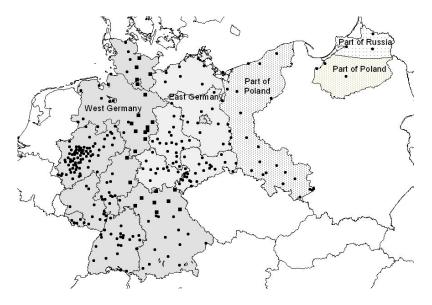
The Costs of Remoteness: Evidence from German Division and Reunification

Stephen J. Redding Princeton University, NBER and CEPR Daniel M. Sturm London School of Economics and CEPR


Motivation

- What determines the spatial distribution of economic activity?
- There are several competing explanations:
 - Institutions
 - Natural advantage
 - Culture
 - Market access
- Very difficult to empirically disentangle the effects of these factors

This Paper

- We exploit German division and reunification as a natural experiment to provide evidence for the importance of market access
- Key Idea: Division and Reunification exogenously changed the relative market access of West German cities

German Pre-war Boundaries

Plan of the Presentation

- **1** Sketch of the theoretical model
- 2 Empirical strategy
- 3 Basic results
- ④ Further evidence
- **5** Conclusion

Theoretical Model I

- We consider a standard new economic geography model based on Helpman (1998)
- There are *N* locations (here cities) which are endowed with an immobile resource (housing)
- Consumer
 - Spend a share μ of their income on manufacturing varieties and the remaining income on the immobile resource
 - Have CES preferences with an elasticity of substitution σ over manufacturing varieties
 - Inelastically supply one unit of labor

Theoretical Model II

- Manufacturing firms have IRS, use labor as the only input and are monopolistically competitive
- Manufacturing varieties are subject to iceberg transport costs T, which are in turn a function of distance $(T_{ij} = dist_{ij}^{\phi})$
- In the long-run population is perfectly mobile across locations and migration equalizes real wages

Calibration

- We use central values from the existing literature for the three key parameters of the model (σ = 4, μ = 2/3, and φ = 1/3)
- We calibrate the stock of the immobile resource in each city so that the 1939 distribution of population across cities in pre-war Germany is the (unique) equilibrium of the model
- We simulate the division of Germany and allow the population of the West German cities to adjust to this exogenous shock

Simulate Division I

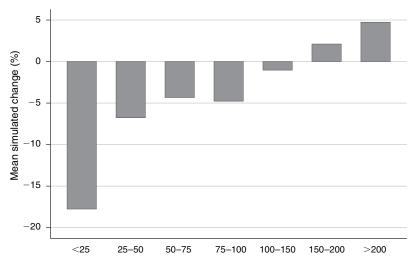


FIGURE 1. MEAN SIMULATED CHANGE IN WEST GERMAN CITY POPULATION

Simulate Division II

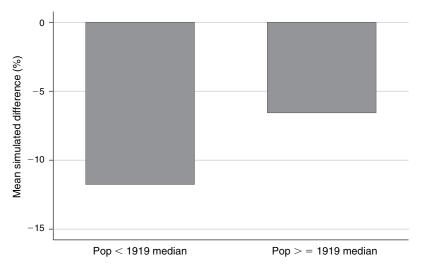


FIGURE 2. DIFFERENCES IN MEAN SIMULATED POPULATION CHANGES

Data

- We focus on a sample of West German cities which had at least 20000 inhabitants in 1919
- We aggregate cities that merge during the sample period
- Observations:
 - Pre-war: 1919, 1925, 1933, 1939
 - Division: 1950, 1960, 1970, 1980, 1988
 - Reunification: 1992, 2002

Basic Empirical Strategy

- Difference-in-Differences Estimation:
 - Compare population growth in West German cities close to the East-West border with other West German cities both before and after division
- Baseline Specification

 $Popgrowth_{ct} = \beta Border_c + \gamma (Border_c \times Division_t) + d_t + \epsilon_{ct}$

Border Treatment I

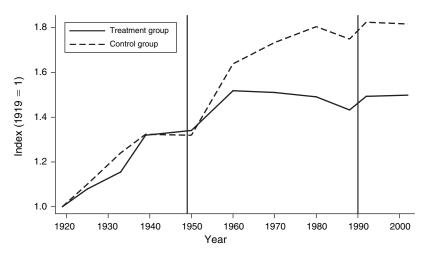


FIGURE 3. INDICES OF TREATMENT AND CONTROL CITY POPULATION

Border Treatment II

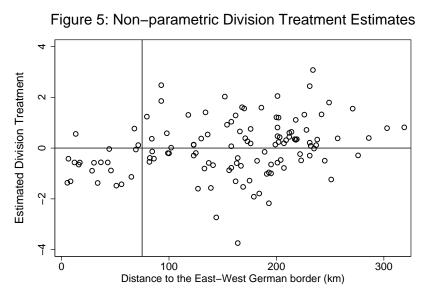


FIGURE 4. DIFFERENCE IN POPULATION INDICES, TREATMENT-CONTROL

Estimated Treatment

	Population growth				
	(1)	(2)	(3)	(4)	(5)
Border \times division	-0.746*** (0.182)			-1.097*** (0.260)	-0.384 (0.252)
Border \times year 1950–60		-1.249*** (0.348)			
Border $ imes$ year 1960–70		-0.699** (0.283)			
Border $ imes$ year 1970–80		-0.640* (0.355)			
Border \times year 1980–88		-0.397*** (0.147)			
Border 0–25km \times division			-0.702*** (0.257)		
Border 25–50km \times division			-0.783*** (0.189)		
Border 50–75km $ imes$ division			-0.620* (0.374)		
Border 75–100km \times division			0.399 (0.341)		
Border 0–25km			-0.110 (0.185)		
Border 25-50km			0.144 (0.170)		
Border 50–75km			0.289 (0.272)		
Border 75–100km			-0.299* (0.160)		
Border	0.129 (0.139)	0.129 (0.139)		0.233 (0.215)	-0.009 (0.148)
Year effects	Yes	Yes	Yes	Yes	Yes
City sample	All cities	All cities	All cities	Small cities	Large cities
Observations	833	833	833	420	413
R^2	0.21	0.21	0.21	0.23	0.30

Non-parametric Estimates

Is it Really Loss of Market Access?

- The decline of the cities along the East-West border is consistent with our model
- There is no simple explanation for the decline in terms of institutions, endowments or culture
- However, there are other possible explanations for the decline:
 - Differences in industrial structure
 - Differences in war-related disruption
 - Western Economic Integration
 - Fear of further armed conflict

Quantitative Analysis of the Model

- Can the model not only qualitatively, but also quantitatively account for the decline of the cites along the East-West border?
- To compare moments in the simulation and the data, we undertake a grid search over 21 values of each parameter:
 - Elasticity of substitution (σ) from 2.5 to 6.5
 - Share of tradeables in expenditure (μ) from 0.65 to 0.85
 - Distance elasticity of transport costs (ϕ) from 0.10 to 1.10

Identification

- We first show that the relative decline of the East-West border cities is a well-behaved function of two relationships:
 - The strength of agglomeration and dispersion forces: $\sigma(1-\mu)$
 - The coefficient on distance: $(1 \sigma)\phi$
- We pin down values for $\sigma(1 \mu)$ and $(1 \sigma)\phi$ by comparing the predictions of the model with our two key empirical findings:
 - The relative decline of the East-West border cities
 - The more pronounced relative decline of smaller cities

Identification

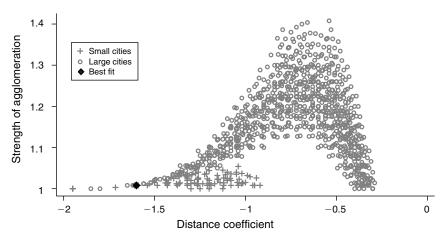


FIGURE 5. SIMULATED DIVISION TREATMENTS

Simulated and Estimated Treatments

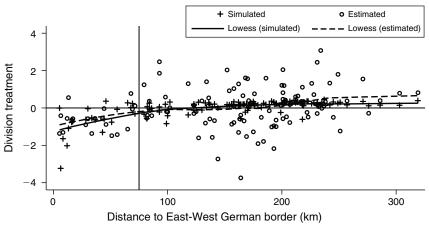


FIGURE 6. SIMULATED AND ESTIMATED DIVISION TREATMENTS

City Structure

- Maybe the cities along the East-West border declined because they were specialized in industries that declined after the war
- To control for this possibility we match each treatment city to a control city that is as similar as possible in terms of observed characteristics

Matching

	Population growth				
	(1)	(2)	(3)	(4)	
Border $ imes$ division	-0.921*** (0.218)	-1.000*** (0.253)	-0.888*** (0.247)	-0.782*** (0.261)	
Border	0.309* (0.153)	0.338** (0.156)	0.082 (0.167)	0.061 (0.194)	
Year effects	Yes	Yes	Yes	Yes	
Matching on	Population	Total employment	Employment in 28 sectors	Employment in 28 sectors and geography	
Observations	280	280	280	280	
R^2	0.29	0.26	0.38	0.29	

TABLE 4—MATCHING

War-related Disruption

- Could differences in destruction or refugee flows have affected cities post-war growth performance?
- To control for this possibility we include measures of the degree of war-related disruption in the regression and allow their effect to vary over time

War-related Disruption

	Population growth		
	(1)	(2)	(3)
Border $ imes$ division	-0.737***	-0.656***	-0.678***
	(0.182)	(0.191)	(0.211)
Border	0.136	0.129	0.029
	(0.139)	(0.146)	(0.167)
War disruption \times year 1919–25	-0.014	-0.004	0.004
	(0.011)	(0.006)	(0.020)
War disruption \times year 1925–33	0.019	0.006	-0.018
	(0.017)	(0.007)	(0.019)
War disruption $ imes$ year 1933–39	-0.001	0.004	0.064**
	(0.023)	(0.009)	(0.028)
War disruption $ imes$ year 1950–60	0.073***	0.033***	-0.056**
	(0.015)	(0.008)	(0.026)
War disruption $ imes$ year 1960–70	0.012	0.009	-0.006
	(0.017)	(0.007)	(0.026)
War disruption $ imes$ year 1970–80	-0.014	0.004	0.062*
	(0.025)	(0.012)	(0.034)
War disruption $ imes$ year 1980–88	0.007	0.002	0.009
	(0.013)	(0.006)	(0.020)
Year effects	Yes	Yes	Yes
War disruption measure	Rubble	Dwellings	Refugees
Observations	777	756	833
R^2	0.24	0.24	0.24

TABLE 5—CONTROLLING FOR WAR DISRUPTION

Western Integration

- West Germany experienced considerable economic integration with Western Europe in the post-war period
- Can Western integration (at least partly) explain the relative decline of the cities along the East-West border?

Western Integration

	Population growth	
	(1)	(2)
Border \times division	-0.730*** (0.204)	
Border	0.045 (0.151)	
Western border \times division	0.032 (0.226)	
Western border	-0.162 (0.152)	
Border 0–25km \times division		-0.675** (0.297)
Border 25–50km \times division		-0.756*** (0.240)
Border 50–75km \times division		-0.593 (0.403)
Border 75–100km \times division		0.426 (0.372)
Western border 0–25km \times division		0.421 (0.383)
Western border 25–50km \times division		0.488* (0.289)
Western border 50–75km \times division		-0.375 (0.338)
Western border 75–100km \times division		-0.140 (0.351)
Border distance grid cells		Yes
Western border distance grid cells		Yes
Year effects	Yes	Yes
Observations	833	833
R ²	0.21	0.23

TABLE 6-CONTROLLING FOR WESTERN ECONOMIC INTEGRATION

Fear of Further Armed Conflict

- Several pieces of evidence suggest that fear of a further armed conflict cannot explain the decline of the East-West border cities:
 - Difficult to square with the larger decline of small cities and our quantitative analysis
 - There is no evidence of a negative effect of proximity to the East-West border in centrally planned East Germany
 - There is no evidence of stronger treatment effects close to strategic points along the border ("Fulda Gap")
 - Nuclear deterrence made a small scale war very unlikely
 - No evidence that another war was an everyday concern

Reunification

- Do we observe a reversal of fortune in the cities along the East-West border after reunification?
- There are good reasons to be sceptical:
 - The size and income of the area added is much smaller compared to division
 - Heavy subsidies for the border cities are rapidly discontinued
 - While division abruptly severed all links between East and West Germany, the re-creation of such links after reunification is likely to take time

Reunification

	Population growth				
	(1)	(2)	(3)	(4)	
Border $ imes$ division	-0.477*** (0.156)	-0.127 (0.128)	-0.223 (0.202)	-0.007 (0.136)	
Border	-0.141 (0.106)	-0.141 (0.106)	-0.236 (0.168)	-0.064 (0.108)	
Year effects	Yes	Yes	Yes	Yes	
City sample	All	All	Small cities	Large cities	
Year sample	1950–1988 & 1992–2002	1980–1988 & 1992–2002	1980–1988 & 1992–2002	1980–1988 & 1992–2002	
Observations	595	238	120	118	
R^2	0.30	0.15	0.21	0.14	

TABLE 7—THE IMPACT OF REUNIFICATION

Summary

- West German cities close to the East-West border substantially decline after division relative to other West German cities
- The evidence suggests that this decline can be largely explained by the change in market access of these cities
- While institutions and natural advantage are certainly also important, market access plays a substantial role in determining economic prosperity

Thank You