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There is a growing body of evidence that the brain computes optimally.  However, despite some excellent 
theoretical suggestions (e.g. Gold, J.I. and Shadlen, M.N., Nature, 404: 390-394, 2000; Deneve, S., NIPS. 
13. 2004; Rao, R. Neural Computation, 16(1), 1-38, 2004; Zemel, R.S., Huys, Q.J.M., Natarajan, R and 
Dayan, P. NIPS 2004), precisely how the brain achieves this feat is still an open question.  A particularly 
promising approach was suggested by Deneve et al. (Deneve, S., Latham, P.E. and Pouget, A. Nature 
Neuroscience. 2(8):740-745. 1999) where the authors used a line attractor neural network to optimally 
decode a static stimulus.   
 
In this work we extend the network of Deneve et al. to deal with moving stimuli.  We do this by connecting up 
a line attractor network in such a way that the stable state of the system is a rotating bump of activity whose 
speed can be altered by changing the input to different parts of the network.  In particular we use a double 
ring line attractor network similar to that suggested in Zhang 1996 (Zhang K., J Neurosci. 16:2112-2126, 
1996) and Xie et al. 2002 (Xie, X., Hahnloser, R.H.R., and Seung, H. S. , Physical Review E 66, 041902, 
2002), but with the difference that the activation rule implements divisive normalization.  We use the divisive 
normalization rule as this is both biologically plausible (e.g. see Carradini, M., Heeger, D.J., and Movsham, 
J.A., J. Neurosci. 17(21), 8621-8644, 1997) and leads to robust line attractors. 
 
The aim of our network is to decode the position of a moving stimulus (e.g. a moving dot) given a noisy input 
signal as a function of time.  The network then receives three types of inputs: the speed of the stimulus, 
which could be provided by MT cells; the external input comprising a noisy hill of activity centered around 
the current position of the stimulus; and the recurrent inputs from the network itself.  
 
The figure below demonstrates the basic properties of our model.  The moving stimulus creates a noisy 
input current (shown in the top left panel) whose position is determined by the position of the stimulus.  In 
the present case, the noise is created by simply adding uncorrelated Gaussian noise to the input current at 
each time step.  This input is fed into the divisive normalization network and the output of this network is 
shown in the top right panel.  Clearly this is a much cleaner signal and the position can easily be decoded 
using a population vector decoder.  This decoded signal is shown in the bottom left panel.  The green line 
represents population vector decoding of the input signal; the blue line is the decoding from a divisive 
normalization network, but with the speed set to zero – which is equivalent to the network used in Deneve et 
al.; the red line is the decoding using our network; and the dashed black line is the actual motion.  Clearly 
our network significantly outperforms the other decoding methods.   
 
The results of a more detailed empirical investigation are shown in the bottom right panel.  In these 
experiments we compared the network decoding (‘Network’) to population vector (‘PV’) decoding; and to two 
versions of maximum likelihood decoding (ML and ML+v).  The first, ML, is the optimal decoding of the 
stimulus position without taking into account any velocity information, i.e. this estimator makes no 
assumptions that the position of the stimulus at different time points will be correlated in any way.  The 
second estimator, ML+v, assumes that the stimulus is moving at speed v and finds the optimal straight line 
path of speed v through the activity.  This second version is the best possible decoding of the inputs that the 
network receives. In the figure we plot the rms error over 20 different trials each lasting 100 time steps for 
these different decoding schemes.  These results clearly show that our network performs close to optimally 
and that the ability of the line attractor network to integrate information over time gives it an advantage over 
the uncorrelated, ML decoding scheme. 



 


