Goods Trade and Capital Investments in the Global Economy

Ernest Liu
Princeton University and NBER

Stephen J. Redding
Princeton University and NBER

Motohiro Yogo
Princeton University and NBER
This Paper

• How do goods trade and international capital investments interact?
 – How much larger / smaller are costs of Brexit / Sanctions / US - China decoupling with both goods and capital market disintegration?

• Developed a tractable many-country model for analyzing this interaction that rationalizes key features of the observed data
 – Open-economy Ramsey model with differentiated goods trade, imperfect substitutability of capital investments, and growth on transition path
 – Within-period trade in goods consistent with the observed gravity equation for bilateral trade
 – Within-period capital allocation consistent with observed gravity equation for bilateral capital holdings
 – Across-period capital accumulation through consumption-saving decisions, consistent with observed current account imbalances

• Integrated framework featuring trade, capital / flows and growth that can be taken directly to the data and used for a range of applications
 – Sufficient statistics for comparative statics in terms of observed trade and investment shares and structural parameters
This Paper

• How do goods trade and international capital investments interact?
 – How much larger / smaller are costs of Brexit / Sanctions / US - China decoupling with both goods and capital market disintegration?

• Develop a tractable many-country model for analyzing this interaction that rationalizes key features of the observed data
 – Open-economy Ramsey model with differentiated goods trade, imperfect substitutability of capital investments, and growth on transition path
 – Within-period trade in goods consistent with the observed gravity equation for bilateral trade
 – Within-period capital allocation consistent with observed gravity equation for bilateral capital holdings
 – Across-period capital accumulation through consumption-saving decisions, consistent with observed current account imbalances
This Paper

• How do goods trade and international capital investments interact?
 – How much larger / smaller are costs of Brexit / Sanctions / US - China decoupling with both goods and capital market disintegration?

• Develop a tractable many-country model for analyzing this interaction that rationalizes key features of the observed data
 – Open-economy Ramsey model with differentiated goods trade, imperfect substitutability of capital investments, and growth on transition path
 – Within-period trade in goods consistent with the observed gravity equation for bilateral trade
 – Within-period capital allocation consistent with observed gravity equation for bilateral capital holdings
 – Across-period capital accumulation through consumption-saving decisions, consistent with observed current account imbalances

• Integrated framework featuring trade, capital flows and growth that can be taken directly to the data and used for a range of applications
 – Sufficient statistics for comparative statics in terms of observed trade and investment shares and structural parameters
Main Results

1. Real wage gains from trade differ from conventional ACR sufficient statistics of domestic trade share and trade elasticity
 - Endogenous changes in capital-labor ratio
 - Dynamic welfare gains and transition dynamics
Main Results

1. Real wage gains from trade differ from conventional ACR sufficient statistics of domestic trade share and trade elasticity
 - Endogenous changes in capital-labor ratio
 - Dynamic welfare gains and transition dynamics

2. Goods trade integration stimulates capital accumulation and increases the steady-state capital-labor ratio
 - Goods trade integration reduces the consumption price index, which increases the real return to capital accumulation
Main Results

1. Real wage gains from trade differ from conventional ACR sufficient statistics of domestic trade share and trade elasticity
 - Endogenous changes in capital-labor ratio
 - Dynamic welfare gains and transition dynamics

2. Goods trade integration stimulates capital accumulation and increases the steady-state capital-labor ratio
 - Goods trade integration reduces the consumption price index, which increases the real return to capital accumulation

3. Capital market integration acts like an improvement in the efficiency of the investment technology
 - Stimulates capital accumulation and increases steady-state capital stock
Main Results

1. Real wage gains from trade differ from conventional ACR sufficient statistics of domestic trade share and trade elasticity
 - Endogenous changes in capital-labor ratio
 - Dynamic welfare gains and transition dynamics

2. Goods trade integration stimulates capital accumulation and increases the steady-state capital-labor ratio
 - Goods trade integration reduces the consumption price index, which increases the real return to capital accumulation

3. Capital market integration acts like an improvement in the efficiency of the investment technology
 - Stimulates capital accumulation and increases steady-state capital stock

4. Real wage gains from trade integration are larger for higher levels of capital market integration
 - For example, Brexit leads to a conventional static welfare loss from higher trade frictions via cross-substitution in goods markets
 - Brexit makes Britain a less attractive investment destination, because of reduced market access to the European Union
 - Welfare impact differs from comparative steady-state impact
Related Literature

• Quantitative international trade and sufficient statistics
 – Arkolakis et al. (2012), Adão et al. (2019), Baqae & Farhi (2019), Huo et al. (2019), Barthelme et al. (2019), Kleinman et al. (2020, 2021)

• International finance and international transmission of shocks

• Gravity equation in international trade

• Home bias and the gravity equation in capital investments

• Financial crises and the Great Recession
Outline

• Empirical Motivation
• Theoretical Framework
• New Implications for Trade and Welfare
• Quantitative Evidence
• Conclusions
• International Trade
 – United Nations COMTRADE
 – Bilateral international trade in goods

• International Capital Investments
 – Coordinated Portfolio Investment Survey (CPIS): equity and investment fund shares, long-term debt securities, and short-term debt securities
 – Global Debt Database (GDD): private and public debt of non-financial sector

• Country characteristics and distance
 – CEPII GEODIST database
 – Population-weighted distance between countries’ major cities
Gravity

• Fixed effects gravity equation estimation

\[\ln X_{ni} = \eta_n + \mu_i + \delta \ln \text{dist}_{ni} + u_{ni}, \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log</td>
<td>Log</td>
<td>Log</td>
<td>Log</td>
</tr>
<tr>
<td>Trade</td>
<td>2012</td>
<td>2012</td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td>Trade Capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Distance</td>
<td>-1.053</td>
<td>-0.876</td>
<td>-1.426</td>
<td>-0.930</td>
</tr>
<tr>
<td></td>
<td>(0.0844)</td>
<td>(0.0664)</td>
<td>(0.137)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Estimation</td>
<td>OLS</td>
<td>PPML</td>
<td>OLS</td>
<td>PPML</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2103</td>
<td>2112</td>
<td>2112</td>
<td>2112</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.849</td>
<td>0.827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.897</td>
<td></td>
<td>0.859</td>
<td></td>
</tr>
</tbody>
</table>

• Gravity equation provides a good fit to observed data on bilateral international trade and capital investments
Correlation between bilateral capital investments and bilateral distance after conditioning on origin and destination fixed effects.
Outline

- Empirical Motivation
- Theoretical Framework
- New Implications for Trade and Welfare
- Quantitative Evidence
- Conclusions
Model Setup

- Economy consists of many countries $n, i \in \{1, \ldots, N\}$
- Time is discrete and indexed by $t \in \{0, \ldots, \infty\}$
- Each country supplies a differentiated good that is produced using labor and capital under constant returns to scale
- Markets are perfectly competitive
- Representative agent in each country endowed with labor ℓ_n
- At the beginning period t, representative agent in each country inherits a stock of wealth k_{nt} that is measured (and can be accumulated) in terms of its own consumption bundle
- Wealth is an aggregation of investments across countries
- Investments in each country are subject to idiosyncratic productivities and financial frictions
- Beginning period t: choose investment allocation across countries
- Beginning period $t + 1$: returns are realized and depreciation occurs, and investment again allocated across countries
Intertemporal Preferences

• Each country n is endowed with mass ℓ_n of representative consumers with preferences

$$\max_{\{c_{nt}, k_{nit}\}} \sum_{s=0}^{\infty} \beta^{t+s} \left(\prod_{u=0}^{s} \phi_{nt+u} \right) \frac{c_{nt+s}^{1-1/\psi}}{1 - 1/\psi}$$

$$p_{nt} c_{nt} + p_{nt} \sum_{i=1}^{N} k_{nit+1} = (p_{nt} (1 - \delta) + \nu_{nt}) \sum_{i=1}^{N} k_{nit} + \omega_{nt}\ell_{n}$$

• Consumers in country n choose how much to consume and how to allocate savings $\{k_{nit+1}\}$ across host countries i

• δ is the depreciation rate, ν_{nt} is return to capital in terms of the numeraire, ϕ_{nt+u} is a discount factor shock

• p_{nt} is the price of country n’s consumption and investment bundle

• Gross nominal and real returns to investment are

$$R_{nt}^{\text{Nom}} = \frac{p_{nt} (1 - \delta) + \nu_{nt}}{p_{nt-1}}$$

$$R_{nt} = \frac{R_{nt}^{\text{Nom}}}{p_{nt} / p_{nt-1}} = 1 - \delta + \frac{\nu_{nt}}{p_{nt}}$$
Consumption-Saving Decisions

- Let $k_{nt} \equiv \sum_{i=1}^{N} k_{nit}$ denote country n's total capital wealth.
- We can rewrite the budget constraint as:

$$c_{nt} + k_{nt+1} = R_{nt}k_{nt} + \frac{w_{nt}\ell_{nt}}{p_{nt}}$$

- Let $h_{nt} \equiv \sum_{s=1}^{\infty} \frac{w_{nt+s}\ell_{nt+s}/p_{nt+s}}{\prod_{u=1}^{s}R_{nt+u}}$ denote the PDV of labor income measured in consumption units.
- From Angeletos (2007), optimal consumption-saving decisions are linear in current-period wealth:

$$c_{nt} = \varsigma_{nt} \left(R_{nt}k_{nt} + \frac{w_{nt}\ell_{nt}}{p_{nt}} + h_{nt} \right)$$

- Where ς_{nt} is defined recursively as:

$$\varsigma_{nt}^{-1} = 1 + \beta^\psi \phi_{nt+1}^\psi R_{nt+1}^\psi \varsigma_{nt+1}$$
Capital Allocation Within Each Period

- Imperfect substitutability in capital investments
- Model with idiosyncratic productivity shocks \((\alpha_{nit})\)
- Iceberg financial frictions: \(\kappa_{nit} > 1\) for \(i \neq n\) and \(\kappa_{nnt} = 1\)
- Return to a unit of capital invested from source \(n\) in host \(i\) \((v_{nit})\)
 \[
 v_{nit} = \frac{\alpha_{nit} r_{it}}{\kappa_{nit}}, \quad \alpha \sim e^{-\alpha^e}, \quad e > 1
 \]
- Bilateral capital investments satisfy a gravity equation
 \[
 b_{nit} = \frac{k_{nit}}{k_{nt}} = \frac{(r_{it}/\kappa_{nit})^e}{\sum_{h=1}^{N} (r_{ht}/\kappa_{nht})^e}, \quad e > 1
 \]
- Expected return to capital is equalized across alternative hosts \(i\)
 \[
 v_{nit} = v_{nt} = \gamma \left[\sum_{h=1}^{N} (r_{ht}/\kappa_{nht})^e \right]^{\frac{1}{e}}, \quad \gamma \equiv \Gamma \left(\frac{\epsilon - 1}{\epsilon} \right)
 \]
Keynesian Marginal Efficiency of Capital

\[\ln \bar{\alpha}_{nit} \]

\[\ln b_{nit} \]

Slope \(-1/\varepsilon\)
Production and Trade

- Consumption and investment bundles follow CES (Armington):

\[c_{nt} = \left[\sum_{i=1}^{N} \left(c_{nit} \right)^{\theta+1} \right]^{\frac{\theta+1}{\theta}} \]

\[\theta = \sigma - 1, \quad \sigma > 1 \]

- Country n’s expenditure share on good i:

\[s_{nit} = \frac{\tau_{nit}p_{it}^{-\theta}}{\sum_{h=1}^{N} \tau_{nht}p_{ht}^{-\theta}} \]

- Prices

\[p_{nit} = \frac{\tau_{nit}w_{it}^{\lambda}r_{it}^{1-\lambda}}{z_{it}} \]

\[p_{nt} = \left[\sum_{i=1}^{N} p_{nit}^{-\theta} \right]^{-1/\theta} \]

- Total payments for capital used in country i are proportional to payments for labor:

\[\sum_{n=1}^{N} v_{nt}k_{nit} = r_{it}\tilde{k}_{it} = \frac{1-\lambda}{\lambda} w_{it}\ell_{i}, \quad \tilde{k}_{it} = \sum_{n=1}^{N} \gamma b_{nit}^{-\frac{1}{\epsilon}} k_{nit} \]
Market Clearing and Numeraire

- Goods market clearing:

\[w_{it} \ell_i + \sum_{n=1}^{N} \nu_{nit} k_{nit} = \sum_{n=1}^{N} s_{nit} \left(p_{nt} c_{nt} + p_{nt} k_{nt+1} - p_{nt} \left(1 - \delta \right) k_{nt} \right) \]

\[\iff w_{it} \ell_i = \lambda \sum_{n=1}^{N} s_{nit} \left(\nu_{nt} k_{nt} + w_{nt} \ell_n \right) \]

- We use world GDP as the numeraire, so

\[1 = \sum_{i=1}^{N} \left(w_{it} \ell_i + \sum_{n=1}^{N} \nu_{nit} k_{nit} \right) \]

\[= \frac{1}{\lambda} \sum_{i=1}^{N} w_{it} \ell_i \]
General Equilibrium

- Given state variables \(\{ k_{nt} \}_{n=1}^{N} \), equilibrium endogenous variables \(\{ w_{nt}, r_{nt}, s_{nit}, v_{nt}, b_{nit} \}_{n=1}^{N} \) satisfy

\[
\begin{align*}
 s_{nit} &= \frac{\left(\frac{\tau_{nit} w_{it}^{\lambda} r_{it}^{1-\lambda}}{z_{it}} \right)^{-\theta}}{\sum_{h=1}^{N} \left(\frac{\tau_{nht} w_{ht}^{\lambda} r_{ht}^{1-\lambda}}{z_{ht}} \right)^{-\theta}} \\
 w_{it} \ell_i &= \lambda \sum_{n=1}^{N} s_{nit} (v_{nt} k_{nt} + w_{nt} \ell_n) \\
 b_{nit} &= \frac{(r_{it} / \kappa_{nit})^{\epsilon}}{\sum_{h=1}^{N} (r_{ht} / \kappa_{nht})^{\epsilon}} \\
 v_{nt} &= \gamma \left[\sum_{h=1}^{N} (r_{ht} / \kappa_{nht})^{\epsilon} \right]^{1/\epsilon} \\
 \sum_{n=1}^{N} v_{nt} b_{nit} k_{nt} &= \frac{1 - \lambda}{\lambda} w_{it} \ell_i, \quad \frac{1}{\lambda} \sum_{i=1}^{N} w_{it} \ell_i = 1
\end{align*}
\]
General Equilibrium

- Evolution of state variables \(\{k_{nt}\}_{n=1}^{N} \) follows

\[
k_{nt+1} = (1 - \zeta_{nt}) \left(R_{nt} k_{nt} + \frac{w_{nt} \ell_{n}}{p_{nt}} + h_{nt} \right) - h_{nt}
\]

\[
h_{nt} \equiv \sum_{s=1}^{\infty} \frac{w_{nt+s} \ell_{nt+s} / p_{nt+s}}{\prod_{u=1}^{s} R_{nt+u}}
\]

\[
p_{nt} \equiv \left[\sum_{i=1}^{N} \left(\tau_{nit} w_{it}^{\lambda} r_{it}^{1-\lambda} / z_{it} \right)^{-\theta} \right]^{-1/\theta}
\]

- where \(\zeta_{nt} \) is defined recursively as

\[
\zeta_{nt}^{-1} = 1 + \beta^{\psi} \phi_{nt+1}^{\psi} R_{nt+1}^{\psi-1} \zeta_{nt+1}^{-1}
\]
Steady-State Equilibrium

• Steady-state equilibrium of the model:
 - Time-invariant values of the state variables \(\{k_n^*\}_{n=1}^N \) and the other endogenous variables of the model \(\{w_n^*, r_n^*, s_{ni}^*, v_{nt}^*, b_{ni}^*\}_{n=1}^N \)
 - Given time-invariant values of country fundamentals \(\{\ell_n, z_n\}_{n=1}^N \) and \(\{\tau_{ni}, \kappa_{ni}\}_{n,i=1}^N \) (set \(\phi_{nt} = 1 \) for all \(n, t \))
 - Denote the steady-state values of variables by an asterisk

• Steady-state gross real return to capital \((R_n^*) \) and the steady-state saving rate \((\varsigma_n^*) \) are inversely related to discount factor \((\beta) \):
 \[
 R_n^* = \frac{1}{\beta}, \quad \varsigma_n^* = 1 - \beta
 \]

• Common steady-state realized real return to capital \((v_n^*/p_n^*) \):
 \[
 \frac{v_n^*}{p_n^*} = \beta^{-1} - 1 + \delta
 \]

• Recover steady-state capital and labor income \((q_n^* = w_n^*\ell_n \text{ and } \zeta_n^* = v_n^*k_n^*) \) from one of trade share matrices \((S^*, T^*) \) and one of capital share matrices \((B^*, X^*) \)
Transition Dynamics

• Observe the economy somewhere on the transition path to an unobserved steady-state with time-invariant fundamentals

• Suppose we observe labor and capital income \((q, \zeta)\) and the trade and capital share matrices \((S, T, B, X)\) for this initial equilibrium

• Linearize the model around initial unobserved steady-state equilibrium \((\tilde{x} \equiv \ln x_t - \ln x^*)\) and define

\[
\tilde{\tau}_{nt}^{in} \equiv \sum_{i=1}^{N} S_{nit} \tilde{\tau}_{nit}, \quad \tilde{\tau}_{it}^{out} \equiv \sum_{n=1}^{N} T_{int} \tilde{\tau}_{nit},
\]

\[
\tilde{\kappa}_{nt}^{out} \equiv \sum_{i=1}^{N} B_{nit} \tilde{\kappa}_{nit}, \quad \tilde{\kappa}_{it}^{in} \equiv \sum_{n=1}^{N} X_{int} \tilde{\kappa}_{nit}
\]

\[
\tilde{f}_t = \begin{bmatrix} \tilde{z}_t \quad \tilde{\kappa}_t^{in} \quad \tilde{\kappa}_t^{out} \quad \tilde{\tau}_t^{in} \quad \tilde{\tau}_t^{out} \end{bmatrix}^\prime
\]

• Solve in closed-form for the transition path of the endogenous variables in response to a future sequence of shocks \(\tilde{f}_t\)
Outline

• Empirical Motivation

• Theoretical Framework

• New Implications for Trade and Welfare

• Quantitative Evidence

• Conclusions
(1) Welfare Gains from Trade

- Exogenous \(\tilde{k}_i \rightarrow \) ACR class of models in which domestic trade share \(s_{nt}^T \) and trade elasticity \((\theta) \) are sufficient statistics for real wage

\[
s_{nit} = \frac{\left(\tau_{nit} w_{it} \left(\frac{1-\lambda \ell_i}{\lambda \tilde{k}_{it}} \right)^{1-\lambda} / z_{it} \right)^{-\theta}}{\sum_{h=1}^{N} \left(\tau_{nht} w_{ht} \left(\frac{1-\lambda \ell_h}{\lambda \tilde{k}_{ht}} \right)^{1-\lambda} / z_{ht} \right)^{-\theta}}
\]

\[
p_{nt} \equiv \left[\sum_{i=1}^{N} \left(\tau_{nit} w_{it} \left(\frac{1-\lambda \ell_i}{\lambda \tilde{k}_{it}} \right)^{1-\lambda} / z_{it} \right)^{-\theta} \right]^{-1/\theta}
\]

\[
\frac{w_{nt}^T / p_{nt}^T}{w_{nt}^A / p_{nt}^A} = \left(\frac{\tilde{k}_{nt}^T}{\tilde{k}_{nt}^A} \right)^{1-\lambda} \left(\frac{1}{s_{nnt}^T} \right)^{1/\theta}
\]

- More generally, welfare gains from trade differ from ACR
 1. Both capital and labor income
 2. Endogenous response of \(\tilde{k}_{it} \) to trade liberalization
 3. Dynamic welfare gains and transition dynamics
 \(\Rightarrow \) welfare impact \(\neq \) comparative steady-state impact
(2) Trade Integration and Investment

- Goods trade integration induces capital accumulation and raises the steady-state capital-labor ratio
- Steady-state

\[v_n^* = \gamma \left[\sum_{h=1}^{N} \left(\frac{r_h^*}{\kappa_{hn}} \right)^{\frac{1}{\epsilon}} \right]^{\frac{1}{\epsilon}} = \gamma \frac{r_n^* / \kappa_{nn}}{(b_{nn}^*)^{\frac{1}{\epsilon}}}, \quad v_n^* = [\beta^{-1} - 1 + \delta] \ p_n^* \]

\[r_n^* = \frac{[\beta^{-1} - 1 + \delta] \ p_n^*}{\gamma / \kappa_{nn}} (b_{nn}^*)^{\frac{1}{\epsilon}}, \quad \tilde{k}_n^* = \frac{1 - \lambda}{\lambda} \ \frac{w_n^*}{r_n^*} \]

\[\Rightarrow \quad \frac{\tilde{k}_n^*}{\ell_n} = \frac{1 - \lambda}{\lambda} \ \frac{\gamma / \kappa_{nn}}{[\beta^{-1} - 1 + \delta] (b_{nn}^*)^{\frac{1}{\epsilon}}} \ p_n^* \]

- Sufficient statistics for impact opening of closed economy on real wage

\[\frac{w_n^{T*}}{p_n^{T*}} / \frac{w_n^{A*}}{p_n^{A*}} = \left(\frac{1}{b_{nn}^{T*}} \right)^{\frac{1}{\lambda \epsilon}} \left(\frac{1}{s_{nn}^{T*}} \right)^{\frac{1}{\lambda \theta}} \]

- Goods and capital market integration interact with one another
(3) Capital Market Integration

• Recall the expected return to capital

\[v_{ni} = v_n = \gamma \left[\sum_{h=1}^{N} \left(\frac{r_h}{\kappa_{nh}} \right)^\epsilon \right]^\frac{1}{\epsilon} = \gamma \frac{r_n}{\kappa_{nn}} \left(\frac{b_{nn}}{\epsilon} \right)^\epsilon \]

• Steady-state expected return to capital

\[\frac{v_n^*}{p_n^*} = \beta^{-1} - 1 + \delta \]

• Combining these two expressions

\[\frac{v_n^*}{p_n^*} = \beta^{-1} - 1 + \delta = \gamma \frac{r_n^*/\kappa_{nn}}{p_n^*(b_{nn})^\epsilon} \]

• Capital market autarky: \(b_{nn}^* = 1 \)

• Capital market integration: \(0 < b_{nn}^* < 1 \Rightarrow \) other things equal, \(r_n^* \downarrow \)

• Capital market integration increases expected return to investment and acts like an improvement in the investment technology, which stimulates capital accumulation, and reduces the rental rate
Outline

• Empirical Motivation

• Theoretical Framework

• New Implications for Trade and Welfare

• Quantitative Evidence

• Conclusions
Quantitative Evidence

• Illustrate these theoretical predictions quantitatively using Brexit as a first empirical application
• Start with the observed data for 2015 before Brexit
• Shock trade cost, capital market frictions, or both, between the UK and EU countries
• UK experiences a welfare loss from higher trade frictions, as in a conventional trade model
 – Cross-substitution effects, as substitute towards trade with other nations and domestic trade
• UK welfare loss magnified as it becomes a less attractive investment destination, because of reduced market access to the European Union
 – Reduces steady-state capital-labor ratio in the United Kingdom
 – Slower rate of growth along the transition path to steady-state
• Examine impulse response functions for consumption
• Other applications to decoupling between China and USA and trade and capital market sanctions on Russia
Parameterization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount rate</td>
<td>β 0.9</td>
</tr>
<tr>
<td>Intertemporal elasticity of substitution</td>
<td>ψ 2</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>δ 0.05</td>
</tr>
<tr>
<td>Capital intensity</td>
<td>λ 0.5</td>
</tr>
<tr>
<td>Trade elasticity</td>
<td>θ 5</td>
</tr>
<tr>
<td>Investment elasticity</td>
<td>ϵ 2</td>
</tr>
</tbody>
</table>

• Observe T, S and B matrices in 2015
• Recover implied X matrix and income vectors \{q, ζ\}
• Consider a small shock to trade or capital frictions or both
• Solve for the consumption impulse response
GBR S versus B Matrix

Log Shares in Trade and Capital, GBR 2015
Brexit on consumption: dynamic model
shock bilateral capital flow cost
Brexit on consumption: dynamic model
shock both trade and capital flow costs
Brexit and DEU Consumption

Brexit on DEU consumption

dynamic model: trade cost shock
dynamic model: capital frictions
dynamic model: both shocks
static model: trade cost shock

caption
Brexit and UK Investment

UK business investment has underperformed the trend

£bn in 2019 value (taking into account an ONS error)

- Business investment
- 2009-2015 trend

Sources: ONS, FT calculation © FT
Foreign direct investment into the UK has fallen since the Brexit vote

4-year average foreign direct investment inflows as a share of GDP, 1973-2020

#PIIECharts

Learn more at piie.com/research/piie-charts
Outline

• Empirical Motivation

• Theoretical Framework

• New Implications for Trade and Welfare

• Empirical Results

• Conclusions
Conclusions

• Do goods trade and international capital investments interact?
 – How much larger / smaller are costs of Brexit / Sanctions / US - China decoupling with both goods and capital market disintegration?

• Develop a tractable many-country model for analyzing this interaction that rationalizes key features of the observed data
 – Within-period trade in goods consistent with the observed gravity equation for bilateral trade
 – Within-period capital allocation consistent with observed gravity equation for bilateral capital holdings
 – Across-period capital accumulation through consumption-saving decisions, consistent with observed current account imbalances

• Integrated framework featuring trade, capital flows and growth that can be taken directly to the data and used for a range of applications
 1. Real wage gains from opening closed economy differ from ACR formula
 2. Goods trade integration stimulates capital accumulation and increases the steady-state capital-labor ratio
 3. Capital market integration like improvement investment productivity
 4. Real wage gains to trade integration are increasing in capital integration