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The AX-Continuous Performance Test (AX-CPT) was one of the �rst theoretically-motivated tasks 
developed to probe the role of context processing in cognitive control (Cohen & 
Servan-Schreiber, 1992), and used to study de�cits of these functions in schizophrenia 
(Servan-Schreiber, Cohen, & Steingard, 1996). Despite this corpus of work, our understanding of 
the cognitive processes engaged by the AX-CPT task remains incomplete. For instance, the Dual 
Mechanisms of Control (DMC) framework (2007) has proposed that there may be two strategies 
for performing this task: proactive control, which involves maintenance of context information in 
working memory, and reactive control, which relies on episodic memory. In the present work, we 
manipulated factors of motivation, response time and working memory load to bias subjects 
towards either proactive or reactive control. We then built a Bayesian model that captures 
performance on the AX-CPT using only two parameters. When �t to empirical data, only one of 
these parameters — memory noise — was found to di�er between conditions designed to 
di�erentially engage the two modes of control. Our ongoing work aims to further elucidate 
whether reactive control involves distinct cognitive processes, or rather, re�ects a de�cit of 
proactive control.

Proactive Control: At cue presentation, the 
task rule associated with the cue is 
represented as context information in 
working memory, and actively maintained 
during the delay period, biasing task 
processing pathways in preparation for an 
e�cient response to the probe.

Reactive Control: The context is not held in 
working memory, but a trace of the cue 
remains (e.g. in episodic memory). At the 
time of probe, the cue representation is 
retrieved and used to activate the rule in 
working memory, allowing correct but less 
e�cient responding.

Reactive bias condition:  distractor task 
during delay between cue and probe — 

interferes with preparation

Proactive bias condition: very fast & 
accurate responses are rewarded 
monetarily — favors preparation

- AY errors signal over-in�uence of the cue (A) relative to the 
probe (Y), suggesting use of proactive control
- BX errors signal over-in�uence of probe (X) relative to the 
cue (B), suggesting lack of preparation and use of reactive 
control
- AX and BY errors signal non-speci�c failures of processing

Varying trial frequencies induces biases that allow us to distinguish between strategies:

As expected, subjects are signi�cantly more accurate and faster on the proactive-bias condition.

We can approximate proactive and reactive patterns of behavior in terms of inferences about the identity 
of the cue and probe at the time of the response. 

Due to this uncertainty, the agent acts based on inferences about the cue and probe (e.g. C’O’=AX), rather than 
the actual cue and probe (e.g. CO=BX).

We assume that the memory of the cue and the perceptual interpretation of the probe are uncertain: 
M = 1 – εM ; εM is the memory noise (cue noise).
R = 1 – εR ; εR is the perceptual noise (probe noise).

These inferences are shaped by cue noise (εM), probe noise (εR) and trial frequencies, which constitute the prior 
probability of each cue-probe combination, p(C’O’):

} }

trial frequency 1 - εM

}

1 - εR

Given knowledge of the trial frequencies, and using the best �t parameters for εM and εR from our behavioral 
data, the model provides us with the probability that the agent will go Left or Right for a particular trial type, 
which can be converted to error rate by trial type. 
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As expected, there is a highly signi�cant decrease in memory noise (more reliable in�uence of the cue) in the 
proactive-bias condition. However, perceptual noise (eR) does not di�er signi�cantly across conditions.
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Proactive Index by Condition
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Errors in Proactive- vs. Reactive-Bias Conditions
- Decrease in AX and BY errors indicates general improvement in 
performance in proactive-bias condition.
- Reduction in BX errors relative to AY errors con�rms greater 
in�uence of cue on responding in proactive-bias condition.

Proactive Index = 
(AY errors – BX errors) / 
(AY errors + BX errors)
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Reactive Condition Data
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Proactive Condition Data We compared our Bayesian model against the 
most accurate model possible: 
Data-driven Model that learns each subject’s 
probability of going Left for each trial type.

It has 4 parameters: 
p(L|AX)   p(L|AY)  p(L|BX)  p(L|BY)  and can 
replicate each subject’s error rates perfectly.

The normalized BIC of the Bayesian model was 
higher than the normalized BIC of the 
data-driven model for almost every subject.

Wilcoxon signed rank test:  
p < 10-8 for both conditions. 

 Normalized BIC for: Bayesian Model Data-Driven Model 

Reactive Bias Condition 0.68 (SD=0.11)  0.66 (SD= 0.11)  

Proactive Bias Condition 0.74 (SD=0.10) 0.71 (SD=0.10)  
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Frequency Action 

AX 50% Left 
AY 20% Right 
BX 20% Right 
BY 10% Left 
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Meaning of Cue Noise and Reactive Control

Future Modeling Directions

 A or B X or Y Left or Right 

Actual stimulus C = actual cue O = actual probe  
Encoded stimulus M = memory of cue R = representation of probe  
Decoded stimulus C’ = inferred cue O’ = inferred probe A = action 

Response Rules
Most analogous studies (Braver et al., 2009; Edwards, Barch, & Braver, 2010) 
have used an asymmetric response rule. 
The model predicts that using an asymmetric response rule will yield cleaner 
estimates of the proactive index.

Trial Frequencies
BY Trials
The model recommends excluding BY trials when the response rule is symmetric (L - R - R - L) because that 
reduces the task to the asymmetric rule (L - R - R). 
AX Trials
Given the εM and εR parameters �t to the subject data, and the 
number of trials per subject, we can estimate how the power of 
detecting a di�erence in Proactive Index between conditions 
varies as a function of trial frequencies. 
We hold AY, BX and BY trial frequencies equal, varying AX 
frequency.
Note 1: Trade-o� between strength of dominant response (to AX) 
and number of AY / BX trials needed to estimate Proactive Index.
Note 2: the 50-20-20-10 design appears more powerful because of 
the lower BY trial frequency.

Asymmetric
AX = Left

AY = Right
BX = Right
BY = Right

Simulations of the model suggest that some AX-CPT variants provide cleaner estimates of the Proactive Index 
than others. Variants di�er in terms of response rules and trial frequencies.
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Here, proactive- and reactive-bias conditions di�ered only in cue noise: 
As the memory noise increased, overall performance decreased.  Does this pattern re�ect:
1. Genuine reliance on reactive control?
2. A failure of proactive control / working memory -> more automatic processing?

Preliminary data shows reduced performance and a relative increase in BX errors. 

 Increase WM Load Proactive Interference 

Proactive-Bias Condition: 
Response Time Deadline 

Proactive Index decreases 
Impaired performance on all trials No e�ect 

Reactive-Bias Condition: 
No Deadline, Easy Distractor Task 

Proactive Index decreases 
All other trials una�ected 

Subjects become more proactive or 
Performance decreases 

� Model the temporal dynamics in the choice data: How do subjects learn trial frequencies over time? Do 
attentional strategies to cue / probe / combination shift over time?
� Model Reaction Time data using the Drift Di�usion Model (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006) 
and use the memory noise and perceptual noise parameters to constrain the DDM parameters.


