Commuting, Migration, and Local Employment Elasticities

Ferdinando Monte
Georgetown University

Stephen Redding
Princeton University

Esteban Rossi-Hansberg
Princeton University

October 2017

Introduction

- Many changes in the economic environment are local
 - Climate, infrastructure, innovations, institutions, regulations
- The effect of these changes depends crucially on the ability of labor to move in response: **The elasticity of local employment**
- Two main sources for employment changes: Commuting and migration
 - Workers spend 8% of their work-day commuting
 - Seek balance between residential amenities, cost of living and wage
- We propose a quantitative spatial GE theory with goods trade that incorporates these two channels
 - study the response of local outcomes to local shocks
Introduction

- We discipline our quantitative model to match
 - Gravity in goods trade
 - Gravity in commuting flows
 - Distribution of employment, residents and wages across counties

- The quantitative importance of these two channels varies across counties depending on their local characteristics
 - Leads to significant heterogeneity in the employment elasticity
 - Locations are not independent spatial units as often assumed in cross-section regressions
 - Underscores general equilibrium effects

- Affects the estimated effects of most local policies and shocks and their external validity
 - Heterogeneity is well accounted for by commuting links

- Provide empirical evidence for the importance of commuting
 - Shift-share analysis, Million Dollar Plants, China Shock

Key Mechanisms

- Productivity differences and home market effects
 - Forces for the concentration of economic activity

- Inelastic housing supply and heterogeneous preferences
 - Forces for the dispersion of economic activity

- Commuting allows workers to access high productivity locations without having to live there
 - Effectively reduces the congestion effect in high productivity areas

- Elasticity of employment with respect to local shocks (e.g. productivity, amenities, infrastructure) depends on
 - Ability to attract migrants
 - Ability to attract commuters from surrounding locations
The Extent of Commuting
- Counties become more open over time

![Graph showing the extent of commuting over time]

- Commuting links are sizeable and heterogeneous

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>p5</th>
<th>p10</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>p90</th>
<th>p95</th>
<th>Max</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuters from Residence</td>
<td>0.00</td>
<td>0.03</td>
<td>0.06</td>
<td>0.14</td>
<td>0.27</td>
<td>0.42</td>
<td>0.53</td>
<td>0.59</td>
<td>0.82</td>
<td>0.29</td>
</tr>
<tr>
<td>County Employment/Residents</td>
<td>0.26</td>
<td>0.50</td>
<td>0.67</td>
<td>0.79</td>
<td>0.92</td>
<td>1.02</td>
<td>1.11</td>
<td>1.18</td>
<td>3.88</td>
<td>0.91</td>
</tr>
<tr>
<td>Commuters to Workplace</td>
<td>0.00</td>
<td>0.03</td>
<td>0.07</td>
<td>0.14</td>
<td>0.20</td>
<td>0.28</td>
<td>0.37</td>
<td>0.43</td>
<td>0.81</td>
<td>0.22</td>
</tr>
<tr>
<td>County Employment/Residents</td>
<td>0.63</td>
<td>0.87</td>
<td>0.91</td>
<td>0.97</td>
<td>1.00</td>
<td>1.01</td>
<td>1.03</td>
<td>1.04</td>
<td>1.12</td>
<td>0.98</td>
</tr>
<tr>
<td>Commuters from Residence CZ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.07</td>
<td>0.12</td>
<td>0.18</td>
<td>0.22</td>
<td>0.49</td>
<td>0.08</td>
</tr>
<tr>
<td>Commuters to Workplace CZ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.07</td>
<td>0.10</td>
<td>0.13</td>
<td>0.15</td>
<td>0.25</td>
<td>0.07</td>
</tr>
<tr>
<td>CZ Employment/Residents</td>
<td>0.63</td>
<td>0.87</td>
<td>0.91</td>
<td>0.97</td>
<td>1.00</td>
<td>1.01</td>
<td>1.03</td>
<td>1.04</td>
<td>1.12</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Tabulations on 3,111 counties and 709 CZ after eliminating business trips (trips longer than 120km).

Related Literature

- Quantitative international trade literature on costly trade in goods
 - Eaton and Kortum (2002) and extensions

- Economic geography literature on goods trade and factor mobility

- Urban literature on costly trade in people (commuting)

- Local labor markets literature
Preferences and Amenities

- Utility of an agent ω that lives in n and works in i is

$$U_{ni\omega} = \frac{b_{ni\omega}}{\kappa_{ni}} \left(\frac{C_{n\omega}}{\alpha} \right)^\alpha \left(\frac{H_{n\omega}}{1 - \alpha} \right)^{1 - \alpha}$$

where $C_{n\omega}$ is the CES consumption basket with elasticity of substitution σ, and $H_{n\omega}$ housing consumption
- Utility cost of commuting are given κ_{ni}
- Amenities, $b_{ni\omega}$, drawn i.i.d. from Fréchet distribution

$$G_{ni}(b) = e^{-B_{ni} b^{-e}}, \quad B_{ni} > 0, e > 1$$

Production

- Horizontally differentiated varieties sold under monopolistic competition
- Labor required to produce $x_i(j)$ units of output in i is

$$l_i(j) = F + \frac{x_i(j)}{A_i}$$

- Prices at n are given by

$$p_{ni}(j) = \left(\frac{\sigma}{\sigma - 1} \right) \frac{d_{ni} w_i}{A_i},$$

where $d_{ni} \geq 1$ denotes iceberg transport costs between i and n
- Constant equilibrium output $x_i(j) = A_i F (\sigma - 1)$ implies

$$M_i = \frac{L_{Mi}}{\sigma F}$$
Land Market

- There is an inelastic supply of land at H_n
- Price of land Q_n determined from land market clearing

 \[H_n Q_n = (1 - \alpha) v_n L_{Rn}, \]

 where v_n is expected income of residents at n and L_{Rn} is the total number of residents

 - Resulting price of land correlates well with house prices in the data

- Land owned by landlords, who receive income from residents’ expenditure on land, and consume goods where they live

 - Total expenditure on goods is the sum of expenditures by residents and landlords

 \[P_n C_n = \alpha v_n L_{Rn} + (1 - \alpha) v_n L_{Rn} = v_n L_{Rn} \]

Trade in Goods

- Denote by L_{Mi} the number of workers at i
- Then, as in many trade frameworks, expenditure shares are given by

 \[\pi_{ni} = \frac{L_{Mi} (d_{ni} w_i / A_i)^{1-\sigma}}{\sum_{k \in N} L_{Mk} (d_{nk} w_k / A_k)^{1-\sigma}} \]

- And so the price of the consumption basket at n is given by

 \[P_n = \frac{\sigma}{\sigma - 1} \left(\frac{L_{Mn}}{\sigma F \pi_{nn}} \right)^{\frac{1}{1-\sigma}} \frac{w_n}{A_n} \]
Work-Residence Decision

- The indirect utility of an agent ω that lives in n and works in i is

 $$U_{ni\omega} = \frac{b_{ni\omega}w_i}{\kappa_{ni}P_n^\alpha Q_n^{1-\alpha}}$$

 which is drawn from

 $$G_{ni}(u) = e^{-\Psi_{ni}u^{-\epsilon}}, \text{ with } \Psi_{ni} = B_{ni}(\kappa_{ni}P_n^\alpha Q_n^{1-\alpha})^{-\epsilon} w_i^\epsilon$$

- So the unconditional probability that a worker chooses to live in region n and work in location i is

 $$\lambda_{ni} = \frac{B_{ni}(\kappa_{ni}P_n^\alpha Q_n^{1-\alpha})^{-\epsilon} w_i^\epsilon}{\sum_{r \in N} \sum_{s \in N} B_{rs}(\kappa_{rs}P_r^\alpha Q_r^{1-\alpha})^{-\epsilon} w_s^\epsilon}$$

- Free mobility implies that $\bar{U} = E[U_{ni\omega}]$ for all ni

Commuting

- Conditional probability that worker commutes to location i conditional on living in location n is

 $$\lambda_{ni|n} = \frac{B_{ni}(w_i / \kappa_{ni})^\epsilon}{\sum_{s \in N} B_{ns}(w_s / \kappa_{ns})^\epsilon}$$

- So labor market clearing implies that

 $$L_{Mi} = \sum_{n \in N} \lambda_{ni|n} L_{Rn}$$

- Expected residential income is then

 $$v_n = \sum_{i \in N} \lambda_{ni|n} w_i$$
General Equilibrium

- The general equilibrium is a vector of prices \(\{w_n, v_n, Q_n, P_n\} \) and allocations \(\{\pi_{ni}, \lambda_{ni}\} \) such that
 - Earnings equals expenditures (trade balance), \(w_i L_{Mi} = \sum_{n \in N} \pi_{ni} v_n L_{Rn} \)
 - Land markets clear
 - Agents move freely and labor markets clear, \(\bar{L} = \sum_{i \in N} L_{Mi} = \sum_{n \in N} L_{Rn} \)

- We formulate an isomorphic model using Armington or EK with external economies of scale, migration and commuting

- We provide sufficient conditions for equilibrium uniqueness and existence

Data for Calibration

- Commodity Flow Survey (CFS)
 - Bilateral trade between 123 CFS regions
 - Bilateral distance shipped

- American Community Survey (ACS)
 - Commuting probabilities between counties

- Bureau of Economic Analysis
 - Employment by workplace county
 - Wages by workplace county

- GIS data
 - County maps

- Parameters
 - Share of expenditure on consumption goods, \(\alpha = 0.6 \) (Davis and Ortalo-Magne, 2011)
 - Elasticity of substitution, \(\sigma = 4 \) (Bernard et al., 2003)
County Bilateral Trade and Productivities

- Model is quantified for counties, but trade observed for CFS regions
- County trade balance implies

\[w_i L_{Mi} = \sum_{n \in N} \tau_{ni} v_n L_{Rn} = \sum_{n \in N} \frac{L_{Mi}}{\sum_{k \in N} L_{Mk}} \left(\frac{d_{ni} w_i}{d_{nk} w_k} \right)^{1-\sigma} A_i^{\sigma-1} A_k^{-1} v_n L_{Rn}. \]

- We observe (or can compute) \(\{ w_i, L_{Mi}, L_{Ri}, \tau_{ni} \} \)
- Let \(d_{ni}^{1-\sigma} = (\text{distance}_{ni})^{-1.29} \), then we can solve uniquely for productivities, \(A_i \)
- Obtain predicted county bilateral trade flows, \(\tau_{ni} \)
- Aggregate to CFS level and compare with actual trade shares

Gravity in Goods Trade Across CFS Regions

- Slope: -1.29 (after removing origin and destination fixed-effects)
County Commuting Probabilities and Amenities

- Bilateral commuting probabilities are:

\[\lambda_{ni} = \frac{B_{ni} \left(\kappa_{ni} P_n^\alpha Q_n^{1-\alpha} \right)^{-\epsilon} w_i^\epsilon}{\sum_{r \in N} \sum_{s \in N} B_{rs} \left(\kappa_{rs} P_r^\alpha Q_r^{1-\alpha} \right)^{-\epsilon} w_s^\epsilon}, \]

- We observe (or have solved for) \(\{ w_i, L_{Mi}, L_{Ri}, v_i, \pi_{ii}, A_i \} \) and so can calculate \(Q_n \) and \(P_n \).
- Use \(\kappa_{ni} = \) distance\(_{ni}^\phi \), find \(\phi \epsilon = 4.43 \), we can solve for the unique matrix of amenities \(B_{ni} \).
Gravity in Commuting Flows

- Slope: -4.43 (after removing origin and destination fixed-effects)

![Graph showing the relationship between log commuting flows and log distance. The dashed line represents the linear fit with a slope of -4.43.]

Separating ϕ and ϵ

- Can rewrite the bilateral commuting probability in logs as
 \[
 \log \lambda_{ni} = -\log \left(\sum_{r \in N} \sum_{s \in N} B_{rs} (\kappa_{rs} P_r^\alpha Q_r^{1-\alpha})^{-\epsilon} w_i^\epsilon - \epsilon \log P_n^\alpha Q_n^{1-\alpha} \right)_{\text{constant}} - \epsilon \phi \log \text{dist}_{ni} + \epsilon \log w_i + \log u_{ni}
 \]

- To estimate ϵ
 - Impose $\epsilon \phi = 4.43$
 - Instrument log w_i with log A_i
 - F-stat from first stage: 822.1
 - We find $\epsilon = 3.30$ and $\phi = 1.34$
Quantitative Analysis

1 Shock to productivity of individual counties
 - We find substantial heterogeneity of local employment elasticity
 - Due in large part to commuting

2 The importance of commuting for local labor market outcomes
 - Shift-Share analysis
 - Million-Dollar plants
 - China Shock

3 Counterfactual exercises
 - Reduction in commuting costs
 - Shutting down commuting
 - Reducing trade costs in a world with or without commuting

Local Labor Demand Shocks

- Large empirical literature on local labor demand shocks
- “Differences-in-differences” specification across locations i and time t

$$\Delta \ln Y_{it} = a_0 + a_1 I_{it} + a_2 X_{it} + u_{it}$$

Y_{it} is outcome of interest and I_{it} is demand shock (treatment), X_{it} are controls and u_{it} is a stochastic error

- Potential econometric concerns
 - Finding exogenous shocks to labor demand
 - Measuring the shock to local labor demand (interpreting a_1)
 - Heterogeneous treatment effects
 - Spatial linkages between counties and general equilibrium effects

- To what extent are heterogeneous treatment effects, spatial linkages and general equilibrium effects a concern?
- What if anything can be done to address these concerns?
Elasticity of Local Employment to Productivity

5% productivity shocks

Monte, Redding, Rossi-Hansberg

Local Employment Elasticities

Elasticity of Employment to Productivity

Eliminating bottom and top 0.5%; gray area: 95% bootstrapped CI

New Haven (CT)

d\ln L_A/dA: 1.47
Elasticity of Local Employment to Productivity
5% productivity shocks

Elasticity of Employment to Productivity
Eliminating bottom and top 0.5%; gray area: 95% boostrapped CI

Monte, Redding, Rossi-Hansberg
Local Employment Elasticities

October 2017 25 / 42
Local Employment vs. Resident Elasticity to Productivity

5% productivity shocks

Elasticity of Employment and Residents to Productivity

Density

Elasticity of Employment and Residents to Productivity

Employment
Residents

Eliminating bottom and top 0.5%; gray area: 95% bootstrapped CI

Monte, Redding, Rossi-Hansberg
Local Employment Elasticities
October 2017 27 / 42

Local Employment vs. Resident Elasticity to Productivity

5% productivity shocks

Elasticity of Employment and Residents to Productivity

Density

Arlington (VA)

\[\frac{d\ln L}{dA} : 2.35 \]

\[\lambda_{\text{emp}} : .310 \]

Eliminating bottom and top 0.5%; gray area: 95% bootstrapped CI

Monte, Redding, Rossi-Hansberg
Local Employment Elasticities
October 2017 28 / 42
Local Employment vs. Resident Elasticity to Productivity

5% productivity shocks

S. Diego (CA)
\(\frac{d \ln L}{d \lambda} \): 0.63
\(\lambda_{\text{res}} \): .996

Arlington (VA)
\(\frac{d \ln L}{d \lambda} \): 2.35
\(\lambda_{\text{res}} \): .310

New Haven (CT)
\(\frac{d \ln L}{d \lambda} \): 1.47
\(\lambda_{\text{res}} \): .746

Eliminating bottom and top 0.5%; gray area: 95% bootstrapped CI

Monte, Redding, Rossi-Hansberg

Local Employment Elasticities

October 2017 29 / 42
Explaining The Elasticity of Employment

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Elasticity of Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log L_i)</td>
<td>-0.003 (0.014) 0.009 (0.012) -0.054** (0.006) 0.037** (0.004) 0.033** (0.004)</td>
</tr>
<tr>
<td>(\log w_i)</td>
<td>-0.201** (0.015) -0.158** (0.012) -0.054** (0.006) -0.263** (0.004)</td>
</tr>
<tr>
<td>(\log T_i)</td>
<td>-0.054** (0.015) -0.172** (0.012) 0.003 (0.009) 0.009 (0.009)</td>
</tr>
<tr>
<td>(\log L_{i-1})</td>
<td>0.118** (0.017) 0.027** (0.009) 0.027** (0.009)</td>
</tr>
<tr>
<td>(\log w_{i-1})</td>
<td>0.204* (0.083) 0.163** (0.037) 0.207** (0.038)</td>
</tr>
<tr>
<td>(\lambda^0_{ij})</td>
<td>-2.047** (0.042)</td>
</tr>
<tr>
<td>(\sum_{n \neq j} (1 - \lambda_{n,i}) \phi_{w,i})</td>
<td>2.784** (0.192) 2.559** (0.178)</td>
</tr>
<tr>
<td>(\phi_i \left(\frac{1}{\lambda_i} - \lambda_i \right))</td>
<td>0.915** (0.210) 0.605** (0.175)</td>
</tr>
<tr>
<td>(\frac{\partial}{\partial A_i} \sum_{n \neq j} (1 - \lambda_{n,i}) \phi_{m,n})</td>
<td>-1.009** (0.123) -0.825** (0.150)</td>
</tr>
<tr>
<td>(\frac{\partial}{\partial A_i} \phi_i \left(\frac{1}{\lambda_i} - \lambda_i \right))</td>
<td>1.038** (0.090) 1.100** (0.091)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.515** (0.034) 1.545** (0.158) 5.683** (0.632) 1.245 (0.797) 2.975** (0.022) 0.840** (0.201) 1.553** (0.087) 1.861** (0.404) 2.064** (0.352)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.90 0.90 0.90 0.90</td>
</tr>
<tr>
<td>(N)</td>
<td>3,111 3,111 3,111 3,081 3,111 3,111 3,081 3,081</td>
</tr>
</tbody>
</table>

Standard errors are clustered by state. * p-value ≤ 0.05; ** p-value ≤ 0.01.

Deviation in Diff-in-Diff Estimates

- We estimate
 \[
 \Delta \ln L_{Mi} = a_0 + a_1 I_i + a_2 X_i + a_3 (I_i \times X_i) + u_i
 \]

- Using different comparison sets of “control counties”
 - Closest county, random county, neighbors, non neighbors, all counties

- Using two sets of controls
 - Reduced-form controls: land, employment, residents, workplace wages, employment and wages in neighboring areas
 - Model-suggested controls: partial equilibrium elasticities for commuting, migration, and goods market linkages

- Compute the deviation as
 \[
 \hat{\beta}_i = \frac{(a_1 + a_3 X_i)}{dA_i} - \frac{dL_{Mi}}{dA_i L_{Mi}}
 \]
Distribution of Deviations in Diff-in-Diff Estimates

Using “closest county” and “all observations” control groups

![Graph showing distribution of deviations](image)

Eliminating bottom and top 0.5%; M.S.: model-suggested controls; R.F.: reduced-form controls

Other Control Groups

| Monte, Redding, Rossi-Hansberg | Local Employment Elasticities | October 2017 | 33 / 42 |

Commuting Role in Accounting for Employment Variability

Time-series analysis: variation w.r.t. employment in 1990

- Let \(\Delta^{T} L_{it} = L_{i2007} - L_{i1990} \); then,

\[
\Delta^{T} L_{it} = \left(\lambda_{ii|it}^{R} \Delta^{T} R_{it} \right)_{(i) \text{ own residents}} + \left(R_{it-1}^{\Delta^{T}} \lambda_{ii|it}^{R} \right)_{(ii) \text{ own commuting shares}} + \sum_{n \neq i} \lambda_{ni|nt}^{R} \Delta^{T} R_{nt} + \sum_{n \neq i} R_{nt-1}^{\Delta^{T}} \lambda_{ni|nt}^{R} \left(\begin{array}{l}
(iii) \text{ other residents} \\
(iv) \text{ other commuting shares}
\end{array} \right)
\]

<table>
<thead>
<tr>
<th>1990 to 2006-10</th>
<th>(i) Changes Own Residents, Constant Commuting</th>
<th>(ii) Changes Own Commuting, Constant Own Residents</th>
<th>(iii) Changes Other Residents, Constant Other Commuting</th>
<th>(iv) Changes Other Commuting, Constant Other Residents</th>
<th>Sum (i)-(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th percentile</td>
<td>17.2</td>
<td>2.2</td>
<td>3.1</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>25th percentile</td>
<td>33.7</td>
<td>6.3</td>
<td>7.3</td>
<td>5.9</td>
<td>-</td>
</tr>
<tr>
<td>50th percentile</td>
<td>50.0</td>
<td>16.0</td>
<td>12.3</td>
<td>13.1</td>
<td>-</td>
</tr>
<tr>
<td>75th percentile</td>
<td>66.0</td>
<td>30.4</td>
<td>18.6</td>
<td>22.8</td>
<td>-</td>
</tr>
<tr>
<td>90th percentile</td>
<td>80.2</td>
<td>46.3</td>
<td>26.8</td>
<td>34.1</td>
<td>-</td>
</tr>
<tr>
<td>Mean</td>
<td>49.7</td>
<td>20.4</td>
<td>14.0</td>
<td>15.8</td>
<td>100</td>
</tr>
</tbody>
</table>
The Role of Commuting in Local Labor Demand Shocks

- Announcements of Million Dollar Plants (MDP)
 - Compare winning county where new firm locates to runner-up counties
- 82 MDP announcements from Greenstone and Moretti (2004)
 - GHM(2010) use subset of 47 MDP openings in (confidential) Census data
- We generalize GHM(2010) with commuting interactions

\[
\ln L_{it} = \kappa I_{jt} + \theta (I_{jt} \cdot W_i) + \beta (I_{jt} \cdot \lambda_{rij}^R) + \gamma (I_{jt} \cdot W_i \cdot \lambda_{rij}^R) + \\
+ \alpha_i + \eta_j + \mu_t + \epsilon_{it}
\]

- \(i\): counties; \(j\): cases; \(t\): calendar year; \(\tau\): treatment year index;
- \(L_{it}\): employment in county \(i\), \(t\) years after announcement;
- \(I_{jt}\): indicator for case \(j\) starting in treatment year;
- \(W_i\): indicator for winner county;
- \(\lambda_{rij}^R\): residence own-commuting share in 1990 (experiment with more);
- \(\alpha_i, \eta_j, \mu_t\): counties, cases, calendar years fixed effects.

Validation:
- Balance Table
- Event Study

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1_{jt} \times W_i)</td>
<td>(\theta)</td>
<td>0.067**</td>
<td>0.250***</td>
<td>0.191***</td>
<td>0.244***</td>
<td>0.260***</td>
<td>0.223***</td>
<td>0.160***</td>
<td>0.159***</td>
</tr>
<tr>
<td>(1_{jt} \times W_i \times \lambda_{rij}^R)</td>
<td>(\gamma)</td>
<td>-0.242**</td>
<td>(0.096)</td>
<td>-0.219**</td>
<td>(0.096)</td>
<td>-0.190**</td>
<td>(0.077)</td>
<td>-0.195**</td>
<td>(0.066)</td>
</tr>
<tr>
<td>(1_{jt} \times W_i \times \lambda_{rij}^MRL)</td>
<td>(\gamma)</td>
<td>-0.241***</td>
<td>(0.088)</td>
<td>-0.281**</td>
<td>(0.110)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1_{jt} \times \lambda_{rij}^R)</td>
<td>(\beta)</td>
<td>0.012</td>
<td>(0.135)</td>
<td>-0.048</td>
<td>(0.108)</td>
<td>-0.203***</td>
<td>(0.075)</td>
<td>-0.213**</td>
<td>(0.082)</td>
</tr>
<tr>
<td>(1_{jt} \times \lambda_{rij}^MRL)</td>
<td>(\beta)</td>
<td>0.243*</td>
<td>(0.129)</td>
<td>0.124</td>
<td>(0.160)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1_{jt} \times \lambda_{rij}^{L&MRL})</td>
<td>(\beta)</td>
<td>0.133</td>
<td>(0.145)</td>
<td>0.107</td>
<td>(0.086)</td>
<td>0.160**</td>
<td>(0.066)</td>
<td>0.159**</td>
<td>(0.066)</td>
</tr>
<tr>
<td>(1_{jt})</td>
<td>(\kappa)</td>
<td>-0.015*</td>
<td>-0.024</td>
<td>-0.200**</td>
<td>-0.113</td>
<td>-0.113</td>
<td>0.021</td>
<td>0.160**</td>
<td>0.159**</td>
</tr>
</tbody>
</table>

County observations are weighted by population at the beginning of the sample period. Standard errors are clustered by state. * p-value ≤ 0.1; ** p-value ≤ 0.05; *** p-value ≤ 0.01.
Changes in Commuting Costs

- We use observed commuting flows to back out implied values of
 $B_{ni} = B_{nj}k_{ni}^{-\varepsilon}$, using

 $$\tilde{B}_{ni} = \left(\frac{B_{ni}B_{in}}{B_{nn}B_{ii}} \right)^{1/2} = \left(\frac{L_{ni}L_{in}}{L_{nn}L_{ii}} \right)^{1/2}$$

- Compute this measure for both 1990 and 2007
 - We find a reduction in commuting costs of 4% at the 25th percentile, 12% at the median, and 21% at the 75 percentile

- Associated welfare changes:

<table>
<thead>
<tr>
<th>Change in Commuting Costs</th>
<th>Decrease by p75</th>
<th>Decrease by p50</th>
<th>Decrease by p25</th>
<th>Increase by p50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare Change</td>
<td>-21%</td>
<td>-12%</td>
<td>-4%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>6.89%</td>
<td>3.26%</td>
<td>0.89%</td>
<td>-2.33%</td>
</tr>
</tbody>
</table>

Monte, Redding, Rossi-Hansberg (Local Employment Elasticities) October 2017 39 / 42

Changes in Commuting Costs

- Employment response of reductions in commuting cost by median change between 1990 and 2007

![Graph showing the percentage change in employment and the employment/residents ratio.](image-url)
More Exercises

- Shutting down commuting between counties
 - Large effects on the spatial distribution of economic activities
 - Areas using the commuting technology more intensively lose attractiveness
 - The welfare cost is 7.2%

- Reducing trade costs in a world with or without commuting
 - Commuting and trade are
 - complements in terms of employment
 - substitutes in terms of real income

Conclusions

- Study changes in local employment in response to local shocks
 - To do so we introduced migration and commuting into a spatial GE model

- Found that local employment elasticities are very heterogenous
 - Puts into question the external validity of empirical estimates of any single local employment elasticity

- Heterogeneity in commuting patterns important in generating the heterogeneity in employment elasticities
 - The model suggests simple controls to recover such heterogeneity
 - Underscores the importance of GE effects
 - Commuting links are empirically very important

- Emphasize the role of commuting to determine
 - the spatial distribution of economic activity
 - the consequences of reduction in trade costs