

Exploration strategies in human decision making

— horizon 1

horizon 6

unequal, [1 3]

unequal, [1 3]

horizon 11

equal information [2 2]

difference in means [points]

decision noise

information condition

optimal decision noise

information condition

horizon 1

horizon 6

horizon 11

equal, [2 2]

equal, [2 2]

Robert C. Wilson, Andra Geana, John M. White, Elliot A. Ludvig

Choice 0.4 0.2

[points]

noise

and Jonathan D. Cohen

Introduction

What strategies do we use handle the exploreexploit tradeoff?

Task

Game starts with four example rewards

Subjects try to maximize reward over all choices

Three horizon conditions

horizon = 6horizon = 1

horizon = 11

Two information conditions

equal [2 2]

Results

Choice curves (n = 33)

difference in means [points]

Model fits

Conclusions

Exploration in humans is driven by:

- an information bonus that is consistent with directed exploration of optimal models
- adaptive noise consistent with undirected exploration of practical models

Model

Choice probabilities

$$p = \frac{1}{1 + \exp\left(-\frac{\Delta\mu + A\Delta I + b}{\sigma}\right)}$$

difference in information (-1, 0 or 1)

information bonus

side bias

decision noise variance

Side notes

Learning curves

Why only focus on first choice?

This work was supported by a grant from The John Templeton Foundation to JDC