(Φt |Ot)∫
p(φ |xi,M)p(xt

i |ot
i)dxi

(10)

is the probability over φ given all the information Ot except ot
i . Using this stops us

counting information twice.

5.2 Results
The results of the prediction experiments are shown in figure 5. The top two and bottom
left panels show the results of trying to predict the motion of one particular person. The
aligning transform is calculated on the basis of the first 20 data points, after which (at t =
0.3s) the input is removed (denoted by the black dotted lines). After this point the system
can only make predictions based on its estimates for Φ and φ̇ . In the top two panels we
show the estimated thigh and knee angles from the Bayesian model (in red) compared
with the actual observed angles(in blue). In the bottom left panel we shown the predicted
phase angle (red) compared with the actual phase angle (blue).
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Figure 5: Prediction experiments. In all panels, the data were presented for 0.3s at which
point (indicated by the black dotted lines) the input is removed and the system continues
to make predictions on its own. Top two panels: Comparison between the observed (blue)
and the predicted values (red) of the left thigh and knee angles. Bottom left: Comparison
between the inferred (red) and actual (blue) phase angle as a function of time for the
same motion. Bottom right: Root mean square prediction error averaged over 50 different
example motions of the same person and expressed as a percentage of the range of each
variable as a function of time.

In the bottom right panel we plot the mean square prediction error for 50 different
motion samples of the same person as a percentage of the range of the low level variables.
Expressing the error in this way allows us to average across variables (such as thigh and
knee angles) with different ranges more fairly. For each motion, the aligning transform
is calculated from the first 20 data points (303ms of data). We contrast three different
cases, the green line shows the error when the walk manifold is used to predict walking
data, the blue line when the run manifold is used to predict running data and the red line
when the walking manifold is used to predict running data. Clearly this final case leads
to much greater errors. This is an important result as without it one could imagine that,
thanks to the aligning transform, any closed loop in P would suffice as a prototype for
prediction. This result shows that the closer the prototype is to the actual motion the better
the predictions will be.

6 Conclusions
We have presented a method for the recognition and prediction of motion capture data
based on the idea that we can approach the problem of motion recognition from the per-



spective of shape recognition. In particular we introduced a proof of concept method
using the shape context to compute an aligning thin-plate spline transformation between
the data and a set of prototype motion shapes. Recognition was achieved by looking at the
details of the affine parts of these transformations. Our model achieved excellent (99%)
recognition of gait and reasonable (83%) recognition of individuals on our trial dataset.

Prediction was achieved by solving the prediction problem in prototype space and
using the precalculated transformations to map the predictions back into the data space.
Our model gives good predictions of the running and walking data over several gait cycles
for the modest set of people included in our data set.
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