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Task	



Transition matrix: p(s’ | s, a) 

Summary	
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Noisy threshold policy: π(a | s) 
mostly exploit when certain value above θ 
otherwise mostly explore  
noise standard deviation is σ 

Policy evaluation: V(θ, σ) 
Reward per trial under noisy threshold policy with different θ and σ 
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Optimal decision noise 

hazard rate, h
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Performance 

Threshold vs noise 
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2) Do we adapt decision noise for exploration? 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

certain value

ex
pl

oi
t p

ro
ba

bi
lit

y

 

 

h = 0.2
h = 0.05

(R – Rrand) / (Ropt – Rrand) 

State: s = value of known option 

One idea is that we use decision noise to explore 
randomly ... here we ask 

How do we solve the explore-exploit dilemma? 
Therefore 100 possible states 
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1) Is this a good idea?  When is decision noise useful? 

Bandits task with one known and one unknown option 

Future work 

Can we find evidence that noise 
adapts to hazard rate condition 
during block? 
 
What is the effect of different 
reward dynamics like drift? 


