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A Introduction
In this Online Appendix, we report the detailed derivations for our baseline model with a single

traded sector from Section 2 of the paper.

B Baseline Dynamic Spatial Model
The model environment is summarized in Table 1 in the paper. We begin by providing additional

derivations for capital accumulation decisions.

B.1 Capital Accumulation
Combining landlords’ intertemporal utility (5) and budget constraint (6), the landlord’s intertem-

poral optimization problem is:

max
{ckt+s,kt+s+1}∞

s=0

Et
∞∑
s=0

βt+s
(
ckit+s

)1−1/ψ

1− 1/ψ
, (B.1)

subject to pitc
k
it + pit (kit+1 − (1− δ) kit) = ritkit.

Lemma. (Lemma 1 in the paper) We denoteRit ≡ 1− δ+rit/pit as the gross return on capital. The
optimal consumption of location i’s landlords satis�es cit = ςitRitkit, where ςit is de�ned recursively
as

ς−1
it = 1 + βψ

(
Et
[
R

ψ−1
ψ

it+1ς
− 1
ψ

it+1

])ψ
.

Landlord’s optimal saving and investment satis�es kit+1 = (1− ςit)Ritkit.
∗
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Proof. For notational simplicity we drop the locational subscript. Consider a landlord facing lin-

ear returns Rt on wealth kt for all t. Let v (kt; t) denote the value function at time t; we can

rewrite the landlord’s consumption-saving problem recursively as:

v (kt; t) = max
{ct,kt+1}

c
1−1/ψ
t

1− 1/ψ
+ βEtv (kt+1; t+ 1) s.t. ct + kt+1 = Rtkt,

where, with a slight abuse of notation, we denote landlord consumption as c instead of ck for the

purpose of this proof. We guess-and-verify that there exists at, ςt such that v (k; t) = (atRtkt)
1−1/ψ

1−1/ψ
,

and that optimal ct = ςtRtkt.

Under the conjecture, vk (kt; t) =
a

1−1/ψ
t R

1−1/ψ
t k

−1/ψ
t

1−1/ψ
, we set up the Lagrangian as:

Lt =
c

1−1/ψ
t

1− 1/ψ
+ βEtv (kt+1; t+ 1) + ξt [Rtkt − ct − kt+1] .

The �rst-order conditions imply:

{ct} c
−1/ψ
t = ξt,

{kt+1} ξt = βk
−1/ψ
t+1 Et

[
a

1−1/ψ
t+1 R

1−1/ψ
t+1

]
.

Hence:

ct = β−ψkt+1Et
[
a

1−1/ψ
t+1 R

1−1/ψ
t+1

]−ψ
. (B.2)

The Envelope condition vk (kt; t) = ξtRt implies

a
1−1/ψ
t R

1−1/ψ
t k

−1/ψ
t = c

−1/ψ
t Rt. (B.3)

Substituting our guess that ct ≡ ςtRtkt into the Envelope condition (B.3), we obtain:

a1−ψ
t = ςt.

The budget constraint implies kt+1 = (1− ςt)Rtkt, and substituting this result into (B.2), we get:

ςt = β−ψEt
[
a

1−1/ψ
t+1 R

1−1/ψ
t+1

]−ψ
(1− ςt)

⇐⇒ ς−1
t = 1 + βψEt

[
R

ψ−1
ψ

t+1 ς
−1/ψ
t+1

]ψ
. (B.4)

In the special case of logarithmic �ow utility (ψ = 1), landlord’s optimal consumption and saving

rate is independent of future returns to capital, and ςt = (1− β) for all t, as in Moll (2014).

B.2 Existence and Uniqueness (Proof of Proposition 1 in the Paper)
We now use the system of general equilibrium equations (10)-(16) in the paper to characterize the

existence and uniqueness of a deterministic steady-state equilibrium with time-invariant funda-

mentals {zi, bi, τni, κni} and endogenous variables {v∗i , w∗i , R∗i , `∗i , k∗i }. Given these time-invariant

fundamentals, we can drop the expectation over future fundamentals, such that Etvwgt+1 = vwgt+1.
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B.2.1 Capital Labor Ratio

In steady-state, kit+1 = kit = k∗i , ckit+1 = ckit = ck∗i , and ςit+1 = ςit = ς∗i , which implies: 1−ς∗i = β.
Using these results and the capital accumulation condition in equation (11) in the paper, we can

solve for the steady-state capital-labor ratio:

k∗i
`∗i

=
β

1− β (1− δ)
1− µ
µ

w∗i
p∗i
. (B.5)

B.2.2 Price Index

Using this result for the steady-state capital-labor ratio, we can re-write the price index in equa-

tion (10) in the paper as follows:

(p∗n)−θ =
N∑
i=1

ψτ̃ni (w
∗
i )
−θµ (p∗i )

−θ(1−µ) , (B.6)

ψ ≡
(

1− β (1− δ)
β

)−θ(1−µ)

, τ̃ni ≡ (τni/zi)
−θ .

B.2.3 Goods Market Clearing Condition

Using this result for the steady-state capital-labor ratio, we can also re-write the goods market

clearing condition in equation (12) in the paper as follows:

`∗i (w∗i )
1+θµ (p∗i )

θ(1−µ) =
N∑
n=1

ψτ̃ni (p
∗
n)θ w∗n`

∗
n. (B.7)

B.2.4 Value Function

The value function in equation (14) in the paper can be re-written as follows:

exp

(
β

ρ
vw∗n

)
=

(
w∗n
p∗n

)β/ρ
φβn, φn ≡

N∑
g=1

κ̃gn exp

(
β

ρ
vw∗g

)
. (B.8)

Using this solution in the de�nition of φn immediately above, we have:

φn =
N∑
g=1

κ̃gn
(
p∗g
)−β/ρ (

w∗g
)β/ρ

φβg . (B.9)

B.2.5 Population Flow Condition

The population �ow condition in equation (15) in the paper can be re-written as follows:

`∗g =
N∑
i=1

κ̃gi exp

(
β

ρ
vw∗g

)
φ−1
i `∗i , φi ≡

N∑
m=1

κ̃mi exp

(
β

ρ
vw∗m

)
.
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Now using the value function result (B.8) above, we have:

(
p∗g
)β/ρ (

w∗g
)−β/ρ

`∗gφ
−β
g =

N∑
i=1

κ̃gi`
∗
iφ
−1
i . (B.10)

B.2.6 System of Equations

Collecting together these results, the steady-state equilibrium of the model {p∗i , w∗i , `∗i , φ∗i } can

be expressed as the solution to the following system of equations:

(p∗i )
−θ =

N∑
n=1

ψτ̃in (p∗n)−θ(1−µ) (w∗n)−θµ , (B.11)

(p∗i )
θ(1−µ) (w∗i )

1+θµ `∗i =
N∑
n=1

ψτ̃ni (p
∗
n)θ w∗n`

∗
n, (B.12)

(p∗i )
β/ρ (w∗i )

−β/ρ `∗i (φ∗i )
−β =

N∑
n=1

κ̃in`
∗
n (φ∗n)−1 , (B.13)

φ∗i =
N∑
n=1

κ̃ni (p
∗
n)−β/ρ (w∗n)β/ρ (φ∗n)β , (B.14)

where we have the following de�nitions:

ψ ≡
(

1− β (1− δ)
β

)−θ(1−µ)

, τ̃ni ≡ (τni/zi)
−θ , φ∗i ≡

N∑
n=1

κ̃ni exp

(
β

ρ
vw∗n

)
, κ̃in ≡

(
κin/b

β
n

)−1/ρ
.

We now provide a su�cient condition for the existence of a unique steady-state equilibrium in

terms of the properties of a coe�cient matrix (A) of model parameters {ψ, θ, β, ρ, µ, δ} following

the approach of Allen, Arkolakis and Li (2020).

Proposition. Existence andUniqueness (Proposition 1 in the paper). A su�cient condition for
the existence of a unique steady-state spatial distribution of economic activity {`∗i , k∗i , w∗i , R∗i , v∗i }
(up to a choice of units) given time-invariant locational fundamentals {z∗i , b

∗
i , τ

∗
ni, κ

∗
ni} is that the

spectral radius of a coe�cient matrix (A) of model parameters {ψ, θ, β, ρ, µ, δ} is less than or equal
to one.

Proof. We begin by deriving the su�cient condition for the existence a unique steady-state spatial

distribution of economic activity {`∗i , k∗i , w∗i , R∗i , v∗i }. The exponents on the variables on the left-

hand side of the system of equations (B.11)-(B.14) can be represented as the following matrix:

Λ =


−θ 0 0 0

θ (1− µ) (1 + θµ) 1 0
β/ρ −β/ρ 1 −β

0 0 0 1

 .
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The exponents on the variables on the right-hand side of the system of equations (B.11)-(B.14)

can be represented as the following matrix:

Γ =


−θ (1− µ) −θµ 0 0

θ 1 1 0
0 0 1 −1
−β/ρ β/ρ 0 β

 .
Let A ≡ |ΓΛ−1| and denote the spectral radius (eigenvalue with the largest absolute value) of

this matrix by ρ (A). From Theorem 1 in Allen, Arkolakis and Li (2020), a su�cient condition for

the existence of a unique equilibrium (up to a choice of units) is ρ (A) ≤ 1.

We next derive a sharper su�cient condition for the case of quasi-symmetric trade and migration

costs: τin = τ̃inτ̃
a
i τ̃

b
n and κin = κ̃inκ̃

c
i κ̃
d
n, where τ̃in = τ̃ni and κ̃in = κ̃ni, as assumed in our

empirical application. In this case of quasi-symmetric trade and migration costs, we can re-write

the system of equations (B.11)-(B.14) as follows:

p−θi (τ̃ai )−1 =
N∑
n=1

τ̃inτ̃
b
np
−θ
n q−θµn , (B.15)

pθ−1
i q1+θµ

i `i
(
τ̃ bi
)−1

=
N∑
n=1

τ̃inτ̃
a
np

θ−1
n qn`n, (B.16)

q
−β/ρ
i `iφ

−β
i (κ̃ci)

−1 =
N∑
n=1

κ̃inκ̃
d
n`nφ

−1
n , (B.17)

φi
(
κ̃di
)−1

=
N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n φβn. (B.18)

From equation (B.18), we know:

1 =
N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n φβn

φi
(
κ̃di
)−1 .

Multiply the left-hand side of equation (B.17) by

∑N
n=1

κ̃inκ̃
c
nq
β/ρ
n φβn

φi(κ̃di )
−1 , and move (κ̃ci)

−1 φ−βi q
−β/ρ
i to

the right-hand side to obtain:

N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n φβn

φi
(
κ̃di
)−1 `i =

N∑
n=1

κ̃inκ̃
c
iφ

β
i q

β/ρ
i

φn (κ̃dn)−1 `n,

⇐⇒ `iκ̃
d
i /φi∑N

n=1 κ̃in`nκ̃
d
n/φn

=
κ̃ciφ

β
i q

β/ρ
i∑N

n=1 κ̃inκ̃
c
nq

β/ρ
n φβn

.

Let γi ≡ `iκ̃
d
i /φi∑N

n=1 κ̃in`nκ̃
d
n/φn

, then:

`iκ̃
d
i /φi =

N∑
n=1

γiκ̃in`nκ̃
d
n/φn,

5



κ̃ciφ
β
i q

β/ρ
i =

N∑
n=1

γiκ̃inκ̃
c
nq

β/ρ
n φβn.

By the Perron-Frobenius theorem, `iκ̃
d
i /φi = xκ̃ciφ

β
i q

β/ρ
i for some constant x. Since the scale of

`i is not pinned down by the system of equations—if {`i} is part of a solution to the system of

equations, so is {2`i}—we can without loss of generality set x = 1. Hence:

`i = κ̃ci
(
κ̃di
)−1

φ1+β
i q

β/ρ
i . (B.19)

Now we use the same strategy to reduce equations (B.15) and (B.16) down to one. Re-write

equation (B.15) as:

1 =
N∑
n=1

τ̃inτ̃
b
np
−θ
n q−θµn

p−θi (τ̃ai )−1 .

Substitute (B.15) into equation (B.16), then multiply the left-hand side by

∑N
n=1

τ̃inτ̃
b
np
−θ
n q−θµn

p−θi (τ̃ai )
−1 :

N∑
n=1

τ̃inτ̃
b
np
−θ
n q−θµn

p−θi (τ̃ai )−1 pθ−1
i q

1+θµ+β/ρ
i φ1+β

i

(
τ̃ bi
)−1

κ̃ci
(
κ̃di
)−1

=
N∑
n=1

τ̃inτ̃
a
np

θ−1
n φ1+β

n q1+β/ρ
n κ̃cn

(
κ̃dn
)−1

,

⇐⇒
τ̃ai p

θ−1
i q

1+β/ρ
i φ1+β

i κ̃ci
(
κ̃di
)−1∑N

n=1 τ̃inτ̃
a
np

θ−1
n φ1+β

n q
1+β/ρ
n κ̃cn (κ̃dn)−1

=
τ̃ bi p
−θ
i q−θµi∑N

n=1 τ̃inτ̃
b
np
−θ
n q−θµn

.

Now let ϕi ≡
τ̃ai p

θ−1
i q

1+β/ρ
i φ1+β

i κ̃ci(κ̃di )
−1∑N

n=1 τ̃inτ̃
a
np
θ−1
n φ1+β

n q
1+β/ρ
n κ̃cn(κ̃dn)

−1 . We know:

τ̃ai p
θ−1
i q

1+β/ρ
i φ1+β

i κ̃ci
(
κ̃di
)−1

=
N∑
n=1

ϕiτ̃inτ̃
a
np

θ−1
n φ1+β

n q1+β/ρ
n κ̃cn

(
κ̃dn
)−1

,

τ̃ bi p
−θ
i q−θµi =

N∑
n=1

ϕiτ̃inτ̃
b
np
−θ
n q−θµn .

Again by the Perron-Frobenius theorem, τ̃ai p
θ−1
i q

1+β/ρ
i φ1+β

i κ̃ci
(
κ̃di
)−1

= yτ̃ bi p
−θ
i q−θµi for some

constant y. Since pi is a nominal variable, we can without loss of generality set y = 1. Hence:

pθ−1
i q

1+β/ρ
i φ1+β

i τ̃ai κ̃
c
i

(
κ̃di
)−1 (

τ̃ bi
)−1

= p−θi q−θµi ,

⇐⇒ p−θi = q
−θ 1+β/ρ+θµ

1−2θ

i φ
−θ 1+β

1−2θ

i ei, (B.20)

where ei ≡
(
τ̃ai κ̃

c
i

(
d̃di

)−1 (
τ̃ bi
)−1
) −θ

1−2θ

.

Now substitute (B.19) and (B.20) into (B.15) and (B.18):

q
−θ 1+β/ρ+θµ

1−2θ

i φ
−θ 1+β

1−2θ

i ei (τ̃
a
i )−1 =

N∑
n=1

τ̃inτ̃
b
nq
−θ 1+β/ρ+θµ

1−2θ
−θµ

n φ
−θ 1+β

1−2θ
n en,
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φi
(
κdi
)−1

=
N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n φβn.

We now have two sets of equations in two sets of endogenous variables qi, φi. We now again

apply Theorem 1 in Allen, Arkolakis and Li (2020) for this system of two equations:

Λ =

[
−θ 1+θµ+β/ρ

1−2θ
−θ 1+β

1−2θ

0 1

]
,

Γ =

[
−θ 1+θµ+β/ρ

1−2θ
− θµ −θ 1+β

1−2θ

β/ρ β

]
,

A ≡
∣∣ΓΛ−1

∣∣ =

∣∣∣∣∣
[

β+ρ+µρ−µρθ
β+ρ+µρθ

µρθ(β+1)
β+ρ+µρθ

β(2θ−1)
θ(β+ρ+µρθ)

β − β(β+1)
β+ρ+µρθ

]∣∣∣∣∣ .
A su�cient condition for a unique equilibrium is again that the spectral radius ofA is less than

or equal to one (ρ (A) ≤ 1), which is satis�ed for our baseline parameter values and symmetric

trade and migration costs in our empirical application.

B.3 Dynamic Exact-hat Algebra (Proof of Proposition 2 in the Paper)

Given an initial allocation of the economy

(
{li0}Ni=1 , {ki0}

N
i=1 , {ki1}

N
i=1 , {Sni0}

N
n,i=1 , {Dni,−1}Nn,i=1

)
,

and an anticipated sequence of changes in fundamentals,{
{żit}Ni=1 ,

{
ḃit

}N
i=1

, {τ̇ijt}Ni,j=1 , {κ̇ijt}
N
i,j=1

}∞
t=1

, the solution to the sequential equilibrium

in time di�erences solves the following system of nonlinear equations:

Ḋigt+1 =
u̇gt+2/ (κ̇git+1)1/ρ∑N

m=1Dimtu̇mt+2/ (κ̇mit+1)1/ρ
,

u̇it+1 =

(
ḃit+1

ẇit+1

ṗit+1

)β
ρ

(
N∑
g=1

Digtu̇gt+2/ (κ̇git+1)
1
ρ

)β

,

ṗit+1 =

(
N∑
m=1

Simt

(
τ̇imt+1ẇmt+1

(
l̇mt+1/k̇mt+1

)1−µ
/żmt+1

)−θ)−1/θ

,

`gt+1 =
N∑
i=1

Digt`it,

ẇit+1
˙̀
it+1 =

N∑
n=1

Snit+1wnt`nt∑N
k=1 Skitwkt`kt

ẇnt+1
˙̀
nt+1,
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Ṡnit+1 ≡

(
τ̇nit+1ẇit+1

(
l̇it+1/k̇it+1

)1−µ
/żit+1

)−θ
∑N

k=1 Snkt

(
τ̇nkt+1ẇkt+1

(
l̇kt+1/k̇kt+1

)1−µ
/żkt+1

)−θ ,
ςit+1 = βψRψ−1

it+1

ςit
1− ςit

,

kit+1 = (1− ςit)Ritkit,

(Rit − (1− δ)) =
ṗit+1k̇it+1

ẇit+1l̇it+1

(Rit+1 − (1− δ)) ,

where we de�ne uit ≡ exp
(
β
ρ
vwit

)
,
1

and we use a dot above a variable to denote a time di�erence:

ẋit+1 = xit+1/xit. Note that the solution to this system of equations does not require information

on the level of fundamentals,

{
{zit}Ni=1 , {bit}

N
i=1 , {τijt}

N
i,j=1 , {κijt}

N
i,j=1

}∞
t=0

.

B.4 Linearization
We now derive our main linearization results for the comparative statics of the economy’s steady-

state and its transition path.

B.4.1 Comparative Statics

Expenditure Shares Totally di�erentiating expenditure shares (snt), we get:

d lnSnit = θ

(
N∑
h=1

Snht d ln pnht − d ln pnit

)
. (B.21)

Prices Totally di�erentiating the pricing rule from equation (2) in the paper, using equations

(9) and (2) in the paper, we have:

d ln pnit = d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit. (B.22)

Price Indices Totally di�erentiating the price index in equation (4) in the paper, we have:

d ln pnt =
N∑
m=1

Snmt d ln pnmt. (B.23)

Real Income. Totally di�erentiating real income we have:

d ln

(
wit
pit

)
= d lnwit −

N∑
m=1

Snmt [ d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt] , (B.24)

1
Note that we express the set of equilibrium conditions in terms of transformed workers utility uit ≡ exp

(
β
ρ v

w
it

)
,

whereas in Caliendo et al. (2018), the equilibrium conditions are expressed in terms of exp (vwit).
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Migration Shares Totally di�erentiating the outmigration share in equation (16) in the paper,

we get:

d lnDigt =
1

ρ

[
(βEt dvgt+1 − d lnκgit)−

N∑
h=1

Diht (βEt dvht+1 − d lnκhit)

]
. (B.25)

Goods Market Clearing Totally di�erentiating the goods market clearing condition from

equation (12) in the paper, and using equations (B.21) and (B.22), we have:

[
d lnwit

+ d ln `it

]
=


∑N
n=1 Tint ( d lnwnt + d ln `nt)

+θ
∑N
n=1

∑N
m=1 TintSnmt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

−θ
∑N
n=1 Tint ( d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit)

 . (B.26)

Tint ≡
Snitwnt`nt
wit`it

.

Population Flow. Totally di�erentiating the population �ow condition in equation (15) in the

paper we have:

d ln `gt+1 =

N∑
i=1

Egit

[
d ln `it +

1

ρ

(
βEt dvgt+1 − d lnκgi −

N∑
m=1

Dimt (βEt dvmt+1 − d lnκmit)

)]
. (B.27)

Value Function. Totally di�erentiating the value function, we have:

dvit = −1

θ
d lnSiit + d lnwit − d ln piit + d ln bit + βEt dvit+1 − ρ d lnDiit.

Using the total derivatives of d lnSiit and d lnDiit in this expression for dvit above, we have:

dvit =

[
d lnwit −

∑N
m=1 Simt d ln pimt

+ d ln bit +
∑N

m=1Dimt (βEt dvmt+1 − d lnκmit)

]
,

where we have used d lnκiit = 0. Using the total derivative of the pricing rule (B.22), we can

re-write this derivative of the value function as follows:

dvit =

[
d lnwit −

∑N
m=1 Simt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

+ d ln bit +
∑N
m=1Dimt (βEt dvmt+1 − d lnκmit)

]
. (B.28)

B.4.2 Steady-State Su�cient Statistics

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kit+1 = kit = k∗i , `it+1 = `it = `∗i , w
∗
it+1 = w∗it = w∗i and v∗it+1 = v∗it = v∗i , where

we use an asterisk to denote a steady-state value, and drop the time subscript for the remainder of

this subsection, since we are concerned with steady-states. We consider small shocks to produc-

tivity ( d lnz) and amenities ( d ln b) in each location, holding constant the economy’s aggregate

labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and commuting costs ( d lnκ = 0).
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Capital Accumulation. From the capital accumulation equation (11) in the paper, the steady-

state stock of capital solves:

(1− β (1− δ))χ∗i = (1− β (1− δ)) k
∗
i

`∗i
= β

1− µ
µ

w∗i
p∗i
.

Totally di�erentiating, we have:

d lnχ∗i = d ln

(
w∗i
p∗i

)
.

Using the total derivative of real income (B.24) above, this becomes:

d lnχ∗i = d lnw∗i −
N∑
m=1

S∗im [ d lnw∗m − (1− µ) d lnχ∗m − d ln zm] ,

where we have used and d ln τnm = 0. This relationship has the matrix representation:

(I − (1− µ)S) d lnχ∗ = (I − S) d lnw∗ + S d lnz. (B.29)

Goods Market Clearing. The total derivative of the goods market clearing condition (B.26)

has the following matrix representation:

d lnwt + d ln `t = T ( d lnwt + d ln `t) + θ (TS − I) ( d lnwt − (1− µ) d lnχt − d lnz) ,

where we have used d ln τ = 0. We can re-write this relationship as:

[I − T + θ (I − TS)] d lnwt = − (I − T ) d ln `t + θ (I − TS) ( d ln z + (1− µ) d lnχt) .

In steady-state we have:

[I − T + θ (I − TS)] d lnw∗ = [− (I − T ) d ln `∗ + θ (I − TS) ( d ln z + (1− µ) d lnχ∗)] . (B.30)

Population Flow. The total derivative of the population �ow condition (B.27) has the following

matrix representation:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED) dvt+1.

In steady-state, we have:

d ln `∗ = E d ln `∗ +
β

ρ
(I −ED) dv∗. (B.31)

Value function. The total derivative of the value function (B.28) has the following matrix rep-

resentation:

dvt = (I − S) d lnwt + S ( d ln z + (1− µ) d lnχt) + d ln b+ βD dvt+1,

where we have used d ln τ = d lnκ = 0. In steady-state, we have:

dv∗ = (I − S) d lnw∗ + S ( d ln z + (1− µ) d lnχ∗) + d ln b+ βD dv∗. (B.32)
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System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = (I − (1− µ)S)
−1

((I − S) d lnw∗ + S d lnz) . (B.33)

d lnw∗ = (I − T + θ (I − TS))
−1

(− (I − T ) d ln `∗ + (I − TS) θ ( d ln z + (1− µ) d lnχ∗)) . (B.34)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (B.35)

dv∗ = (I − βD)
−1 {d lnw∗ − S ( d lnw∗ − d lnz − (1− µ) d lnχ∗) + d ln b} . (B.36)

B.4.3 Steady-State Elasticities

We now use equation (B.33) to substitute for d lnχ∗ in the value function (B.36) to obtain:

dv∗ = (I − βD)
−1 { d lnw∗ − S ( d lnw∗ − d lnz − (1− µ) d lnχ∗) + d ln b} , (B.37)

= (I − βD)
−1 {(I − S) d lnw∗ + S d lnz + S (1− µ) d lnχ∗ + d ln b} ,

= (I − βD)
−1
(
I + S (1− µ) (I − (1− µ)S)

−1
)

[(I − S) d lnw∗ + S d lnz + d ln b] ,

= (I − βD)
−1
[

d ln b+ (I − (1− µ)S)
−1

((I − S) d lnw∗ + S d lnz)
]
.

We now use equation (B.33) to substitute for d lnχ∗ in the wage equation (B.34) to obtain:

(I − T + θ (I − TS)) d lnw∗ = − (I − T ) d ln `∗ + (I − TS) θ ( d ln z + (1− µ) d lnχ∗) ,

(I − T + θ (I − TS)) d lnw∗ =

[
− (I − T ) d ln `∗ + (I − TS) θ d lnz

+ (I − TS) θ (1− µ) (I − (1− µ)S)
−1

((I − S) d lnw∗ + S d lnz)

]
,

(I − T + θ (I − TS)) d lnw∗ =

[
− (I − T ) d ln `∗ + (I − TS) θ

(
I + (I − (1− µ)S)

−1
(1− µ)S

)
d lnz

+ (I − TS) θ (1− µ) (I − (1− µ)S)
−1

(I − S) d lnw∗

]
,

(I − T + θ (I − TS)) d lnw∗ = − (I − T ) d ln `∗ + (I − TS) θ ( d ln z + (1− µ) dχ∗)

= − (I − T ) d ln `∗ + (I − TS) θ d lnz

+ (I − TS) θ (1− µ) (I − (1− µ)S)
−1

((I − S) d lnw∗ + S d lnz)

= − (I − T ) d ln `∗ + (I − TS) θ
(
I + (I − (1− µ)S)

−1
(1− µ)S

)
d lnz

+ (I − TS) θ (1− µ) (I − (1− µ)S)
−1

(I − S) d lnw∗

(
I − T + θ (I − TS)

(
I − (1− µ) (I − (1− µ)S)

−1
(I − S)

))
d lnw∗

= − (I − T ) d ln `∗ + θ (I − TS) (I − (1− µ)S)
−1

d lnz,

(
I − T + θ (I − TS)

(
(I − (1− µ)S)

−1 − (1− µ) (I − (1− µ)S)
−1
))

d lnw∗

= − (I − T ) d ln `∗ + θ (I − TS) (I − (1− µ)S)
−1

d lnz,

(
I − T + θ (I − TS)µ (I − (1− µ)S)

−1
)

d lnw∗

= − (I − T ) d ln `∗ + θ (I − TS) (I − (1− µ)S)
−1

d lnz. (B.38)
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Collecting together the capital accumulation equation (B.33), the population equation (B.35), the

value function (B.37) and the wage equation (B.38), we have:

dv∗ = (I − βD)
−1
[

d ln b+ (I − (1− µ)S)
−1

((I − S) d lnw∗ + S d lnz)
]
, (B.39)

d lnw∗ =
[
I − T + θ (I − TS)µ (I − (1− µ)S)

−1
]−1 [ − (I − T ) d ln `∗

+θ (I − TS) (I − (1− µ)S)
−1

d lnz

]
, (B.40)

d lnχ∗ = (I − (1− µ)S)
−1

[(I − S) d lnw∗ + S d lnz] , (B.41)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (B.42)

We now show that we can further simplify this system of equations. We begin by de�ning the

following composite matrices:

G ≡ (I −E)−1 (I −ED) (I − βD)−1 , (B.43)

O ≡ (I − (1− µ)S)−1 ,

M ≡ (TS − I) .

which implies the following relationships:

I + (1− µ)SO = O,

I − (1− µ)O (I − S) = I + (1− µ)OS − (1− µ)O = µO.

Using these de�nitions and relationships, we can re-write the wage equation (B.40) as:

(I − T − θM) d lnw∗ = − (I − T ) d ln `∗ − θM [ d ln z + (1− µ)O (I − S) d lnw∗ + (1− µ)OS d lnz] ,

[I − T − θM (I − (1− µ)O (I − S))] d lnw∗ = − (I − T ) d ln `∗ − θMO d lnz,

d lnw∗ =
[
I − T + θ (I − TS)µ (I − (1− λ)S)

−1
]−1 [ − (I − T ) d ln `∗

+θ (I − TS) (I − (1− µ)S)
−1

d lnz

]
.

d lnw∗ = [I − T − θµMO]
−1

[− (I − T ) d ln `∗ − θMO d lnz] . (B.44)

Using the value function (B.39), we can re-write the employment equation (B.42) as:

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) (I − βD)

−1
[

d ln b+ (I − (1− µ)S)
−1

[(I − S) d lnw∗ + S d lnz]
]
.

Using the capital accumulation equation (B.41) and our de�nitions (B.43), we can further re-write

this employment equation as:

d ln `∗ =
β

ρ
G [ d lnχ∗ + d ln b] . (B.45)

Using the de�nitions (B.43), we can re-write the capital accumulation equation (B.41) as follows:

d lnχ∗ = O

[
(I − S) (I − T − θMµO)

−1
(
− (I − T )

β

ρ
G [ d lnχ∗ + d ln b]− θMO d lnz

)
+ S d lnz

]
,
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[
I +O (I − S) (I − T − θMµO)

−1
(I − T )

β

ρ
G

]
d lnχ∗

=

[ [
OS − θO (I − S) (I − T − θMµO)

−1
MO

]
d lnz

−O (I − S) (I − T − θMµO)
−1

(I − T ) βρG d ln b

]
. (B.46)

We thus obtain the following representation of the steady-state elasticity of the endogenous vari-

ables in each location with respect to a shock in any location (omitted from the paper for brevity).

Proposition A.1. The general equilibrium response of the steady-state distribution of economic
activity {w∗i , v

∗
i , `
∗
i , k

∗
i } to small productivity ( d lnz) and amenity shocks ( d ln b) is uniquely de-

termined by the matrices {Lz∗,Kz∗,W z∗, V z∗, Lb∗,Kb∗,W b∗, V b∗}, which depend solely on the
structural parameters {θ, β, ρ, µ, δ} and the observed matrices of expenditure shares (S), income
shares (T ), outmigration shares (D) and inmigration shares (E):

d ln `∗

d lnk∗

d lnw∗

d lnv∗

 =


Lz∗

Kz∗

W z∗

V z∗

 d lnz +


Lb∗

Kb∗

W b∗

V b∗

 d ln b, (B.47)

Proof. The proposition follows from the value function (B.39), wage equation (B.44), population

equation (B.45), and capital-labor equation (B.46). In particular, from the population equation

(B.45) and the capital-labor equation (B.46), we have:

Lz∗ ≡β
ρ
G

[
I +O (I − S) (I − T − θMµO)−1 (I − T )

β

ρ
G

]−1

×
(
OS − θO (I − S) (I − T − θMµO)−1MO

)
,

Lb∗ ≡
β
ρG−

β
ρG

[
I +O (I − S) (I − T − θMµO)−1 (I − T ) βρG

]−1

×O (I − S) (I − T − θMµO)−1 (I − T ) βρG
.

From the capital-labor equation (B.46) and population equation (B.45), we have:

Kz∗ ≡
[
I +

β

ρ
G

] [
I +O (I − S) (I − T − θMµO)−1 (I − T )

β

ρ
G

]−1

×
(
OS − θO (I − S) (I − T − θMµO)−1MO

)
,

Kb∗ ≡ Lb∗ −
[
I +O (I − S) (I − T − θMµO)−1 (I − T ) βρG

]−1

×O (I − S) (I − T − θMµO)−1 (I − T ) βρG
.

From the wage equation (B.44) and population equation (B.45), we have:

W z∗ ≡ [I − T − θMµO]−1 [− (I − T )Lz∗ − θMO] ,

W b∗ ≡ [I − T − θMµO]−1
[
− (I − T )Lb∗

]
.

From the value function (B.39) and the wage equation (B.44), we have:

V z∗ ≡ (I − βD)−1 (I − (1− µ)S)−1 [(I − S)W z∗ + S] ,
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V b∗ ≡ (I − βD)−1 + (I − βD)−1 (I − (1− µ)S)−1 (I − S)W b∗.

Note that the matrices of steady-state elasticities {Lz∗, Kz∗
, W z∗

, V z∗
, Lb∗, Kb∗

, W b∗
, V b∗

}

are linear combinations of the structural parameters {θ, β, ρ, µ, δ} and the observed matrices of

expenditure shares (S), income shares (T ), outmigration shares (D) and inmigration shares (E).

Therefore, the steady-state changes in the endogenous variables {w∗i , v
∗
i , `∗i , k

∗
i } in response to

productivity and amenity shocks are unique (up to a choice of numeraire for wages).

As the expenditure shares (S) and income shares (T ) are homogeneous of degree zero in

factor prices, we require a numeraire in order for solve for changes in wages. We choose the

total income of all locations as our numeraire (

∑N
i=1w

∗
i `
∗
i =

∑N
i=1 q

∗
i = q = 1), which implies

q∗ d ln q∗ =
∑N

i=1 q
∗
i d ln q∗i =

∑N
i=1 q

∗
i

dq∗i
q∗i

=
∑N

i=1 dq∗i = 0, where q∗ is a row vector of the

steady-state income of each location. Similarly, the outmigration shares (D) and inmigration

shares (E) are homogeneous of degree zero in the total population of all locations, which requires

a choice of units to solve for population levels. We solve for population shares, imposing the

requirement that the population shares sum to one:

∑N
i=1 `i = ` = 1, which implies `∗ d ln `∗ =∑N

i=1 `
∗
i d ln `∗i = 0, where `∗ is a row vector of the steady-state population of each location.

B.4.4 Derivations of the Linearized Equilibrium Conditions

We suppose that we observe the initial values of the state variables (`0, k0) and the trade and

migration share matrices (S, T , D, E) at time t = 0, which need not correspond to a steady-

state of the model. Throughout the following, we use a tilde above a variable to denote a log

deviation from the steady-state implied by the initial fundamentals (the “initial steady-state”),

such that χ̃it+1 = lnχit+1 − lnχ∗i , for all variables except for the worker value function vit; with

a slight abuse of notation we use ṽit ≡ vit − v∗i to denote the deviation in levels for the worker

value function. We consider stochastic shocks to productivity ( d lnzt) and amenities ( d ln bt) in

each location, holding constant the economy’s aggregate labor endowment ( d ln ` = 0), trade

costs ( d ln τt = 0) and commuting costs ( d lnκt = 0).

Population Flow (equation (20) in the Paper). The total derivative of the population �ow

condition (B.27) relative to the initial steady-state has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (B.48)

Capital Accumulation (equation (18) in the Paper). Note that in a deterministic steady-

state, βR∗ = 1, and ς∗−1 = 1 + βψ (R∗)ψ−1 ς∗−1
, thereby implying ς∗ = 1− β. We now linearize

(B.4) relative to the deterministic steady-state (let x̃t ≡ lnxt − lnx∗),

ς̃t ≈ −Et ln
1 + βψ (R∗)ψ−1 (Rt+1/R

∗)ψ−1 ς−1
t+1

1 + βς−1
t+1

= −Et ln
1 + β

1−β (Rt+1/R
∗)ψ−1 (ςt+1/ς

∗)−1

1 + β/ (1− β)

≈ −Et ln
(

1 + β
(

(Rt+1/R
∗)ψ−1 − 1

)
+ β

(
(ςt+1/ς

∗)−1 − 1
))

= βEtς̃t+1 − (ψ − 1) βEtR̃t+1
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c̃t = k̃t + R̃t + ς̃t = k̃t + R̃t − (ψ − 1)Et
∞∑
s=1

βsR̃t+s.

k̃t+1 = k̃t + R̃t + ˜(1− ςt) = k̃t + R̃t − 1−β
β
ς̃t,

= k̃t + R̃t + 1−β
β

(ψ − 1)Et
∑∞

s=1 β
sR̃t+s.

(B.49)

We now derive R̃t+s. NoteRit = 1−δ+rit/pit, and we know in steady-state β (1− δ + r∗/p∗) =
1 and r∗/p∗ = β−1 + δ − 1. Thus

R̃it = ln
(

1−δ+rit/pit
1−δ+r∗/p∗

)
,

= ln (β (1− δ + r∗ (rit/r
∗ − 1 + 1) (p∗−1 (p∗/pit − 1 + 1)))) ,

≈ ln (1 + βr∗/p∗ ((rit/r
∗ − 1) + (p∗−1 (p∗/pit − 1)))) = βr∗/p∗ (r̃it − p̃it) ,

= (1− β (1− δ)) (r̃it − p̃it) = (1− β (1− δ)) (w̃it − p̃it − χ̃it) .

(B.50)

where we have used χit ≡ kit/`it and rit = 1−µ
µ
wit`it/kit. Note (B.49) and (B.50) imply:

k̃t+1 = k̃t + (1− β (1− δ))

[
(w̃t − p̃t − χ̃t) +

1− β
β

(ψ − 1)Et
∞∑
s=1

βs (w̃t+s − p̃t+s − χ̃t+s)

]
. (B.51)

Value Function (equation (21) in the Paper). The total derivative of the value function (B.28)

relative to the initial steady-state has the following matrix representation:

ṽt = w̃t − p̃t + b̃t + βDEtṽt+1. (B.52)

GoodsMarket Clearing (equation (19) in the Paper). The total derivative of the goods mar-

ket clearing condition (B.26) relative to the initial steady-state has the following matrix represen-

tation:

w̃t + ˜̀
t = T

(
w̃t + ˜̀

t

)
+ θ (TS − I) (w̃t − (1− µ) χ̃t − z̃t) ,

where we have used d ln τ = 0. We can re-write this relationship as:

[I − T + θ (I − TS)] w̃t =
[
− (I − T ) ˜̀t + θ (I − TS) (z̃t + (1− µ) χ̃t)

]
. (B.53)

Price Index (equation (17) in the Paper). We obtain the equation (17) by substituting (B.22)

into (B.23) and stack into a matrix to obtain:

p̃t = S
(
w̃t − z̃t − (1− µ)

(
k̃t − ˜̀t)) (B.54)

System of Equations for Transition Dynamics Relative to the Initial Steady-State. Col-

lecting together capital dynamics (B.51), goods market clearing (B.53), the population �ow condi-

tion (B.48), the value function (B.52), and the price index equation (B.54), the system of equations

for the transition dynamics relative to the initial steady-state is:

k̃t+1 = k̃t + (1− β (1− δ))
(
w̃t − p̃t − k̃t + ˜̀

t

)
(B.55)

+ (1− β (1− δ)) 1− β
β

(ψ − 1)Et
∞∑
s=1

βs
(
w̃t+s − p̃t+s − k̃t+s + ˜̀

t+s

)
15



w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) (z̃t + (1− µ) χ̃t)

]
. (B.56)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (B.57)

ṽt = (I − S) w̃t + Sz̃t + (1− µ)Sχ̃t + b̃t + βDEtṽt+1. (B.58)

p̃t = S
(
w̃t − z̃t − (1− µ)

(
k̃t − ˜̀t)) . (B.59)

B.4.5 Equilibrium Conditions in terms of the State Variables

We now re-express the equilibrium conditions (B.55) through (B.59) and solve for the law of

motion of the endogenous state variables (`t and kt). For notational convenience, we re-express

the state variables as labor and the capital-labor ratio (`t and χt), but note that a law of motion

for capital can always recovered since kit = `itχit. We begin by using the wage equation (B.56)

to substitute for d ln w̃t in the value function (B.58):

ṽt =

 (I − S) [I − T + θ (I − TS)]−1

[
− (I − T ) ˜̀t

+θ (I − TS) (z̃t + (1− µ) χ̃t)

]
+Sz̃t + (1− µ)Sχ̃t + b̃t + βDEtṽt+1

 , (B.60)

ṽt =


− (I − S) [I − T + θ (I − TS)]−1 (I − T ) ˜̀t

+ (1− µ)
[
S + θ (I − S) [I − T + θ (I − TS)]−1 (I − TS)

]
χ̃t

+
[
S + θ (I − S) [I − T + θ (I − TS)]−1 (I − TS)

]
z̃t

+b̃t + βDEtṽt+1


which can be re-written more compactly as:

ṽt = A ˜̀t +Bχ̃t +Cz̃t + b̃t + βDEtṽt+1, (B.61)

A ≡ − (I − S) [I − T + θ (I − TS)]−1 (I − T ) ,

B ≡ (1− µ)
{
S + θ (I − S) [I − T + θ (I − TS)]−1 (I − TS)

}
,

C ≡ S + θ (I − S) [I − T + θ (I − TS)]−1 (I − TS) .

Iterating equation (B.61) forward in time, we have:

ṽt = Et
∞∑
s=0

(βD)s
(
A ˜̀t+s +Bχ̃t+s +Cz̃t+s + b̃t+s

)
. (B.62)

Using equation (B.62) to substitute for ṽt+1 in equation (B.57), we obtain the following autore-

gressive representation of the log deviations of population from steady-state value (
˜̀
t):

˜̀
t+1 −E ˜̀t =

[
β

ρ
(I −ED)Et

∞∑
s=0

(βD)s
(
A ˜̀t+s+1 +Bχ̃t+s+1 +Cz̃t+s+1 + b̃t+s+1

)]
.

(B.63)

Likewise, capital dynamics (B.55) can be re-written as (noting w̃t − p̃t = A ˜̀t +Bχ̃t +Cz̃t):

χ̃t+1 + ˜̀
t+1 = χ̃t + ˜̀

t + (1− β (1− δ))
(
A ˜̀t + (B − I) χ̃t +Cz̃t

)
(B.64)

+ (1− β (1− δ)) 1− β
β

(ψ − 1)Et
∞∑
s=1

βs
(
A ˜̀t+s + (B − I) χ̃t+s +Cz̃t+s

)
.
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B.4.6 Proof of Proposition 3 in the Paper

We suppose that agents learn at time t = 0 about a one-time, unexpected, and permanent change

in productivity and amenities from time t = 1 onwards. Under this assumption, we can write

the sequence of future fundamentals (productivities and amenities) relative to the initial level as(
z̃t, b̃t

)
=
(
z̃, b̃
)

for t ≥ 1.

Proposition. Transition Path (Proposition 3 in the paper). There exists a 2N ×2N transition
matrix (P ) and a 2N×2N impact matrix (R) such that the second-order di�erence equation system
in (22) has a closed-form solution of the form:

x̃t+1 = P x̃t +Rf̃t for t ≥ 0, (B.65)

where x̃t =

[ ˜̀
t

k̃t

]
is a 2N × 2N vector of the state variables; f̃t =

[
z̃t
b̃t

]
is a 2N × 2N vector of

the shocks to fundamentals; and {P , R} are 2N × 2N matrices that depend only on the structural
parameters {ψ, θ, β, ρ, µ, δ} and the observed trade and migration matrices {S, T ,D, E}.

Proof. We prove the proposition using the equivalent representation of
˜̀
t and χ̃t ≡ k̃t − ˜̀t as

the state variables, where χ̃t is the vector of capital-labor ratios in each location. Since agents

expect fundamentals to be constant for all t ≥ 1, we can drop the expectation signs in equations

(B.63) and (B.64) and write

(
z̃t, b̃t

)
=
(
z̃, b̃
)

:

(I −ED)
−1
(˜̀

t+1 −E ˜̀t) =
β

ρ

∞∑
s=0

(βD)
s
(
A ˜̀t+s+1 +Bχ̃t+s+1 +Cz̃ + b̃

)
. (B.66)

χ̃t+1 + ˜̀
t+1 = χ̃t + ˜̀

t + (1− β (1− δ))
(
A ˜̀t + (B − I) χ̃t +Cz̃

)
(B.67)

+ (1− β (1− δ)) 1− β
β

(ψ − 1)

∞∑
s=1

βs
(
A ˜̀t+s + (B − I) χ̃t+s +Cz̃

)
.

Analogously,

(I −ED)
−1
(˜̀

t+2 −E ˜̀t+1

)
=
β

ρ

∞∑
s=0

(βD)
s
(
A ˜̀t+s+2 +Bχ̃t+s+2 +Cz̃ + b̃

)
. (B.68)

χ̃t+2 + ˜̀
t+2 = χ̃t+1 + ˜̀

t+1 + (1− β (1− δ))
(
A ˜̀t+1 + (B − I) χ̃t+1 +Cz̃

)
+ (1− β (1− δ)) 1− β

β
(ψ − 1)

∞∑
s=1

βs
(
A ˜̀t+s+1 + (B − I) χ̃t+s+1 +Cz̃

)
. (B.69)

Multiply (B.68) by βD, subtract from (B.66), and re-arrange to obtain:

βD (I −ED)
−1 ˜̀

t+2 =


[
βD (I −ED)

−1
E + (I −ED)

−1 − β
ρA
] ˜̀

t+1

− (I −ED)
−1
E ˜̀t

−βρBχ̃t+1 − β
ρCz̃ −

β
ρ b̃

 .
Likewise, multiply (B.69) by β, subtract from (B.67) to obtain:
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β
(
χ̃t+2 + ˜̀

t+2

)
= (−I − (1− β (1− δ))A) ˜̀t + (−I − (1− β (1− δ)) (B − I)) χ̃t

+ ((1 + β) I − (1− β (1− δ)) (ψ − 1− βψ) (B − I)) χ̃t+1

+ ((1 + β) I − (1− β (1− δ)) (ψ − 1− βψ)A) ˜̀t+1

− (1− β (1− δ))ψ (1− β)Cz̃.

Stacking these two, second-order di�erence equations, we obtain:

[
βD (I −ED)−1 0

βI βI

] [ ˜̀
t+2
χ̃t+2

]
=

[
Υ11 Υ12
Υ21 Υ22

] [ ˜̀
t+1
χ̃t+1

]
+

[
Θ11 0
Θ21 Θ22

] [ ˜̀
t
χ̃t

]
+

[
− β

ρ
C − β

ρ
I

−H 0

] [
z̃

b̃

]
. (B.70)

Υ11 ≡ βD (I −ED)
−1
E + (I −ED)

−1 − β

ρ
A, Υ12 ≡ −

β

ρ
B,

Υ21 ≡
[
(1 + β) I + (1− β (1− δ)) (ψ − 1− βψ) (I − S) [I − T + θ (I − TS)]

−1
(I − T )

]
,

Υ22 ≡

 (1 + β) I −
{

(1− β (1− δ)) (ψ − 1− βψ)×[
(1− µ)

{
S + θ (I − S) [I − T + θ (I − TS)]

−1
(I − TS)

}
− I

]}  ,
Θ11 ≡ − (I −ED)

−1
E, Θ21 ≡ −I + (1− β (1− δ)) (I − S) (I − T + θ (I − TS))

−1
(I − T ) .

Θ22 ≡ −I − (1− β (1− δ))
(

(1− µ)
{
S + θ (I − S) (I − T + θ (I − TS))

−1
(I − TS)

}
− I

)
.

H ≡ ψ (1− β) (1− β (1− δ))
[
θ (I − S) [I − T + θ (I − TS)]

−1
(I − TS) + S

]
.

We �rst conjecture the linear closed-form solution (B.65) and substitute it into the second-order

di�erence equation (B.70) to obtain a matrix system of quadratic equations. We next solve this

matrix system of quadratic equations and con�rm that our conjecture of a linear closed-form

solution is indeed satis�ed. Using our conjecture (B.65) in the system of second-order di�erence

equations (B.70), we obtain:

(
ΨP 2 − ΓP −Θ

) [ ˜̀
t

χ̃t

]
+ [(ΨP + Ψ− Γ)R−Π]

[
z̃

b̃

]
= 0, (B.71)

Ψ ≡
[

(βD) (I −ED)−1 0
βI βI

]
, Γ ≡

[
Υ11 Υ12

Υ21 Υ22

]
,

Θ ≡
[

Θ11 0
Θ21 Θ22

]
, Π ≡

[
−β
ρ
C −β

ρ
I

−H 0

]
.

For the system (B.71) to have a solution for

[ ˜̀
t

χ̃t

]
6= 0 and

[
z̃

b̃

]
6= 0, we require:

ΨP 2 − ΓP −Θ = 0, (B.72)

R = (ΨP + Ψ− Γ)−1 Π. (B.73)

Following Uhlig (1999), we can write this �rst condition (B.72) as the following generalized

eigenvector-eigenvalue problem, where e is a generalized eigenvector and ξ is a generalized

eigenvalue of Ξ with respect to ∆:

ξ∆e = Ξe,
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where:

Ξ ≡
[

Γ Θ
I 0

]
, ∆ ≡

[
Ψ 0
0 I

]
.

If eh is a generalized eigenvector and ξh is a generalized eigenvalue of Ξ with respect to ∆, then

eh can be written for some h ∈ <N as:

eh =

[
ξhēh
ēh

]
.

Assuming that the transition matrix has distinct eigenvalues, which we verify empirically, there

are 2N linearly independent generalized eigenvectors (e1, . . . , e2N) and corresponding stable

eigenvalues (ξ1, . . . , ξ2N), and the transition matrix (P ) is given by:

P = ΩΛΩ−1,

where Λ is the diagonal matrix of the 2N eigenvalues and Ω is the matrix stacking the corre-

sponding 2N eigenvectors {ēh}. The impact matrix (R) in the second condition (B.73) can be

recovered using:

R = (ΨP + Ψ− Γ)−1 Π,

and our conjecture (B.65) is satis�ed.

B.4.7 Properties of the Transition Path.

We now use the eigenvalue-eigenvector representation in Proposition 3 in the paper to establish

some properties of the transition path towards the new steady-state.

B.4.8 Convergence Dynamics Versus Fundamental Shocks

In particular, we now consider the case in which agents at time t = 0 learn of a permanent change

in fundamentals (z̃, b̃) at time t = 1. From Proposition 3 in the paper and equation (B.65) above,

the initial impact of the productivity (z̃) and amenity (b̃) shocks in the �rst period is:

x̃1 = Rf̃ .

More generally, the impact of these productivity and amenity shocks in period t ≥ 1 is:

x̃t+1 = P x̃t +Rf̃ =

(
t∑

s=0

P s

)
Rf̃ . (B.74)

If the spectral radius of P is less than one, a condition that we verify empirically, the summation

limt→∞
∑t

s=0P
s

converges, and we can re-write the impact of the productivity and amenity

shocks in period t ≥ 1 as:

x̃t+1 =

(
∞∑
s=0

P s −
∞∑

s=t+1

P s

)
Rf̃ =

(
I − P t+1

)
(I − P )−1Rf̃ .

From this relationship, the new steady-state must satisfy:

lim
t→∞

x̃t = x∗
new
− x̃∗

initial
= (I − P )−1Rf̃ ,
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where (I − P )−1R coincides with the explicit solution for the changes-in-steady-states in

Proposition A.1 in Online Appendix B.4.3:

(I − P )−1R =

[
Lz Lb

Kz Kb

]
.

Using Proposition 3 in the paper, we can also decompose the evolution of the spatial dis-

tribution of economic activity across locations into the contributions of convergence towards

steady-state and shocks to fundamentals. In particular, from Proposition 3 in the paper, we have:

x̃t = P x̃t−1 +Rf̃ ,

x̃t−1 = P x̃t−2 +Rf̃ ,

x̃1 = P x̃0 +Rf̃ ,
x̃0 = P x̃−1,

where the last equation at t = 0 di�ers from others, because agents become aware at time t = 0
of the shock to fundamentals a time t = 1, after they have migrated between time t = −1 and

time t = 0. Taking the di�erence between the equations for time t and t− 1, we have:

lnxt − lnxt−1 = P (lnxt−1 − lnxt−2) = P t−1 (lnx1 − lnx0) = P t (lnx0 − lnx−1) + P t−1Rf̃ .

Therefore, we have:

lnxt − lnx−1 = [lnxt − lnxt−1] + [ln xt−1 − lnxt−2] + · · · (B.75)

+ [lnx1 − lnx0] + [ln x0 − lnx−1]

=
[
P t (lnx0 − lnx−1) + P t−1Rf̃

]
+
[
P t−1 (lnx0 − lnx−1) + P t−2Rf̃

]
+ · · ·+

[
P (lnx0 − lnx−1) +Rf̃

]
+ [lnx0 − lnx−1]

=
t∑

s=0

P s (lnx0 − lnx−1) +
t−1∑
s=0

P sRf̃ ,

which corresponds to equation (24) in the paper.

B.4.9 Spectral Analysis of the Transition Matrix P

We now show that we can further characterize the economy’s transition path in terms of the

lower-dimensional components of the eigenvectors and eigenvalues of the transition matrix (P ).

We have already shown in that we can decompose the dynamic path of the economy into one

component capturing shocks to fundamentals and another component capturing convergence to

the initial steady-state. Therefore, for the remainder of this subsection, we focus for expositional

simplicity on an economy that is initially in steady-state.

Eigendecomposition of the Transition Matrix We use the eigendecomposition of the tran-

sition matrix, P ≡ UΛV , where Λ is a diagonal matrix of eigenvalues arranged in decreasing

order by absolute values, and V = U−1
. For each eigenvalue λh, the h-th column of U (uh)

and the h-th row of V (v′h) are the corresponding right- and left-eigenvectors of P , respectively,

such that

λhuh = Puh, λhv
′
h = v′hP .
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That is, uh (v′h) is the vector that, when left-multiplied (right-multiplied) by P , is proportional

to itself but scaled by the corresponding eigenvalue λh.
2

We refer to uh simply as eigenvectors.

Both {uh} and {v′h} are bases that span the 2N -dimensional vector space.

We next introduce a particular type of shock to productivity and amenities that proves use-

ful for characterizing the model’s transition dynamics. We de�ne an eigen-shock as a shock

to productivity and amenities (f̃(h)) for which the initial impact of these shocks on the state

variables (Rf̃(h)) coincides with a real eigenvector of the transition matrix (uh) or the zero

vector. The eigen-shock that corresponds to each eigenvector uh can be recovered as f̃(h) =
Π−1 (ΨP + Ψ− Γ)uh. Recall that all matrices involved in this operation and the eigenvectors

of the transition matrix (uh) can be computed using only our observed trade and migration share

matrices (S, T , D, E) and the structural parameters of the model {ψ, θ, β, ρ, µ, δ}. Therefore,

we can solve for the eigen-shocks from these observed data and the structural parameters of the

model.

Using our eigendecomposition and de�nition of an eigen-shock, we can undertake a spectral

analysis of the economy’s dynamic response to shocks.

Proposition. Spectral Analysis (Proposition 4 in the paper). Consider an economy that is
initially in steady-state at time t = 0 when agents learn about one-time, permanent shocks to pro-

ductivity and amenities (f̃ =

[
z̃

b̃

]
) from time t = 1 onwards. The transition path of the state

variables can be written as a linear combination the eigenvalues (λh) and eigenvectors (uh) of the
transition matrix:

x̃t =
t−1∑
s=0

P sRf̃ =
2N∑
h=1

1− λth
1− λh

uhv
′
hRf̃ =

2N∑
h=2

1− λth
1− λh

uhah, (B.76)

where the weights in this linear combination (ah) can be recovered as the coe�cients from a linear
projection (regression) of the observed shocks (f̃ ) on the eigen-shocks (f̃(h)).

Proof. The proposition follows from the eigendecomposition of the transition matrix: P ≡
UΛV , which implies P s =

∑2N
h=1 λ

s
huhv

′
h and hence:

x̃t =
t−1∑
s=0

P sRf̃ =
t−1∑
s=0

(
2N∑
h=1

λshuhv
′
h

)
Rf̃ =

2N∑
h=1

(
t−1∑
s=0

λsh

)
uhv

′
hRf̃ =

2N∑
h=1

1− λth
1− λh

uhv
′
hRf̃ .

To decompose any observed shock f̃ as a linear combination a of the eigen-shocks

{
f̃(h)

}
, let

F denote the matrix whose h-th column is the h-th eigen-shock. Then Fa = f̃ ⇐⇒ a =

(F ′F )−1 F f̃ , which implies that a can be recovered as the coe�cients from a regression of f̃ on

the eigen-shocks.

We now show how this proposition can be used to characterize both the speed of convergence

to steady-state and the heterogeneous impact of shocks across locations.

2
Note that P need not be symmetric. This eigendecomposition exists if the transition matrix has distinct eigen-

values, a condition that we verify is satis�ed empirically. We construct the right-eigenvectors such that the 2-norm

of uh is equal to 1 for all h, where note that v′iuh = 1 if i = h and is equal to zero otherwise.
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Speed of Convergence We measure the speed of convergence to steady-state using the con-

ventional measure of the half-life. In particular, we de�ne the half-life of a shock f̃ for the i-th
state variable as the time it takes for that state variable to converge half of the way to steady-state:

arg max
t

|x̃it − x̃i∞|
maxs |x̃is − x̃i∞|

≥ 1

2
, (B.77)

where x̃i∞ = x∗i,new
− x∗i,initial

.

We begin by considering the speed of convergence for nontrivial eigen-shocks, for which the

initial impact on the state variables corresponds to a real eigenvector of the transition matrix.

For these eigen-shocks, the state variables converge exponentially towards steady-state, and the

speed of convergence depends solely on the corresponding eigenvalue (λh).

Proposition. Speed of Convergence (Proposition 5 in the paper). Consider an economy that
is initially in steady-state at time t = 0 when agents learn about one-time, permanent shocks to

productivity and amenities (f̃ =

[
z̃

b̃

]
) from time t = 1 onwards. Suppose that these shocks are

a nontrivial eigen-shock (f̃(h)), for which the initial impact on the state variables at time t = 1

coincides with a real eigenvector (uh) of the transition matrix (P ): Rf̃(h) = uh. The transition path
of the state variables (xt) in response to such an eigen-shock (f̃(h)) is :

x̃t =
2N∑
j=2

1− λtj
1− λj

ujv
′
juh =

1− λth
1− λh

uh =⇒ lnxt+1 − lnxt = λthuh,

and the half-life is given by: t(1/2)
i

(
f̃
)

= −
⌈

ln 2
lnλh

⌉
, for all state variables i = 2, · · · , 2N , where

d·e is the ceiling function. The eigen-shock with associated eigenvalue of zero has zero half-life.
Proof. If the initial impact impact of the shock to productivity and amenities on the state variables

(Rf̃ ) coincides with a real eigenvector (Rf̃(h) = uh), we can re-write equation (28) in Proposition

4 in the paper as follows:

x̃t =
2N∑
h=2

(
λth

1− λh

)
uhv

′
hRf̃ =

2N∑
j=2

1− λtj
1− λj

ujv
′
juh =

1− λth
1− λh

uh,

where we have used v′iuh = 0 for i 6= h and v′iuh = 1 for i = h. Taking di�erences between

periods t+ 1 and t, we have:

x̃t+1 − x̃t =
1− λt+1

h

1− λh
uh −

1− λth
1− λh

uh,

which simpli�es to: (1− λh) (x̃t+1 − x̃t) = (1− λh)λthuh. Therefore: (x̃t+1 − x̃t) = λthuh.
Noting that x̃t = lnxt − lnx∗

initial
, we have: lnxt+1 − lnxt = λthuh. This implies exponential

convergence to steady-state, such that for each location i: xit+1

xit
= exp (λthuih) .Using the half-life

de�nition (B.77), we can solve for the half-life as:

1−λth
1−λh

uh
1

1−λh
uh

=
1

2
, ⇒ λth =

1

2
, ⇒ ln

1

2
= t lnλh, ⇒ t = − ln 2

lnλh
.

Imposing the requirement that t is an integer, we obtain: t = −
⌈

ln 2
lnλh

⌉
, for all state variables

i = 2, · · · , 2N , where d·e is the ceiling function.
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B.4.10 Two-Region Example

In Section 3.3 of the paper, we illustrate our spectral analysis using a simple example of two sym-

metric locations that begin in steady-state. By location symmetry and trade and migration fric-

tions, the expenditure and migration share matrices (S andD) are both symmetric and diagonal-

dominant, with T = S andE = D. In this section of the Online Appendix, we provide a further

characterization of the four eigenvectors of the transition matrix (P ) in this simple example.

Following the Proof of Proposition 3 in Section B.4.6 of this appendix, we provide this character-

ization using the equivalent representation of
˜̀
t and χ̃t ≡ k̃t − ˜̀t as the state variables, where

χ̃t is the vector of capital-labor ratios in each location.

As discussed in the paper, the four eigenvectors of the transition matrix (P ) in this example

take the following simple form:
1
1
0
0

 ,


0
0
1
1

 ,


1
−1
ζ
−ζ

 ,


1
−1
−ξ
ξ

 , (B.78)

for some constants ζ, ξ that depend on the model parameters and the trade and migration share

matrices (S = T ,D = E).

We now provide a further analytical characterization of the properties of these four eigenvec-

tors. We know u is an eigenvector of P i�

λ2Ψu = λΓu+ Θu (B.79)

for some constant λ, which is the corresponding eigenvalue. Ψ, Γ, and Θ are all 4 × 4 matrices

from equation (22) in the paper. It is thus easy to verify by brute force (for instance, using Matlab

symbolic toolbox to express Ψ, Γ, Θ as a function of model parameters and the entries in the

S and D matrices) that [1, 1, 0, 0]′ is an eigenvector with eigenvalue 0 and [0, 0, 1, 1]′ is also an

eigenvector. The eigenvalue corresponding to the latter is 1− µ (1− β (1− δ)) if landlord’s in-

tertemporal elasticity of substitution (ψ) is equal to one (logarithmic preferences). More generally,

for values of the intertemporal elasticity of substitution (ψ) di�erent from one, the eigenvalue (λ)

corresponding to the eigenvector [0, 0, 1, 1]′ is the solution to the following quadratic equation:

λ =
(β + ψ (1− β) (1−X) +X)−

√
(β + ψ (1− β) (1−X) +X)2 − 4βX

2β
,

where X ≡ 1− µ (1− β (1− δ)).

We can similarly verify that [1,−1, 0, 0]′ and [0, 0, 1,−1]′ are not eigenvectors. By symme-

try, and because the eigenvectors form a basis, the remaining eigenvectors must take the form

[1,−1, ζ,−ζ]′ and [1,−1,−ξ, ξ]′ for some constants ζ, ξ. To �nd the corresponding eigen-shocks,

use:

ΨP 2 − ΓP −Θ = 0, (ΨP + Ψ− Γ)R = Π.

Hence, for any eigenvector u with the corresponding eigen-shock f̃ such that Rf̃ = u, it must

be the case that

Πf̃ = (ΨP + Ψ− Γ)u =
1

λ

(
λΨ + ΨP 2 − ΓP

)
u =

1

λ
(λΨ + Θ)u.

Because eigenvectors and eigen-shocks are scale-invariant, we can ignore the constant
1
λ

and

write eigen-shocks as

f̃ = Π−1 (λΨ + Θ)u.
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One can then verify that the eigen-shock corresponding to u = [1, 1, 0, 0]′ is f̃ = [0, 0, 1, 1]′,

while the eigen-shock corresponding to u = [0, 0, 1, 1]′ is f̃ = [1, 1, 0, 0]′. One can

also verify that generically [0, 0, 1,−1]’ is not an eigen-shock (since the �rst two entries of

Π−1 (λΨ + Θ) [1,−1, ζ,−ζ]′ are generically non-zero). Since the eigen-shocks must span the

vector space, by symmetry the two remaining eigen-shocks must be of the form [1,−1, c,−c]′
and [1,−1, d,−d]′ for some constants c, d.
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