
NBER WORKING PAPER SERIES

HOW MUCH DOES COVID-19 INCREASE WITH MOBILITY? EVIDENCE FROM
NEW YORK AND FOUR OTHER U.S. CITIES

Edward L. Glaeser
Caitlin S. Gorback
Stephen J. Redding

Working Paper 27519
http://www.nber.org/papers/w27519

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2020

We thank Sam Patterson and Andrei Freund for excellent research assistance. Any errors, 
opinions and omissions are our own. First Draft: June 2020. The U.S. Department of 
Transportation funded this project through a grant to NBER Project on Transportation in the 21st 
Century. The views expressed herein are those of the authors and do not necessarily reflect the 
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Edward L. Glaeser, Caitlin S. Gorback, and Stephen J. Redding. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



How Much does COVID-19 Increase with Mobility? Evidence from New York and Four Other
U.S. Cities
Edward L. Glaeser, Caitlin S. Gorback, and Stephen J. Redding
NBER Working Paper No. 27519
July 2020
JEL No. H12,I12,J17,R41

ABSTRACT

How effective are restrictions on geographic mobility in limiting the spread of the COVID-19 
pandemic?Using zip code data for Atlanta, Boston, Chicago, New York (NYC), and Philadelphia, 
we estimate that total COVID-19 cases per capita decrease on average by approximately 20 
percent for every ten percentage point fall in mobility between February and May 2020. To 
address endogeneity concerns, we instrument for travel by the share of workers in remote work 
friendly occupations, and find a somewhat larger average decline of COVID-19 cases per capita 
of 27 percent. Using weekly data by zip code for NYC and a panel data specification including 
week and zip code fixed effects, we estimate a similar average decline of around 17 percent, 
which becomes larger when we measure mobility using NYC turnstile data rather than cellphone 
data. We find substantial heterogeneity across both space and over time, with stronger effects for 
NYC, Boston and Philadelphia than for Atlanta and Chicago, and the largest estimated 
coefficients for NYC in the early stages of the pandemic.

Edward L. Glaeser
Department of Economics
315A Littauer Center
Harvard University
Cambridge, MA 02138
and NBER
eglaeser@harvard.edu

Caitlin S. Gorback
National Bureau of Economic Research
1050 Massachusetts Avenue
Cambridge, MA 02138
caitlin.gorback@gmail.com

Stephen J. Redding
Department of Economics &
School of Public and International Affairs
Princeton University
Princeton, NJ 08544
and CEPR
and also NBER
reddings@princeton.edu



1 Introduction

A central challenge in evaluating lock-downs and other restrictions on mobility in response to

COVID-19 is estimating their effectiveness in limiting the disease’s spread. This estimation is

challenging for several reasons. Mobility restrictions are introduced as a response to disease

outbreaks, individuals make mobility decisions based on the threat of infection, and the

relationship between transmission and mobility depends on the composition of susceptible,

infected and recovered agents.

To address these challenges, we combine weekly data on COVID-19 cases by zip code

in New York City (NYC) and cross-sectional data for four other U.S. cities, information on

mobility from SafeGraph cellular phone data and subway turnstile data for NYC, and exoge-

nous variation in mobility from the ability to work remotely and designation as an essential

worker in state shutdown orders. In our preferred instrumental variables specifications, we

estimate that a ten percentage point (10pp) decrease in mobility leads to a 17-27 percent fall

in COVID-19 cases per capita. We find substantial heterogeneity across both space and over

time, with stronger effects for NYC, Boston and Philadelphia than for Atlanta and Chicago,

and the largest estimated coefficients for NYC in the early stages of the pandemic.

The hypothesis that movement spreads COVID-19 inspired the stay-at-home orders

adopted across the world in 2020. While any contagious disease can be propagated through

human interaction, the actual link between mobility and contagion is mediated by the nature

of the disease and the behavior of the travelers. The social benefits of regulations limiting

mobility depend on the empirical magnitude of the link between mobility and disease. The

link between mobility and contagion could be minimal if infections occurred mostly through

intimate contact, as with sexually transmitted diseases, or large if dense transit hubs enabled

super-spreading events.

We focus on the relationship between the logarithm of the COVID-19 cases per capita

and the fall in mobility, relative to February 2020 or the same date one year earlier. We

cannot determine if the disease spread through travel itself or through interactions at a

final destination. We lack individual-specific COVID-19 tests, and consequently measure

the prevalence of the disease by zip code.
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Neighborhood specific COVID-19 rate may not capture the true prevalence of the disease,

because of differences in testing rates. We control for area-specific demographic variables

that might predict testing rates, and for zip code fixed effects in our panel specifications. We

also replicate our cross-sectional results on case rates with COVID-19 death rates in New

York City. Unfortunately, the New York City zip code death data begins the week of May

18-24, 2020, and so cannot be used in our panel specifications.

Our primary mobility data source is the SafeGraph cellphone location data, which is

available at the census blockgroup level nationwide. We aggregate travel data to the zip

code to conform with our COVID-19 case data. For New York City, we supplement this

data with zip code level information on turnstile use for public transit provided by the

Metropolitan Transit Authority (MTA). For panel analysis, we aggregate the daily case and

turnstile data to the week levels so that it is compatible with the weekly Safegraph data.

As the impact of mobility on infection could change both with the level of infection in the

population of travelers and the level of precaution, we test whether that impact changes over

time in New York City. We split our sample into an early period that ends on April 26 and

a later period, to test whether the impact of mobility on contagion was higher when cases

where increasing or higher after the wave of infection peaked.

Figure 1 shows two maps of New York City that illustrate our core findings. The upper

map shows the change in cell phone-measured mobility. The lower map shows the total

COVID-19 cases per person as of June 1, 2020. In the parts of New York where mobility

fell, case rates have been low. In the areas of New York where mobility remained higher,

COVID-19 cases per person are higher. Appendix Figure A1 shows the correlation of 0.44

between change in the number of trips and the number of COVID-19 cases per capita.

This cross-sectional relationship suggests an elasticity of cases with respect to mobility

of approximately two, and we estimate a similar elasticity of deaths with respect to mobility.

Yet there are many reasons to be skeptical about this estimate. First, New York zip codes

differ along many dimensions, such as income and race, which may also influence the spread

and measurement of COVID-19. Second, mobility itself may decline with the level of infec-

tion, which could bias downwards the estimated link between cases and mobility. Third, the

connection between mobility and disease can differ across cities, both due to different initial

2



Figure 1: Mobility Change and COVID-19 Cases per Person in NYC

-70.6 − -33.3
-74.3 − -70.6
-78.0 − -74.3
-81.2 − -78.0
-86.1 − -81.2
-94.3 − -86.1

(a) % Change in Trips, May ’20 vs May ’19

0.03 − 0.05
0.03 − 0.03
0.02 − 0.03
0.02 − 0.02
0.01 − 0.02
0.01 − 0.01
No data

(b) Cases per Person
Source: Cases per person from NYC Health Department, available at https://www1.nyc.gov/site/doh/
covid/covid-19-data.page. % Change in trips from SafeGraph Weekly Patterns Data, using visitors
traveling from home. % Change in trips calculated between May 13-19, 2019 and May 4-10, 2020
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infection rates and because travel may take different forms.

We take two strategies to address omitted neighborhood characteristics. First, we control

for racial composition, income and age, which shrink the measured connection between

mobility and disease prevalence, so that a 10pp in trips is associated with a 10% decline in

case rates in New York City. Across all five cities, the coefficient is somewhat smaller but

still statistically significant.

Second, we look at results over time within New York City zip codes controlling for neigh-

borhood fixed effects. We follow the medical literature (Lauer et al. (2020)) and estimate

a model with a two-week gap between new cases and mobility, as measured by cell phone

records and turnstile data. The average onset time is closer to 1 week, but this two-week gap

should capture over 97.5% of cases. Controlling for week and zip code fixed effects, the link

between COVID-19 prevalence and the turnstile measure remains significant and positive,

but the correlation between cases and cell phone mobility disappears. A 10pp drop in public

transportation use is associated with a 0.3 log point fall in COVID-19 cases per capita.

If movement falls more in places with more disease, then these fixed effect estimates

underestimate the true link between contagion and mobility. Consequently, our preferred

specifications follow an instrumental variables strategy that uses employment by industry in

a given zip code to predict changes in mobility. Following Bartik et al. (2020)), we focus on

the share of residents working in essential industries, according to state shutdown essential

worker designations, or that can work remotely, according to Dingel and Neiman (2020).

Bartik et al. (2020) confirm that Dingel and Neiman (2020)’s predictions about remote work

during the pandemic have largely born out across industries. Locations with more essential

workers have more travel, and locations with teleworkable residents have less travel. In our

NYC panel specifications, we allow the instruments to have a different impacts week-by-week.

Across almost every specification, the measured link between mobility and disease is larger

in these instrumental variable specifications, which suggests that the ordinary least squares

estimates are biased downwards because of reverse causality. In our preferred multi-city

specification with demographic controls, we estimate that a 10pp drop in travel is associated

with a 0.27 log point drop in per capita COVID-19 prevalence. A 0.27 log point fall in

COVID-19 represents 5 fewer cases per 1,000 inhabitants, from a sample mean of 17 per
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1,000.

City-specific estimates produce higher coefficients in New York, Boston and Philadelphia

and lower coefficients in Atlanta and Chicago. Mobility seems to spread COVID-19 in the

northeastern cities, but not in other cities. This difference likely reflects the initial infection

rate rather than the nature of mobility, since public transportation is also used in Chicago.

Zip codes across cities may still have significant unobserved heterogeneity driving disease

spread, motivating our panel research design. Moving from the cross-sectional analysis to

our NYC-Safegraph data panel, we estimate an instrumental variables coefficient of 0.016

with zip code fixed effects. The effect is larger when controlling for zip code characteristics

rather than the fixed effects. In the NYC-MTA panel, we estimate a larger coefficient of

0.034 with zip code fixed effects, which is an order of magnitude larger than the ordinary

least squares coefficients, and in line with the cross-sectional IV results. The turnstile results

supports the view that cases rise with mobility, at least over this period in NYC, but does

not provide a clean estimate of the impact of public transportation use on the spread of

COVID-19 hypothesized by Harris (2020), because our instruments are not public transit

specific.

Our paper is related to the broader emerging body of research on COVID-19 in eco-

nomics. First, a macroeconomics literature has used Susceptible-Infected-Recovered (SIR)

models to simulate the impact of policies such as lock-downs on disease burden and economic

outcomes, including Acemoglu et al. (2020), Alvarez, Argente and Lippi (2020), Atkeson

(2020) and Fernández-Villaverde and Jones (2020). Second, others have analyzed the spa-

tial diffusion of COVID-19, including Antràs, Redding and Rossi-Hansberg (2020), Argente,

Hsieh and Lee (2020), Birge, Candogan and Feng (2020), Fajgelbaum et al. (2020), Bisin

and Moro (2020) and Cuñat and Zymek (2020). A third line of work has examined how

agents’ behavioral responses (e.g. social distancing) likely effect the dynamics of COVID-19,

including Fenichel et al. (2011), Alfaro et al. (2020), Farboodi, Jarosch and Shimer (2020),

and Toxveard (2020). Fourth, a more microeconometric literature has examined locations’

observable characteristics within cities and across U.S. counties that correlate with COVID-

19 incidence, including Almagro and Orane-Hutchinson (2020), Couture et al. (2020) and

Desmet and Wacziarg (2020). Finally, other research has compared the spatial diffusion
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and economic impact of COVID-19 to previous pandemics such as the 1918 influenza, as in

Barro, Ursúa and Weng (2020) and Correia, Luck and Verner (2020).

Section 2 discusses our data sources and Section 3 introduces our empirical strategies.

Section 4 discusses the results found using the cross-section of zip codes in five cities. Section

5 discusses our panel results. Both Sections 4 and 5 include results using instrumental

variables. Section 6 concludes.

2 Data

We build a weekly panel of zip codes for NYC, and take a cross-sectional snapshot of four

other US cities: Atlanta, GA, Boston, MA, Chicago, IL and Philadelphia, PA. All of these

cities provide new case counts by zip code. Counts of daily new cases and cumulative

cases come from each city’s (or county’s) department of public health. We have daily case

data for New York City from April 4, 2020 through June 7, 2020. Because this misses much

of the run-up in cases, we set cumulative and new cases to 0 in 2020w11, and assume cases

double weekly until 2020w14, for which we have data. We use snapshots of cumulative cases

for the remaining cities. Atlanta has data as of June 2, 2020; Boston as of May 24, 2020;

Chicago and Philadelphia as of June 6, 2020.

SafeGraph has released publicly available data for cell phone trips between December

31st, 2018 - present. We pull weekly data for our five cities. The data tracks the number of

visitors to a point of interest (POI) in a given week. Every POI observation contains infor-

mation on its census blockgroup, as well as the number of visitors by their home blockgroup.

We construct an origin-destination (OD) matrix from these observed trips, assuming travel

from home, by counting how many visitors travel from a specific origin blockgroup to each

POI blockgroup. The data only shows OD pairs with at least 4 visitors, so the data under-

counts pairs with low travel volume, introducing measurment error. Finally, we aggregate

the blockgroup level OD matrices to zip codes in line with our COVID-19 case data.

Our second mobility datasource comes from the Metropolitan Transit Authority’s turn-

stile data. Turnstile entries are collected every few hours, for each unique turnstile. We

map each subway turnstile to a zip code, and count the entries each week by zip code.
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Our instruments use Dingel and Neiman (2020)’s teleworkability shares by 2-digit

NAICS and definitions of essential industries (4-digit NAICS) from Delaware and Min-

nesota, in combination with zip code level employment data from the American Community

Survey (ACS). Details for instrument construction follow in Section 3.1.

To analyse how mobility interacts with demographics, we collect demographic data at

the Zip level on share African American, median age, and median income from the American

Community Survey. To identify Zip level shares of teleworkable and essential workers, we

use Zip level employment by industry from the ACS, which identifies the industries in

which residentswork, the details of which are listed in Table A2.

Appendix Table A1 lists the summary statistics for each of our research designs. The first

panel lists statistics for zip codes in all 5 cities in our cross-sectional analysis; the middle

panel lists statistics for the zip codes included in our NYC SafeGraph panel; the bottom

panel lists statistics for the zip codes which contain an MTA turnstile. Notably, all three

panels show large drops in mobility, between 63% and 71% for the average zip code.

3 Research Design

In order to estimate the relationship between declines in mobility and reducing the spread

of COVID-19, we implement the following:

ln(TotalCasesP C
i ) = α + β%∆Tripsi + Cityc + εi (1)

ln(NewCasesP C
it ) = β%∆Tripsi,t−2 + zipi + weekt + εit (2)

Equation (1) regresses log total cases per capita in zip code i on the %∆ in mobility, measured

by SafeGraph trips leaving residential zip code i. Equation (2) regresses log daily new cases

in zip code i in week t on %∆ in mobility, measured by SafeGraph trips leaving residential

zip code i or by the number of turnstile turns in residential zip code i.

Because residents are likely to reduce trips in response to increases in cases of COVID-19,

β in both equations is likely biased downwards. Additionally, trips and cases may be mea-
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sured with error, further attenuating β. To alleviate concerns of bias, we build instruments

using pre-period information on one’s proclivity to travel during the pandemic.

3.1 Building the Instrument

We construct two instruments to allay concerns of bias and measurement error. Both instru-

ments use the American Community Survey’s zip code level data on residents’ employment

by industry. We know the share of employment in industry classifications listed in Appendix

Table A2.

For our first instrument, we use data on essential industries fromMinnesota and Delaware.

These states designated a subset of the 4-digit NAICS codes as essential, allowing these

industries to remain open. Within each 2-digit NAICS grouping in Appendix Table A2, we

calculate the national share of employment designated as essential. Using the ACS zip level

data, we know employment by 2-digit NAICS grouping. Using the national essential share

in combination with the zip codel employment composition, we construct ShareEssentiali
for a zip code i as the employment-weighted average essential share. For example, consider

a zip code i with 100 residents working in two industries: 40 in NAICS 42, and 60 in NAICS

31-33. If 50% of the national employment in NAICS 42 is designated as essential, and 30%

of NAICS 31-33 is designated essential, we construct ShareEssentiali = 0.5∗40+0.3∗60
100 = 0.38.

For our second instrument, we use Dingel and Neiman (2020)’s definition of teleworkable

industries. They provide a list of 2-digit NAICS industry codes, along with the share of that

industry that can reliably telecommute. Since the ACS data combines many of Dingel &

Neiman’s NAICS codes, we take simple averages across the sub-categories that we combine.

Using the ACS zip level data on residents’ employment by industry, we can calculate a

zip code’s share of workers who can reliably telecommute. As with ShareEssentiali, we

take the employment-weighted average telecommuting share across industries within a zip

to construct ShareTeleworki.

The relevance criterion requires that the share of teleworking or essential workers is

correlated with the change in travel within a given zip code. Appendix Figure A2 shows

that trips dropped more in zip codes with lower shares of essential workers or in those that

could reliably telecommute. The exclusion restriction requires that the share of essential
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workers or telecommuters in 2018 does not impact COVID-19 cases except through taking

trips from home.

3.2 Multicity IV

For the cross-sectional, multiple city specification, we track the log of cumulative COVID-

19 cases per capita by zip code as of the dates in Section 2 and regress it on the %∆ in

travel, in percentage points, between May 2019 and May 2020. This yields a coefficient in

the flavor of an elasticity: 100 × β can be interpreted as the % increase in total cases per

capita due to an additional percentage point change in trips. We instrument for mobility

with both instruments, in the first stage shown in Equation (1.1). This provides variation

in %∆Tripsi using the pre-COVID-19 employment mix, allowing us to estimate the second

stage, Equation (1.2), without concern of behavioral responses such as staying home.

%∆Tripsi = δ + γIVi + Cityc + ηt (1.1)

ln(TotalCasesP C
i ) = α + β ̂%∆Tripsi + Cityc + εi (1.2)

3.3 Panel Design

To use the panel data in NYC, we begin by considering Equation (2). 100 × β can be

interpreted as the % increase in new cases per capita in one’s home zip code associated with

an additional 1pp increase in trips originating in the same zip code.1 Once we instrument

for trips, the design changes from Equation (2) to Equations (2.1) and (2.2):

%∆Tripsi,t−2 = γIVi × weekt + zipi + weekt + ηit (2.1)

ln(NewCasesP C
it ) = β ̂%∆Tripsi + zipi + weekt + εit (2.2)

The first stage regresses trip change relative to travel in 2020w9 two weeks ago on the
1We use the approximation of ln(x+1) when cases or new cases equals 0. Results are robust to using inverse
hyperbolic sine.

9



intrument, which we interact with a week dummy to introduce temporal variation. We

include zip code fixed effects to control for time-invariant characteristics. Week fixed effects

control for city-level changes in virus awareness, shut-down, orders, etc. that would impact

all locations.

4 Cross-Sectional Results

Table 1 shows our results using a cross section of 448 zip codes in Atlanta, Boston, Chicago,

New York, and Philadelphia. Our core specification is to regress the logarithm of cases

identified as of our city-specific snapshot date (Atlanta - June 2, 2020; Boston - May 24,

2020; Chicago and Philadelphia - June 6, 2020; NYC -June 7, 2020), on the percent change

in trips between the week of May 13-19, 2019 and May 4-10, 2020. Table 2 shows the

city-specifc results.

Table 1 column (1) shows the ordinary least squares coefficient where total cases per

capita is regressed on the decline in mobility. The estimated coefficient is 0.0186, which

implies that for every ten percentage points that travel fell between May of 2019 and 2020, the

number of cases per capita falls by 0.19 log points. This specification includes metropolitan

area fixed effects, but not zip code fixed effects. The average zip code reported 17 cases per

1,000 people, so a 10pp reduction in travel would lower this to 13.8 per 1,000.

In regressions (2)-(4) we include our three primary controls separately, and in the fifth

regression, we include all three controls together. These controls will be used in other

specifications throughout this paper, but we only directly report the coefficients here. In

the specifications including the controls separately, each control is significant. Column (2)

shows that a 10pp increase in percent African-American is associated with a 0.058 log point

increase in the COVID-19 case rate; this gap between African-American and white case rates

is a widely known fact (Yancy (2020)).

The coefficient on age in the third regression is strongly negative. This is in line with

older people taking protective steps to avoid contagion such as staying home, because they

face higher mortality risk. Column (4) documents the stark relationship between income and

COVID-19 cases; we estimate an elasticity of the case rate with respect to income of -0.62.
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Table 1: Multiple City Demographics

(1) (2) (3) (4) (5) (6) (7)
ln(Casesi)

OLS
ln(Casesi)

OLS
ln(Casesi)

OLS
ln(Casesi)

OLS
ln(Casesi)

OLS
ln(Casesi)

IV
ln(Casesi)

IV
%∆Tripsi 0.0186∗∗∗ 0.0152∗∗∗ 0.0187∗∗∗ 0.00809∗∗∗ 0.00715∗∗∗ 0.0474∗∗∗ 0.0282∗∗∗

(0.00242) (0.00240) (0.00231) (0.00237) (0.00250) (0.00395) (0.00720)

%AfAmi 0.577∗∗∗ 0.139∗ 0.133
(0.0725) (0.0804) (0.0889)

ln(Agei) -0.800∗∗∗ 0.294 -0.211
(0.212) (0.227) (0.291)

ln(Inci) -0.621∗∗∗ -0.627∗∗∗ -0.331∗∗∗

(0.0528) (0.0720) (0.124)
R-Sq. 0.529 0.571 0.549 0.648 0.652
Root MSE 0.604 0.483
Obs. 448 448 448 448 448 448 448
F-Stat. 98.15 86.69

Fixed Effects
CBSA X X X X X X X
Notes: The dependent variable is total cases per capita in zip code i. Columns (1)-(5) im-
plement versions of Equation (1), ln(TotalCasesi) = α + β%∆Tripsi + Cityc + εi, each col-
umn adding additional demographics. Columns (6)-(7) implement versions of Equation (1.2),
ln(TotalCasesi) = α+ β ̂%∆Tripsi +Cityc + εi. Equation (1.1) available upon request. Specifi-
cations (6) and (7) include both the teleworking and essential share instruments. Robust standard
errors included in parentheses.
Significance: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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This coefficient is stable when we include all three variables together, but the other variables

either flip sign or lose significance. In this cross-sectional specification income, rather than

race or age, is the larger determinant of COVID-19 case rates.

One natural explanation for why income reduces COVID-19 rates is that richer people

are better able to adjust their lives to avoid contagion. Reduced mobility is one margin of

that adjustment, and richer areas have dramatically less mobility as of May 2020 in these

cities. A 0.1 log point increase in the median income of the zip code is associated with a 1.2

percent drop in trips relative to May of last year. Yet despite controlling for the fall in trips,

income remains an important explanatory variable, suggesting our trips variable captures

only one dimension of protective behavior.

The coefficient on mobility remains stable when we control for either race or age, but

the estimate halves when we include income, either on its own or as one of three control

variables. In column (5), a 10pp reduction in mobility is associated with a 0.07 log point

reduction in cases per capita.

Addressing the possibility that this coefficient is biased downwards because mobility falls

more where COVID-19 cases spike, we now use our two instruments for mobility, as in

Equations 1.1 and 1.2. The coefficient on mobility becomes much larger, both with and

without controls, in regressions (6) and (7). The coefficient on income shrinks accordingly,

as workers in teleworkable industries have on average higher incomes.2

The coefficient in regression (7) implies that as mobility drops by 10pp, COVID-19 case

rates drop by 0.28 log points. The average zip code saw 17 cases per 1,000 people, so a

10pp drop in mobility would drop the case rate to 12.2 per 1,000. This yields 1.6 fewer cases

per 1,000 than implied by the OLS analysis, for the same drop in travel. We take this as

evidence supporting the view that cases have been much lower in places where workers could

switch to remote working, but we are cautious about interpreting the coefficient as a causal

estimate on trips alone. Workers in essential industries or industries that cannot be done

remotely face risks from many places, especially infections in the workplaces. We therefore

interpret this as suggestive evidence that remaining at home reduces COVID-19 exposure,
2See for example the American Time Use Survey, as discussed in
https://siepr.stanford.edu/research/publications/how-working-home-works-out.
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but not that we can identify COVID-19 infection rates with any particular act of mobility.

In Table 2, we break out our results for all five cities in our sample. We also include the

results for New York City death rates in the first column. Panel A shows the ordinary least

squares coefficient with no other controls. Panel B shows the ordinary least squares coefficient

with the demographcis controls. Panel C shows the instrumental variables coefficient with

controls.

In Panel A column (1), we show the 0.019 coefficient when the logarithm of death rates are

regressed on mobility across New York City zip codes. This coefficient becomes insignificant

and negative in the first column of Panel B, which adds controls. Death rates are strongly

associated with age at the zip code level and with the share of the population that is African-

American. In Panel C, we find that after instrumenting for mobility, the coefficient rises to

0.027, a 40% increase from Panel A. While the ordinary least squares coefficient on mobility

does not survive controls, the instrumental variables coefficient is robust, reflecting the fact

that deaths were much higher in those parts of New York where workers could not switch to

remote work, or where essential workers live.

In the second column, we show our results for COVID-19 cases in New York City. The

estimate in Panel A is 0.023, which is close to the deaths coefficient in the first column and

the coefficient for all cities together in Table 1. When we control for demographics in Panel B,

the coefficient falls by over fifty percent but remains significant. The instrumental variables

coefficient is quite large. This may be due to downward bias in the ordinary least squares

coefficients as mobility shrank in response to local outbreaks of COVID-19, the reason we

seek an instrument, or because the instrument is correlated with the error term.

Column (5) shows results for Chicago, the other large city in our sample with more than

50 zip codes. The Chicago coefficient is comparable to the coefficient in New York City

when we have no other controls. With controls, the coefficient for Chicago becomes small

and statistically insignificant. The instrumental variables strategy does not change that fact

for Chicago. These results suggest that mobility was less harmful in Chicago than it was in

New York.

The other three cities have small samples of zip codes and we are wary of inferring much

from their results. Philadelphia shows a coefficient of 0.011 with uncontrolled ordinary least
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Table 2: Multiple City Results

(1) (2) (3) (4) (5) (6)
ln(Deathsi)

NYC
ln(Casesi)

NYC
ln(Casesi)
Atlanta

ln(Casesi)
Boston

ln(Casesi)
Chicago

ln(Casesi)
Philadelphia

Panel A: OLS

%∆Tripsi 0.0187∗∗∗ 0.0229∗∗∗ -0.00431 0.0510∗∗∗ 0.0186∗∗∗ 0.0114∗∗∗

(0.00615) (0.00384) (0.0197) (0.0123) (0.00317) (0.00352)
R-Sq. 0.0902 0.219 0.00246 0.495 0.164 0.201
Obs. 159 159 22 19 206 42

Panel B: OLS With Demographics

%∆Tripsi -0.00466 0.00963∗∗∗ -0.00402 0.0362∗ 0.00425 0.00702
(0.00434) (0.00345) (0.0128) (0.0192) (0.00289) (0.00503)

R-Sq. 0.476 0.436 0.549 0.532 0.512 0.436
Obs. 159 159 22 19 206 42

Panel C: IV With Demographics

̂%∆Tripsi 0.0269∗∗ 0.0605∗∗∗ 0.00350 0.0668∗∗ -0.00958 0.0131∗

(0.0117) (0.0126) (0.0329) (0.0274) (0.00995) (0.00710)
Root MSE 0.405 0.443 0.563 0.439 0.483 0.226
Obs. 159 159 22 19 206 42
F-Stat. 40.36 35.39 4.480 4.512 47.30 4.310

Controls for Panels B & C

%AfAmi X X X X X X
ln(Agei) X X X X X X
ln(Inci) X X X X X X
Notes: The dependent variable is total cases, or total deaths, per capita in zip code i. Panels A and B show
versions of OLS Equations (1) for separate cities’ cases, as well as NYC’s deaths. Panel C shows results from
Equation (1.2), adding additional demographic controls, Xi: ln(TotalCasesi) = α+β ̂%∆Tripsi+ΓXi+εi.
Panel C uses both the telework and essential share instuments. Robust standard errors in parentheses.
Significance: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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squares and .013 with the instrumental variables results with controls. The ordinary least

squares results with controls produce a considerably smaller coefficient. The Boston mobility

coefficients are large and significant in all three specification. The Atlanta results are small

and insignificant in all three specifications, possibly suggesting that mobility was not strongly

associated with the spread of COVID-19 in Atlanta during this time period.

We believe that the results for the east coast cities tell a consistent story. In Boston,

New York and Philadelphia, the coefficients in Panels A and C are statistically significant

and sizable in magnitude. Mobility appears to have been reliably correlated with the spread

of the pandemic in those cities. In Atlanta and Chicago, the correlation between COVID-19

and mobility is weak or non-existent. This pattern of results is consistent with the idea that

the impact of mobility is related to the initial infection rate, which is likely to have been

higher on the east coast.3 It could also be that the east coast is more connected or shared

transport is more prevalent there.

5 NYC Panel Results

We now turn to our panel results looking within New York City over time. We have better

coverage for New York than elsewhere and match the number of new COVID cases with

mobility using the Safegraph data in Table 3. In Table 4, we repeat those specifications

using the MTA turnstile data. In both tables, the Panel A shows results for the entire

sample. Panel B shows results splitting the sample in two halves: the first half of the sample

as new cases were growing, and the second half of the sample, when new cases were falling.

Table 3 column (1) shows our ordinary least squares coefficient, with zip code and week

fixed effects. Panel A shows that over the entire time period, there is no correlation between

mobility and COVID-19 cases within zip code. This reflects the fact that the zip codes with

the large drops in mobility did not necessarily experience fewer cases. Panel B shows that

there is next to no relationship during the first period. This coefficient drops during the

second period , showing a significant negative coefficient on mobility. As we find it difficult
3In the conventional SIR model, the rate of new infections depends on the product of the fractions of
infected and susceptibles (Kermack and McKendrick 1927).
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to imagine how reduced mobility could have increased the spread of COVID-19, we interpret

this to mean that mobility shut down in places where COVID-19 cases were errupting.

Those fears of reverse causality inspire the remaining regressions. Table 3 column (2)

shows results with our two instruments and no other controls. The effect is striking. If this

coefficient were correct, then a 10pp drop in trips is associated with a 0.87 log point decrease

in COVID-19 cases. Panel B shows that the effect is stronger in the first half of the sample

than in the second half of the sample. This specification is comparable to the cross-sectional

results above with no other controls. In both cases, the correlation between our instruments

and the demographic variables is surely biasing this coefficient upwards.

Column (3) includes our three demographic controls. As expected, the coefficient drops

and is in line with our previous results, and is significant at the 1% level. A ten percentage

point fall in trips is associated with a 0.29 log point decline in cases per capita. The estimated

coefficient is about fifty percent large in the first half of the sample relative to the second

half of the sample.

Column (4) includes fixed effects for the five boroughs of New York City. The coefficients

increase relative to column (3) without these borough controls. Controlling for borough

causes the estimate for income to fall, because boroughs are strongly correlated with income

and appear to have an independent impact on cases. As the estimate for income falls, the

estimate for mobility rises.

The fifth and sixth columns show our results including zip code fixed effects. These

effects absorb all of the cross-sectional variation across the city, and as in column (1), they

essentially cause the coefficient to drop to zero. We include results with both instruments,

and for the telecommuting instrument alone. We are most comfortable with our results

for the entire period shown in the top panel, but when we include both instruments the

first stage F-statistic falls to a worrying 1.9. With only the telecommuting instrument, the

F-statistic remains at 4.4, marginally better, with the point estimate significant at the 5%

level.

In the fifth column, we estimate a coefficient of 0.01 and in the sixth column, we estimate a

coefficient of 0.016, the only one to be statistically significant. Both are similar in magnitude

and comparable to earlier results, suggesting an elasticity of cases with respect to trips of
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Table 3: NYC Panel Results: SafeGraph Trips

(1) (2) (3) (4) (5) (6)
ln(Newit)

OLS
ln(Newit)

IV
ln(Newit)

IV
ln(Newit)

IV
ln(Newit)

IV
ln(Newit)

IV
Panel A: Full Sample

%∆Tripsi,t−2 -0.00170 0.0869∗∗∗ 0.0288∗∗∗ 0.0381∗∗∗ 0.00996 0.0161∗∗

(0.00194) (0.00524) (0.00679) (0.00590) (0.00714) (0.00769)
Root MSE 0.382 0.769 0.509 0.501 0.386 0.392
Observations 2045 2045 2045 2045 2045 2045
First Stage F-Stat. 2446.3 274.5 155.1 97.98 1.949 4.382

Panel B: Split Sample (2020w11 - 2020w17 vs. 2020w18 - 2020w23)

%∆Tripsi,t−2 0.000389 0.114∗∗∗ 0.0424∗∗∗ 0.0619∗∗∗ 0.0317∗∗∗ 0.0236∗∗

×1stHalf (0.00201) (0.0107) (0.00908) (0.00865) (0.00884) (0.00916)

%∆Tripsi,t−2 -0.00427∗ 0.0716∗∗∗ 0.0239∗∗∗ 0.0277∗∗∗ 0.00273 0.0128
×2ndHalf (0.00238) (0.00592) (0.00717) (0.00647) (0.00724) (0.00801)

Root MSE 0.381 0.822 0.527 0.536 0.407 0.396
Observations 2045 2045 2045 2045 2045 2045
First Stage F-Stat. 2297.3 129.9 117.1 65.34 11.27 3.314

Controls

%AfricanAmericani X X
ln(Agei) X X
ln(Inci) X X

Fixed Effects

Zipi X X X
Boroughi X
Weekt X X X X X X

Instrument(s)

ShareTelei ×Weekt X X X X X X
ShareEssi ×Weekt X X X X X
Notes: NYC panel results using SafeGraph trips from home. Dependent variable is log of new cases per
capita in zip code i in week t. Panels A shows results for the full panel, reporting β from Equation (1)
in the first column, with versions of Equation (2.2) in columns (2)-(6): ln(NewCasesit) = β ̂%∆Tripsi +
zipi + weekt + εit. Panel B splits the time period in half, and interacts the coefficient of interest with
the two time periods, decomposing β into β1stHalf , β2ndHalf . Columns (2)–(5) use both the telework and
essential share instuments. Robust standard errors in parentheses.
Significance: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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around one.

Breaking the sample into halves, the coefficients are significant and positive in the first

period. The coefficients for the second half are not significantly different from 0. One

interpretation of these results is that the mobility drove COVID-19 contagion through the

end of April. After residents spent significant time without leaving home, mobility no longer

drove contagion.

In Table 4, we turn to our results using New York City turnstile data. It is tempting to

view this as providing an independent measure of the impact of public transportation trips,

as opposed to all types of mobility. That view is tenable with the ordinary least squares

results, if those results are not biased by reverse causality. That view is not tenable with

our instrumental variable results, because we use the same instruments used for Safegraph

mobility. We believe that using the same instruments for different variables is reasonable,

as both variables are imperfect attempts to measure mobility.

Column (1) shows our ordinary least squares results with zip code fixed effects. The

coefficient is positive and statistically significant, but modest in magnitude over the entire

sample, 1st and 2nd halves. A ten percentage point fall in public transit trips is associated

with 0.035 log points fewer COVID-19 cases.

Columns (2)–(4) show instrumental variables results without zip code fixed effects that

closely parallel those found in columns (2)–(4) of Table 3. Across the entire time period, the

coefficients with no controls in column (2) are about 0.08, as in Table 3, and the coefficients

in (3) and (4) around both around 0.04. The results are quite similar in both the first half

and the second half of the sample period, and they are uniformly stronger than those using

the Safegraph data. It could be that the Turnstiles data captures a riskier form of mobility,

perhaps due to trip duration or shared mode, or that the zip codes with subway stations

have more people travelling in them or different levels of infection.

In columns (5) and (6), we show results with zip code fixed effects. As in Table 3, we

show results using both instruments and only the telecommuting instrument. In this case,

the results are quite similar. The coefficients for the overall period are 0.032 and 0.034, and

significant at the 1% level. These imply a quite large impact of reducing trips. A 10pp

reduction in trips is associated with a 0.33 log point fall in COVID-19 cases.
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Table 4: NYC Panel Results: MTA Turnstile Trips

(1) (2) (3) (4) (5) (6)
ln(Newit)

OLS
ln(Newit)

IV
ln(Newit)

IV
ln(Newit)

IV
ln(Newit)

IV
ln(Newit)

IV
Panel A: Full Sample

%∆Tripsi,t−2 0.00353∗∗∗ 0.0748∗∗∗ 0.0462∗∗∗ 0.0417∗∗∗ 0.0315∗∗∗ 0.0339∗∗∗

(0.00121) (0.00476) (0.00659) (0.00659) (0.00736) (0.00865)
Root MSE 0.417 0.828 0.623 0.579 0.482 0.493
Observations 1523 1523 1523 1523 1523 1523
First Stage F-Stat. 1417.2 247.0 109.3 54.87 18.36 15.40

Panel B: Split Sample (2020w11 - 2020w17 vs. 2020w18 - 2020w23)

%∆Tripsi,t−2 0.00288∗∗ 0.0645∗∗∗ 0.0430∗∗∗ 0.0383∗∗∗ 0.0316∗∗∗ 0.0353∗∗∗

×1stHalf (0.00120) (0.00569) (0.00654) (0.00644) (0.00734) (0.00876)

%∆Tripsi,t−2 0.00557∗∗ 0.0957∗∗∗ 0.0606∗∗∗ 0.0563∗∗∗ 0.0404∗∗∗ 0.0591∗∗∗

×2ndHalf (0.00222) (0.00694) (0.00935) (0.00912) (0.0114) (0.0152)
Root MSE 0.417 0.839 0.642 0.597 0.492 0.537
Observations 1523 1523 1523 1523 1523 1523
First Stage F-Stat. 1320.1 159.3 93.70 44.41 9.310 8.845

Controls

%AfricanAmericani X X
ln(Agei) X X
ln(Inci) X X

Fixed Effects

Zipi X X X
Boroughi X
Weekt X X X X X X

Instrument(s)

ShareTelei ×Weekt X X X X X X
ShareEssi ×Weekt X X X X X
Notes: NYC panel results using MTA turnstile trips in a given residential zip code. Dependent variable is
log of new cases per capita in zip code i in week t. Panels A shows results for the full panel, reporting β from
Equation (1) in the first column, with versions of Equation (2.2) in columns (2)-(6): ln(NewCasesit) =
β ̂%∆Tripsi + zipi + weekt + εit. Panel B splits the time period in half, and interacts the coefficient of
interest with the two time periods, decomposing β into β1stHalf , β2ndHalf . Columns (2)–(5) use both the
telework and essential share instuments. Robust standard errors in parentheses.
Significance: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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6 Conclusion

Research is at an early stage on the progress of COVID-19 across America. Yet we already

have plausible sources of variation in the behavior of different parts of the population. Some

industries comfortably worked from home. Others could not and have braved exposure to

COVID-19 to earn a living. In this paper, we used variation in that industrial mix to estimate

the impact that mobility had on COVID-19 case rates.

Our estimates were not uniform. The measured effects of mobility were larger in New

York, Boston and Philadelphia. They were smaller in Atlanta and Chicago. Moving around

New York appears to have been riskier in March and early April than in May. Nonetheless,

our estimates paint a consistent picture that mobility led to more COVID-19 exposure.

Moreover, almost all estimates imply an elasticity greater than one, so that a 10pp drop in

trips lead to a 0.1 log point or more reduction in COVID-19 cases per capita.

We do not claim these large effects would hold in different settings or when people wear

masks and gloves while traveling. We hope these results may help future cost-benefit analyses

around lockdown policies, but no policy implications follow directly from them. They simply

remind us that people whose jobs required them to leave their homes were more likely to get

COVID-19, and – at least in New York City – they were more likely to die.
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A Appendix Tables & Figures

Table A1: Summary Statistics

Variable Mean St.Dev.

Panel A: All 5 Cities
TotalCasesi 758 710
TripspreCOV ID

i 2682 3110
TripsCOV ID

i 803 1119
%∆Tripsi -70 13
ShareTelei 0.41 0.04
ShareEssi 0.71 0.02
Popi 41,387 22,083
Agei 37 5
Inci 87,026 43,312
%AfricanAmericani 0.24 0.28

Observations 448

Panel B: NYC SafeGraph Panel
NewCasesit 69 108
%∆Tripsit−2 -63 26
ShareTelei 0.42 0.04
ShareEssi 0.72 0.02
Popi 51,887.44 24,919
Agei 38 5
Inci 82,318 46,052
%AfricanAmericani 0.24 0.25

Observations 2045

Panel C: NYC Turnstile Panel
NewCasesit 71 111
%∆Tripsi,t−2 -70 31
ShareTelei 0.43 0.05
ShareEssi 0.72 0.02
Popi 54,946 25,559
Agei 36 4
Inci 87,880 58,057
%AfricanAmericani 0.21 0.22

Observations 1523
Notes: Case data from specific cities’ or counties’ health departments as in Section 2. Trips pre- and during
COVID-19 from SafeGraph. Share telecommute and share essential as in Sections 2 and 3.1. Population,
age, income and share African American from 2018 ACS data. Panel A uses cross-sectional data for all
zips in the 5 cities. Panel B uses all zip codes in NYC from 2020w11 - 2020w23. Panel C uses all zip codes
with subway turnstiles in NYC from 2020w11 - 2020w23.
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Table A2: Industries and Codes Available in Zip Level ACS Employment Data

ACS Indsutry Description Associated NAICS Codes
Agriculture, forestry, fishing and hunting, and mining 11, 21
Transportation and warehousing, and utilities 22, 48-49
Construction 23
Manufacturing 31-33
Wholesale trade 42
Retail trade 44-45
Information 51
Finance and insurance, 52, 53

and real estate and rental and leasing
Professional, scientific, and management 54, 55, 56

and administrative and waste management services
Educational services, and health care and social assistance 61, 62
Arts, entertainment, and recreation, 71, 72

and accommodation and food services
Other services (except public administration) 81

Notes: This tables shows the mapping between industry titles available in the zip code level data from the
ACS on residents’ employment by industry, and their asocciated NAICS codes.
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Table A3: NYC Cases by Borough

(1) (2) (3) (4) (5) (6)
ln(Casesi)

NYC
ln(Casesi)
The Bronx

ln(Casesi)
Brooklyn

ln(Casesi)
Manhattan

ln(Casesi)
Queens

ln(Casesi)
Staten Island

Panel A: OLS

%∆Tripsi 0.00963∗∗∗ -0.00154 0.0172∗∗ -0.00630 -0.00362 -0.00929∗

(0.00345) (0.00544) (0.00761) (0.00954) (0.00638) (0.00370)
R-Sq. 0.436 0.635 0.534 0.622 0.262 0.886
Obs. 159 20 34 32 48 10

Panel B: Reduced form IV

ShareTelei -2.761∗∗∗ -1.789 3.200∗∗ -3.648∗∗ -3.266∗ -1.976
(0.817) (1.217) (1.473) (1.454) (1.637) (3.035)

ShareEssi 9.188∗∗∗ -0.593 9.808∗∗∗ 8.105∗∗∗ 6.720∗∗ -5.566
(1.103) (2.227) (1.912) (2.476) (2.557) (9.172)

R-Sq. 0.675 0.695 0.698 0.725 0.436 0.752
Obs. 159 20 34 32 48 10

Panel C: IV

̂%∆Tripsi 0.0605∗∗∗ -0.000431 0.0435∗∗ 0.123 0.0288∗∗ -0.00314
(0.0126) (0.00626) (0.0202) (0.128) (0.0124) (0.00580)

Root MSE 0.443 0.0754 0.252 0.576 0.299 0.0473
Obs. 159 20 34 32 48 10
F-Stat. 35.39 8.172 7.874 2.891 7.908 15.10

Controls

%AfAmi X X X X X X
ln(Agei) X X X X X X
ln(Inci) X X X X X X
Notes: This table is analogous to Table 2 in the main text, but compares cases across boroughs in
NYC instead of different cities. Panels A shows results from Equation (1). Panel B shows the reduced
form IV regression results from ln(TotalCasesi) = α + β1ShareTelei + β2ShareEssi + ΓXi + εi. Panel
C shows results from Equation (1.2), adding additional demographic controls, Xi: ln(TotalCasesi) =
α+ β ̂%∆Tripsi + ΓXi + εi. Robust standard errors in parentheses.
Significance: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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Table A4: NYC Deaths by Borough

(1) (2) (3) (4) (5) (6)
ln(Deathsi)

NYC
ln(Deathsi)
The Bronx

ln(Deathsi)
Brooklyn

ln(Deathsi)
Manhattan

ln(Deathsi)
Queens

ln(Deathsi)
Staten Island

Panel A: OLS

%∆Tripsi -0.00466 -0.0138 0.00189 0.00133 -0.00110 -0.0338∗∗

(0.00434) (0.0160) (0.00892) (0.0154) (0.00959) (0.0103)
R-Sq. 0.476 0.404 0.691 0.638 0.269 0.796
Obs. 159 20 34 32 48 10

Panel B: Reduced form IV

ShareTelei -0.313 -2.949 3.813∗∗∗ -3.271 -0.626 -1.585
(1.301) (3.656) (1.313) (2.019) (3.082) (14.53)

ShareEssi 5.145∗∗ -3.123 7.134∗∗∗ 15.06∗∗∗ 8.396 -34.22
(2.108) (8.025) (2.363) (4.992) (5.496) (22.10)

R-Sq. 0.507 0.419 0.755 0.745 0.337 0.711
Obs. 159 20 34 32 48 10

Panel C: IV

̂%∆Tripsi 0.0269∗∗ -0.00470 0.0287 0.190 0.0261 -0.0426∗

(0.0117) (0.0216) (0.0190) (0.167) (0.0185) (0.0220)
Root MSE 0.405 0.217 0.282 0.855 0.386 0.207
Obs. 159 20 34 32 48 10
F-Stat. 40.36 3.075 9.995 3.827 4.667 7.291

Controls

%AfAmi X X X X X X
ln(Agei) X X X X X X
ln(Inci) X X X X X X
Notes: This table is analogous to Table 2 in the main text, but compares deaths across boroughs in
NYC instead of different cities. Panels A shows results from Equation (1). Panel B shows the reduced
form IV regression results from ln(TotalDeathsi) = α+ β1ShareTelei + β2ShareEssi + ΓXi + εi. Panel
C shows results from Equation (1.2), adding additional demographic controls, Xi: ln(TotalDeathsi) =
α+ β ̂%∆Tripsi + ΓXi + εi. Robust standard errors in parentheses.
Significance: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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Figure A1: Correlation between Travel Change and COVID-19 Cases per Person in NYC
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Source: Cases per person from NYC Health Department, available at https://www1.nyc.gov/site/doh/
covid/covid-19-data.page. % Change in trips from SafeGraph Weekly Patterns Data, using visitors
traveling from home. % Change in trips calculated between May 13-19, 2019 and May 4-10, 2020.
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Figure A2: A visual first stage
Travel Change and Instruments in NYC
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(b) % ∆ in Trips vs. ShareTeleworki

Source: % Change in trips from SafeGraph Weekly Patterns Data, using visitors traveling from home.
% Change in trips calculated between May 13-19, 2019 and May 4-10, 2020. Share Essential workers
calculated from DE and MN 4-digit NAICS essential industries. Share Telework created at the zip level
using data from Dingel and Neiman (2020) weighted by local neighborhood employment composition.
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