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INTRODUCTION
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OPTIMAL INFERENCE ~ change

If change-point locations are given
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The number of samples since 0123456(78 910

the last change-point is called . time
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If change-point locations are unknown [1, 2, 3]
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computed recursively with time

message passing on a graph
p(rt‘ajl:t) X Zp(Tt\Tt—l)p(%\Tt—l)p(rt—l\331:75—1)
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Predictive distribution is then computed as marginal over

run-length:
p($t+1 ‘xlzt) — ZP(CCtH ‘Tt)p(rt \l’lzt)
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PROBLEM WITH OPTIMAL INFERENCE

Possible values for run-length grow linearly with time and are
unbounded. It seems unlikely that the brain can represent
this distribution.

REDUCED MODEL

Build an approximation based on just two possible values for
the run-length Tt — O and 7t = Tt

p(Tt—l‘l‘l:t—l) — (1 — h)5(7“t—1 — 7215—1) - h5("”‘t—1 — O)
Update rule now has two stages

A: Expansion. Update as before to get a distribution over
three possible values of run-length

p(re|w1e) = (1 —h)(1 —pi")d(ry = Fr_q + 1)
+(1 = h)p"8(ry = 1) + hd(ry = 0)
where pfghis the probability of change on the last trial

hp(x¢|ri—1 = 0)
L = h)p(xi|ri—1 = 7e—1) + (1 = h)p(a¢|ri—1 = 0)

ch
pt :(

B: Contraction. Reduce the three-valued p** (7¢|z1.¢ )to a two-
valued distribution
pP (re|lzie) = (1 — h)d(ry = 7¢) + hé(ry = 0)
Such that in some sense
pB(Tt‘$1:t> ~ P 7“t|$1:t)
This update rule also has a graphical interpretation :
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Contraction is achieved by matching moments

say p?(r|z1.4) =~ p?(r¢|x1..) when the first M moments of
the two are matched; i.e., for m=1,2,.... M
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For exponential-family distributions this turns out to be all we
need to recover T'¢

DELTA RULE FOR CHANGE-POINTS

With moment matching, the mean, (;, of the predictive
distribution updates according to the following delta rule

L1 = p + (e — pg) + Be(po — put)
with

L—pg" P vop;"
ft—1+U0+1 vo + 1 vo + 1

(+ is the learning rate and determines the extent to which
new information influences current beliefs, and (3; determines
the rate at which the predictive mean regresses to the prior
mean, [lo. Vo isa constant, the “equivalent sample size” of
the prior.

This delta-rule is very efficient to implement and biologically
much more plausible [e.qg., 4] than the full, optimal model.

EXAMPLE: GAUSSIAN WITH CHANGING MEAN
Optimal model:
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