
Online Appendix for “The Spatial Distribution of Economic
Activities Within Cities ” (Not for Publication)

Stephen J. Redding
∗

Princeton University, NBER and CEPR

January 2023

A Introduction

In this online appendix, we present a more mathematical treatment of the baseline quantitative

urban model discussed in the paper.

B Baseline Quantitative Urban Model

We begin by developing a baseline quantitative urban model of internal city structure based on

Ahlfeldt, Redding, Sturm and Wolf (2015). This model incorporates agglomeration and disper-

sion forces and an arbitrary number of heterogeneous locations within a city, while remaining

tractable and amenable to analytical analysis.

We consider a city embedded within a wider economy. The city consists of a set of discrete

locations or blocks, which are indexed by i = 1, ..., S. Each block has an e�ective supply of �oor

space Hi. Floor space can be used commercially or residentially, and we denote the endogenous

fractions of �oor space allocated to commercial and residential use by θi and 1− θi, respectively.

The city is populated by an endogenous measure of L̄ workers, who are perfectly mobile

within the city and the larger economy, which provides a reservation level of utility Ū . Workers

decide whether or not to move to the city before observing idiosyncratic utility shocks for each

possible pair of residence and employment blocks within the city. If a worker decides to move to

the city, she observes these realizations for idiosyncratic utility, and picks the pair of residence

and employment blocks within the city that maximizes her utility. Firms produce a single �nal

good, which is costlessly traded within the city and the larger economy, and is chosen as the

numeraire (pi = p = 1). Markets are perfectly competitive.

Blocks di�er in terms of their �nal goods productivity, residential amenities, supply of �oor

space and access to the transport network, which determines travel times between any two blocks

in the city. Productivity depends on production externalities, which are determined by the sur-

rounding density of workers, and production fundamentals, such as topography and proximity
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to natural supplies of water. Amenities depend on residential externalities, which are determined

by the surrounding density of residents, and residential fundamentals, such as access to forests

and lakes. Congestion forces are governed by the elasticity of supply of �oor with respect to its

price and commuting costs that increase with travel time.

The analysis remains tractable despite the large number of asymmetric locations, because

of the introduction of a stochastic formulation of workers commuting decisions. In the base-

line model, workers are ex ante homogenous but ex post heterogeneous, because their draw an

idiosyncratic preference shock for each pair of workplace and residence locations.

B1 Preferences

Worker preferences are de�ned over consumption of a single tradeable �nal good and residential

�oor space. We assume that these preferences take the Cobb-Douglas form, such that the indirect

utility for a worker ω residing in n and working in i is:
1

Uni (ω) =
Bnbni(ω)wi
κniPα

nQ
1−α
n

, 0 < α < 1, (B.1)

where we suppress the time subscript; Pn is the price of the tradeable �nal good;Qn is the price of

residential �oor space; wi is the wage; κni = eκτni ∈ [1,∞) is an iceberg commuting cost that is

increasing in the bilateral trade time between residence and workplace (τni) with elasticity ρ > 0;

Bn captures residential amenities that are common across all workers and could be endogenous

to the surrounding concentration of economic activity through agglomeration forces; and bni(ω)

is an idiosyncratic amenity draw that captures all the idiosyncratic factors that can cause an

individual to live and work in particular locations within the city.

We assume that idiosyncratic amenities (bni(ω)) are drawn from an independent extreme

value (Fréchet) distribution for each residence-workplace pair and worker:

G(b) = e−b
−ε
, ε > 1, (B.2)

where we normalize the Fréchet scale parameter in equation (B.2) to one, because it enters the

worker choice probabilities isomorphically to common amenitiesBn in equation (B.1); the smaller

the Fréchet shape parameter ε, the greater the heterogeneity in idiosyncratic amenities, and the

less sensitive are worker location decisions to economic variables.
2

1
For empirical evidence using U.S. data in support of the constant housing expenditure share implied by the

Cobb-Douglas functional form, see Davis and Ortalo-Magne (2011).

2
Modeling idiosyncratic preferences using the extreme value distribution has a long tradition in transportation

economics, dating back to McFadden (1974). A related literature models workers’ migration decisions using extreme

value distributed preferences, as in Grogger and Hanson (2011) and Kennan and Walker (2011).
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Using the properties of for extreme value distributions, the probability that a worker chooses

to reside in n and work in i is given by:

λni =
Lni
LN

=
(Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (B.3)

where Lni is the measure of commuters from n to i; LN is the measure of workers that choose

the city; and the full derivation is reported in Section C of this online appendix.

A �rst key implication of the extreme value speci�cation for idiosyncratic amenities is that bi-

lateral commuting �ows in equation (B.3) satisfy a gravity equation. Therefore, the probability of

commuting between residence n and workplace i depends on the characteristics of that residence

n, the attributes of that workplace i and bilateral commuting costs and amenities (“bilateral resis-

tance”). Furthermore, this probability also depends on the characteristics of all residences k, all

workplaces ` and all bilateral commuting costs (“multilateral resistance”). A large reduced-form

literature in urban economics provides empirical evidence that the gravity equation provides a

good approximation to commuting �ows, as reviewed in Fortheringham and O’Kelly (1989) and

McDonald and McMillen (2010).

Summing across workplaces i in equation (B.3), we obtain the probability that a worker

chooses to live in residence n (λRn = Rn/L̄):

λRn =
Rn

L̄
=

∑
i∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (B.4)

where Rn is the measure of residents that choose to live in location n and L̄ is the measure of

residents that choose to live somewhere in the city.

Similarly, summing across residences n in equation (B.3), we obtain the probability that a

worker chooses workplace i (λLi = Li/L̄):

λLi =
Li
L̄

=

∑
n∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (B.5)

where Li is the measure of residents that choose to work in location i and L̄ is de�ned above.

A second key implication of the extreme value speci�cation for idiosyncratic amenities is

that each location faces an upward-sloping curve for labor. Other things equal, in order to attract

additional workers (higher λLi ), a location must o�er a higher wage (wi) relative to other locations

(wk) in equation (B.5). Although individual workers experience idiosyncratic random preference

draws for locations, with a continuous measure of workers, there is no uncertainty in the supply

of workers to each location.
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We can also evaluate the probability that a worker commutes to location i conditional on

having chosen to live in location n, which takes the following form:

λRni|n =
λni
λRn

=
(wi/κni)

ε∑
`∈N (w`/κn`)

ε . (B.6)

Commuter market clearing requires that the measure of workers employed in each location

i (Li) equals the sum across all locations n of their measures of residents (Rn) times their condi-

tional probabilities of commuting to i (λRni|n):

Li =
∑
n∈N

λRni|nRn (B.7)

=
∑
n∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εRn.

Expected worker income conditional on living in location n equals the wages in all possible

workplace locations weighted by the probabilities of commuting to those locations conditional

on living in n:

v̄n = E [w|n] (B.8)

=
∑
i∈N

λRni|nwi,

=
∑
i∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εwi,

where E denotes the expectations operator and the expectation is taken over the distribution for

idiosyncratic amenities. Intuitively, expected worker income is high in locations that have low

commuting costs (low κni) to high-wage employment locations.

A third key implication of the extreme value speci�cation is that expected utility is equalized

across all pairs of residences and workplaces within the city and is equal to the reservation level

of utility in the wider economy:

Ū = ϑ

[∑
k∈N

∑
`∈N

(Bkw`)
ε (κk`Pα

k Q
1−α
k

)−ε] 1
ε

, (B.9)

where the expectation is taken over the distribution for idiosyncratic amenities; ϑ ≡ Γ((ε−1)/ε);

and Γ(·) is the Gamma function.

The intuition for this second result is that bilateral commutes with attractive economic

characteristics (high workplace wages and low residence cost of living) attract additional com-

muters with lower idiosyncratic amenities, until expected utility (taking into account idiosyn-

cratic amenities) is the same across all bilateral commutes and equal to the reservation utility. A
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closely related implication is that workplaces and residences face upward-sloping supply func-

tions in real wages for workers and residents respectively (as captured in the choice probabilities

(B.3)). To obtain additional workers, a location must pay higher wages to attract workers with

lower realizations for idiosyncratic amenities for that workplace. Similarly, to acquire additional

residents, a location must o�er a lower cost of living to entice residents with lower realization

for idiosyncratic amenities for that residence.

B2 Production

Production of the tradeable �nal good occurs under conditions of perfect competition and con-

stant returns to scale. For simplicity, we assume that the production technology takes the Cobb-

Douglas form, so that output of the �nal good in location i (yi) is:

yi = AiL
β
i (θiHi)

1−β , 0 < β < 1, (B.10)

where Ai is �nal goods productivity; Li is employment; Hi is the supply of �oor space; and θi is

the fraction of �oor space used commercially.

Firms choose their location of production and their inputs of workers and commercial �oor

space to maximize pro�ts, taking as given �nal goods productivity Ai, the distribution of id-

iosyncratic utility, goods and factor prices, and the location decisions of other �rms and workers.

Pro�t maximization implies that equilibrium employment in location i is increasing in produc-

tivity (Ai), decreasing in the wage (wi), and increasing in the supply of commercial �oor space

(θiHi):

Li =

(
βAi
wi

) 1
1−β

θiHi, (B.11)

where the equilibrium wage is determined by the requirement that the demand for workers in

each employment location (B.11) equals the supply of workers choosing to commute to that lo-

cation (B.7).

From the �rst-order conditions for pro�t maximization and zero pro�ts, equilibrium commer-

cial �oor prices (qi) in each block with positive employment must satisfy the following zero-pro�t

condition:

qi = (1− β)

(
β

wi

) β
1−β

A
1

1−β
i . (B.12)

Intuitively, �rms in blocks with higher productivity (Ai) and/or lower wages (wi) are able to pay

higher commercial �oor prices and still make zero pro�ts.
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B3 Land Market Clearing

Land market equilibrium requires no-arbitrage between the commercial and residential use of

�oor space after the tax equivalent of land use regulations. The share of �oor space used com-

mercially (θi) is:

θi = 1 if qi > ξiQi,
θi ∈ [0, 1] if qi = ξiQi,
θi = 0 if qi < ξiQi,

(B.13)

where ξi ≥ 1 captures one plus the tax equivalent of land use regulations that restrict commercial

land use relative to residential land use. We allow this wedge between commercial and residential

�oor prices to vary across blocks.

We follow the standard approach in the urban literature of assuming that �oor space Hi is

supplied by a competitive construction sector that uses landKi and capitalMi as inputs. Follow-

ing Combes, Duranton and Gobillon (2018) and Epple, Gordon and Sieg (2010), we assume that

the production function takes the Cobb-Douglas form:

Hi = Mµ
i K

1−µ
i . (B.14)

Therefore, pro�t maximization and zero pro�ts in the construction sector implies that the

price for commercial �oor space in blocks with positive commercial land use satis�es:

qi = µ−µ(1− µ)−(1−µ)PµR1−µ
i .

where P is the common price for capital across all blocks, and Ri is the price for land. Since

the price for capital is the same across all locations, the relationships between the quantities and

prices of �oor space and land can be summarized as:

Hi = ϕiK
1−µ
i (B.15)

qi = χR1−µ
i ,

where we refer to ϕi = Mµ
i as the density of development (since it determines the relationship

between �oor space and land area) and χ is a constant.

Residential land market clearing implies that the demand for residential �oor space equals

the supply of �oor space allocated to residential use in each location:

(1− α)
v̄iRi

Qi

= (1− θi)Hi. (B.16)

Commercial land market clearing requires that the demand for commercial �oor space equals

the supply of �oor space allocated to commercial use in each location: θiHi. Using the �rst-order
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conditions for pro�t maximization, this commercial land market clearing condition can be written

as follows:

1− β
β

wiLi
qi

= θiHi. (B.17)

Finally, we require that the overall land market clears such that the demand for residential �oor

space (B.16) plus the demand for commercial �oor space (B.17) equals the total supply of �oor

space from equation (B.15):

(1− θi)Hi + θiHi = Hi = ϕiK
1−µ
i . (B.18)

B4 Agglomeration Forces

The attractiveness of a location for residence and production can depend both on exogenous

natural advantages (locational fundamentals) and endogenous agglomeration forces.

Production Agglomeration Forces We allow �nal goods productivity to depend on produc-

tion fundamentals (ai) and production externalities (Ai). Production fundamentals capture fea-

tures of physical geography that make a location more or less productive independently of the

surrounding density of economic activity (for example access to natural water). Production exter-

nalities impose structure on how the productivity of a given block is a�ected by the characteristics

of other blocks. Speci�cally, we follow the standard approach in urban economics of modeling

these externalities as depending on the travel-time weighted sum of workplace employment den-

sity in surrounding blocks:

Ai = aiAηL

i , Ai ≡
∑
n∈N

e−δ
Lτin

(
Ln
Kn

)
, (B.19)

where Ln/Kn is workplace employment density per unit of land area; production externalities

decline with travel time (τin) through the iceberg factor e−δ
Lτin ∈ (0, 1]; δL determines their rate

of spatial decay; and ηL controls their relative importance in determining overall productivity.

Residential Agglomeration Forces We model the externalities in workers’ residential

choices analogously to the externalities in �rms’ production choices. We allow residential ameni-

ties to depend on residential fundamentals (bi) and residential externalities (Bi). Residential fun-

damentals capture features of physical geography that make a location a more or less attractive

place to live independently of the surrounding density of economic activity (for example green

areas). Residential externalities again impose structure on how the amenities in a given block are

a�ected by the characteristics of other blocks. Speci�cally, we adopt a symmetric speci�cation as
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for production externalities, and model residential externalities as depending on the travel-time

weighted sum of residential employment density in surrounding blocks:

Bi = biBη
R

i , Bi ≡
∑
n∈N

e−δ
Rτin

(
Rn

Kn

)
, (B.20)

where Rn/Kn is residence employment density per unit of land area; residential externalities

decline with travel time (τin) through the iceberg factor e−δ
Rτin ∈ (0, 1]; δR determines their rate

of spatial decay; and ηR controls their relative importance in overall residential amenities. The

parameter ηR captures the net e�ect of residence employment density on amenities, including

negative spillovers such as air pollution and crime, and positive externalities through the avail-

ability of urban amenities.

B5 General Equilibrium

Given the model’s parameters {α, β, µ, ε, ρ, ηL, δL, ηR, δR}, the reservation level of utility in

the wider economy Ū and exogenous location characteristics {τni, ai, bi, ϕi, Ki, ξi}, the general

equilibrium of the model is referenced by the following seven endogenous variables in each lo-

cation { λLi , λRi , Qi, qi, wi, θi, Hi} and total city population L̄. These eight components of the

equilibrium vector are determined by the following system of eight equations: the residential

choice probability (B.4), the workplace choice probability (B.5), population mobility (B.9), pro�t

maximization and zero pro�ts (B.12), no-arbitrage between alternative uses of land (B.13), res-

idential land market clearing (B.16), commercial land market clearing (B.17), and overall land

market clearing (B.18), where productivity and amenities satisfy (B.19) and (B.20).

In general, there can be a unique equilibrium or multiple equilibria in the model, depend-

ing on the strength of agglomeration and dispersion forces. Ahlfeldt, Redding, Sturm and Wolf

(2015) establish the existence of a unique equilibrium in the absence of agglomeration forces.

Allen, Arkolakis and Li (2021) provide conditions for the existence of a unique equilibrium in the

presence of agglomeration forces, which require that these agglomeration forces are su�ciently

weak relative to the dispersion forces in the model.

B6 Residential Choices

We now use the characterization of commuting choices in Section B1 of this online appendix to

derive the partial equilibrium representation of residential choices in Figure 4a in the paper.

In equilibrium, the expected utility for each residence and workplace pair is equal to the

reservation level of utility in the wider economy. Using expected utility (B.9) and the residential

choice probabilities (B.4), we can write this population mobility condition for each location n in
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terms of its own characteristics and the probability of residing in that location:

Ū = ϑ

[∑
`∈N (Bnw`)

ε (κn`P
α
nQ

1−α
n )

−ε

λRn

] 1
ε

, (B.21)

which can be further re-written as:

Ū =
ϑL̄

1
εBnRMAn

Pα
nQ

1−α
n (Rn)

1
ε

, RMAn ≡

[∑
i∈N

(wi/κni)
ε

] 1
ε

, (B.22)

where we have de�nedRMAn is a measure of residents commuting market access to employment

opportunities in surrounding locations.

Using the fact that the �nal good is costlessly traded and chosen as our numeraire (pn =

1), and using the residential land market clearing condition (B.16), we can further re-write this

expression to obtain the population mobility condition shown in Figure 4a in the paper:

Ū = (Rn)−(1−α+ 1
ε ) ϑL̄

1
εBnRMAn

(
(1− θn)Hn

v̄n

)1−α

. (B.23)

The left-hand side of this population mobility condition (B.23) is the reservation level of utility

in the wider economy (Ū ), which is shown as the horizontal line in the �gure. The right-hand

side of this population mobility condition is the expected utility of living in location n, which is

shown as the downward-sloping line in the �gure. Given the supply of residential �oor space ((1−
θn)Hn) and wages (which determine residents commuting market access (RMAn) and residents’

expected income (v̄n)), an increase in the number of residents in a given location bids up the price

of �oor space and brings residents with lower idiosyncratic realizations for preferences for that

location, thereby reducing expected utility for that location.

The equilibrium number of residents (Rn) is determined by the intersection of the two lines,

at which the expected utility of living in location n is equal to the expected utility in the wider

economy. Shifts in the supply of residential �oor space ((1 − θn)Hn) and wages (and hence

residents commuting market access (RMAn) and residents expected income (v̄n)) lead to shifts

in the downward-sloping line for the expected utility of living in location n, and hence shifts in

the number of residents. In general equilibrium, both the supply of residential �oor space and

wages are endogenously determined, as characterized above.

B7 Labor Demand and Supply

We now use the characterization of commuting choices and production in Sections B1 and B2 of

this online appendix to derive the partial equilibrium representation of labor supply and demand

in Figure 4b in the paper.
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In equilibrium, the demand for labor in each location must equal the supply of labor from

workers choosing to commute to that location. We derive the downward-sloping labor demand

curve in Figure 4b from the production technology (B.10). From pro�t maximization in com-

petitive markets subject to this production technology, the requirement that the value marginal

product of labor equals the wage (wn) in location n implies:

wn = (1− β)An (θnHn)β L−βn . (B.24)

Other things equal, an increase in the number of workers (Ln) implies a decline in the value

marginal product of labor on the right-hand side of this equation, and hence a decline in the wage

(wn), as shown in the downward-sloping labor demand curve. Changes in productivity (An) and

the supply of commercial �oor space (θnHn) shift this labor demand curve and are endogenously

determined in general equilibrium.

We derive the upward-sloping labor supply in Figure 4b from workers commuting choices.

Using the workplace choice probability (B.5), expected utility (B.9) and our choice of numeraire,

we can write the number of workers choosing to commute to location n as follows:

Ln = L̄

(
Ū

δ

)−ε(
wn

WMAn

)ε
, WMAn =

[∑
k∈N

Bε
k

(
κknQ

1−α
k

)−ε]− 1
ε

, (B.25)

where WMAn is a measure of workplace market access, which summarizes the access of work-

place n to commuters from surrounding locations.

Other things equal, a location must o�er a higher wage (wn) in order to attract workers with

lower idiosyncratic preferences for that location, and hence increase labor supply (Ln) on the

right-hand side of this equation, as shown in the upward-sloping labor supply curve. Changes in

total city population (L̄), the reservation utility (Ū ), amenities (Bk), commuting costs (κnk) and

prices of residential �oor space (Qn) shift this labor supply curve. All of these variables, except

for commuting costs, are endogenously determined in general equilibrium.

C Derivation of Choice Probabilities and Expected Utility

In this section of the online appendix, we provide the derivation of the worker commuting prob-

abilities and expected utility in the baseline quantitative urban model.

C1 Distribution of Utility

From the indirect utility function in equation (B.1), we have the following monotonic relationship

between idiosyncratic amenities (bni(ω)) and utility (Uni(ω)):

bni(ω) =
Uni (ω)κniP

α
nQ

1−α
n

Bnwi
. (C.1)
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We assume that idiosyncratic amenities (bni(ω)) are drawn from an independent extreme value

(Fréchet) distribution for each residence-workplace pair and each worker:

Gni(b) = e−b
−ε
, ε > 1, (C.2)

where we normalize the Fréchet scale parameter in equation (C.2) to one, because it enters worker

choice probabilities isomorphically to the common bilateral amenities parameter Bn.

Together equations (C.1) and (C.2) imply that the distribution of utility for residence n and

workplace i is:

Gni(u) = e−Ψniu
−ε
, Ψni ≡ (Bnwi)

ε (κniPα
nQ

1−α
n

)−ε
. (C.3)

From all possible pairs of residence and workplace, each worker chooses the bilateral commute

that o�ers the maximum utility. Since the maximum of a sequence of Fréchet distributed ran-

dom variables is itself Fréchet distributed, the distribution of utility across all possible pairs of

residence and workplace is:

1−G(u) = 1−
∏
k∈N

∏
`∈N

e−Ψk`u
−ε
,

where the left-hand side is the probability that a worker has a utility greater than u, and the right-

hand side is one minus the probability that the worker has a utility less than u for all possible

pairs of residence and employment locations. Therefore we have:

G(u) = e−Ψu−ε , Ψ =
∑
k∈N

∑
`∈N

Ψk`. (C.4)

Given this Fréchet distribution for utility, expected utility is:

E [u] =

∫ ∞
0

εΨu−εe−Ψu−εdu. (C.5)

Now de�ne the following change of variables:

y = Ψu−ε, dy = −εΨu−(ε+1)du. (C.6)

Using this change of variables, expected utility can be written as:

E [u] =

∫ ∞
0

Ψ1/εy−1/εe−ydy, (C.7)

which can be in turn written as:

E [u] = ϑΨ1/ε, ϑ = Γ

(
ε− 1

ε

)
, (C.8)

where Γ(·) is the Gamma function. Therefore we obtain the following expression for expected

utility:

E [u] = ϑΨ1/ε = ϑ

[∑
k∈N

∑
`∈N

(Bkw`)
ε (κk`Pα

k Q
1−α
k

)−ε]1/ε

. (C.9)
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C2 Residence and Workplace Choices

Using the distribution of utility for pairs of residence and employment locations, the probability

that a worker chooses the bilateral commute from n to i out of all possible bilateral commutes is:

λni = Pr [uni ≥ max{uk`};∀k, `] , (C.10)

=

∫ ∞
0

∏
6̀=i

Gn`(u)

[∏
k 6=n

∏
`∈N

Gk`(u)

]
gni(u)du,

=

∫ ∞
0

∏
k∈N

∏
`∈N

εΨniu
−(ε+1)e−Ψk`u

−ε
du,

=

∫ ∞
0

εΨniu
−(ε+1)e−Ψu−εdu.

Note that:

d

du

[
1

Ψ
e−Ψu−ε

]
= εu−(ε+1)e−Ψu−ε . (C.11)

Using this result to evaluate the integral above, the probability that the worker chooses to live in

location n and work in location i is:

λni =
Lni
L̄

=
Ψni

Ψ
=

(Bnwi)
ε (κniP

α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (C.12)

where Lni is the measure of commuters from residence n to workplace i; L̄ is the overall measure

of workers that choose to live in the city.

Summing across workplaces i in equation (C.12), we obtain the probability that a worker

ichooses to live in residence n (Rn/L̄):

λRn =
Rn

L̄
=

∑
i∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε . (C.13)

Similarly, summing across residences n in equation (C.12), we obtain the probability that a

worker chooses workplace i (Li/L̄):

λLi =
Li
L̄

=

∑
n∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε . (C.14)

For the measure of workers in location i (Li), we can evaluate the conditional probability that

they commute from location n (conditional on having chosen to work in location i):

λLni|i =
λni
λLi

= Pr [uni ≥ max{uri};∀r] , (C.15)

=

∫ ∞
0

∏
r 6=n

Gri(u)gni(u)du,

=

∫ ∞
0

e−ΨLi u
−ε
εΨniu

−(ε+1)du.
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where

ΨL
i ≡

∑
k∈N

(Bkwi)
ε (κkiPα

k Q
1−α
k

)−ε
. (C.16)

Using the result (C.11) to evaluate the integral in equation (C.15), the probability that a worker

commutes from residence n to workplace i conditional on having chosen to work in location i is:

λLni|i =
λni
λLi

=
(Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N (Bkwi)

ε (κkiPα
k Q

1−α
k

)−ε . (C.17)

which further simpli�es to:

λLni|i =
Bε
n (κniP

α
nQ

1−α
n )

−ε∑
k∈N B

ε
k

(
κkiPα

k Q
1−α
k

)−ε . (C.18)

For the measure of residents of location n (Rn), we can evaluate the conditional probability that

they commute to location i (conditional on having chosen to live in location n):

λRni|n =
λni
λRn

= Pr [uni ≥ max{un`};∀`] , (C.19)

=

∫ ∞
0

∏
`6=i

Gn`(u)gni(u)du,

=

∫ ∞
0

e−ΨRnu
−ε
εΨniu

−(ε+1)du,

where

ΨR
n ≡

∑
`∈N

(Bnw`)
ε (κn`Pα

nQ
1−α
n

)−ε
. (C.20)

Using the result (C.11) to evaluate the integral in equation (C.19), the probability that a worker

commutes to location i conditional on having chosen to live in location n is:

λRni|n =
λni
λRn

=
(Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
`∈N (Bnw`)

ε (κn`Pα
nQ

1−α
n )−ε

, (C.21)

which further simpli�es to:

λRni|n =
(wi/κni)

ε∑
`∈N (w`/κn`)

ε . (C.22)

Commuter market clearing requires that the measure of workers employed in each location

i (Li) equals the sum across all locations n of their measures of residents (Rn) times their condi-

tional probabilities of commuting to i (λRni|n):

Li =
∑
n∈N

λRni|nRn (C.23)

=
∑
n∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εRn,

13



where, since there is a continuous measure of workers residing in each location, there is no

uncertainty in the supply of workers to each employment location.

Expected worker income conditional on living in location n equals the wages in all possible

workplace locations weighted by the probabilities of commuting to those locations conditional

on living in n:

v̄n = E [w|n] (C.24)

=
∑
i∈N

λRni|nwi,

=
∑
i∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εwi,

where E denotes the expectations operator and the expectation is taken over the distribution for

idiosyncratic amenities. Intuitively, expected worker income is high in locations that have low

commuting costs (low κni) to high-wage employment locations.

C3 Equalization of Expected Utility

Another implication of the Fréchet distribution of utility is that the distribution of utility condi-

tional on residing in location n and commuting to location i is the same across all bilateral pairs

of locations with positive residents and employment, and is equal to the distribution of utility for

the economy as a whole. To establish this result, note that the distribution of utility conditional

on residing in location n and commuting to location i is:

=
1

λni

∫ u

0

∏
s 6=i

Gns(u)

[∏
k 6=n

∏
`∈N

Gk`(u)

]
gni(u)du, (C.25)

=
1

λni

∫ u

0

[∏
k∈N

∏
`∈N

e−Ψk`u
−ε

]
εΨniu

−(ε+1)du,

=
Ψ

Ψni

∫ u

0

e−Ψu−εεΨniu
−(ε+1)du,

= e−Ψuε .

On the one hand, lower land prices in location n or a higher wage in location i raise the utility of

a worker with a given realization of idiosyncratic amenities b, and hence increase the expected

utility of residing in n and working in i. On the other hand, lower land prices or a higher wage

induce workers with lower realizations of idiosyncratic amenities b to reside in n and work in i,

which reduces the expected utility of residing in n and working in i. With a Fréchet distribution

of utility, these two e�ects exactly o�set one another. Pairs of residence and employment loca-

tions with more attractive characteristics attract more commuters on the extensive margin until

14



expected utility is the same across all pairs of residence and employment locations within the

economy.

An implication of this result is that expected utility conditional on choosing a residence n and

workplace i is the same across all residence-workplace pairs and equal to expected utility in the

economy as a whole in equation (C.9):

Ū = ϑΨ1/ε = ϑ

[∑
k∈N

∑
`∈N

(Bkw`)
ε (κk`Pα

k Q
1−α
k

)−ε]1/ε

. (C.26)
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