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S.1 Introduction
This Online Supplement contains additional derivations for our baseline model, theoretical ex-

tensions and generalizations, supplementary empirical results, and the data appendix. In Section

S.2, we report additional derivations for our baseline model with a single traded sector from Sec-

tion 2 of the paper, including workers’ migration choice probabilities and their expected value of

living in each location. In Section S.3, we establish a number of isomorphisms, in which we show

that our results hold throughout the class of trade models with a constant trade elasticity.

In Section S.4, we introduce a number of extension of our baseline speci�cation, as discussed

in Section 4 of the paper. Subsection S.4.1 shows that our framework naturally accommodates

shocks to trade and migration costs. Subsection S.4.2 allows for agglomeration forces in produc-

tion and residence and provides a characterization of the steady-state equilibrium in the presence

of these agglomeration forces.

Subsection S.4.3 introduces multiple �nal goods sectors with region-speci�c capital. Sec-

tion S.4.4 incorporates multiple �nal goods sectors with region-sector-speci�c capital. Section

S.4.5 further generalizes the analysis to allow for multiple �nal goods sectors with region-sector-

speci�c capital and input-output linkages. Subsection S.4.6 incorporates trade de�cits follow-

ing the conventional approach of the quantitative international trade literature in treating these
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de�cits as exogenous. Section S.4.7 allows capital to be used residentially (for housing) as well as

commercially (in production). Section S.4.8 reports an extension to allow landlords to invest in

other locations. Section S.4.9 discusses an extension to incorporate an endogenous labor partici-

pation decision.

In Section S.5, we present the derivations for the extension of our baseline model with a single

traded sector and single non-traded sector used for our baseline quantitative analysis in Section

5 of the paper.

Section S.6 reports additional empirical results that are discussed in the paper. Subsection

S.6.1 shows that individual U.S. states di�er substantially in terms of the dynamics of their capital-

labor ratios, highlighting the empirical relevance of capital accumulation for income convergence.

Subsection S.6.2 provides evidence of substantial net migration between U.S. states, highlighting

the empirical salience of migration for the population dynamics of U.S. states. Subsection S.6.3

show that the model’s gravity equation predictions provide a good approximation to the observed

data on trade and migration �ows.

Subsection S.6.4 examines the evolution of the real interest rate in terms of the local con-

sumption price index along the transition path to steady-state. Subsection S.6.5 reports additional

evidence on the predictive power of convergence to the initial steady-state for the observed pop-

ulation growth of U.S. states. Subsection S.6.6 reports additional empirical results for our spectral

analysis in Section 5.4 of the paper. Subsection S.6.7 provides further information about the

implied fundamentals from inverting the non-linear model. Subsection S.6.8 reports additional

empirical results for our multi-sector extension that is discussed in Section 5.5 of the paper.

Section S.7 reports further details about the data sources and de�nitions.

S.2 Baseline Dynamic Spatial Model
In Subsection S.2.1, we show how our baseline model can be inverted to recover the unobserved

locational fundamentals implied by the observed data. Subsection S.2.2 provides further details

about the solution algorithm used to solve for the economy’s transition path in the non-linear

model. In Subsection S.2.3, we provide the closed-form solution for the economy’s transition

path for any convergent sequence of future shocks to productivities and amenities under perfect

foresight, as discussed in Section 3.4 of the paper . In Subsection S.2.4, we provide the closed-

form solution for the economy’s transition path for the case in which agents observe an initial

shock to fundamentals and form rational expectations about future shocks based on a known

stochastic process for fundamentals, as discussed in Section 3.4 of the paper. In Subsection S.2.5,

we characterize the distributional consequences of shocks to fundamentals. In Subsection S.2.6,

we report the derivations for the expression for expected utility in the paper. In Subsection S.2.7,

we provide the derivations for the expression for the migration choice probabilities in the paper.

S.2.1 Model Inversion
In this section of the Online Supplement, we show how our generalization of dynamic exact-hat

algebra to incorporate forward-looking capital investments in Proposition 2 of the paper can be

used to invert the model and recover the unobserved changes in fundamentals (zit, bit, τnit, κgit)
implied by the observed data. We solve for the unobserved changes in these fundamentals from

the general equilibrium conditions of the model and the observed data on bilateral trade and mi-
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gration �ows, population, capital stock and labor income per capita under the assumption of per-

fect foresight. We recover these unobserved fundamentals, without making assumptions about

where the economy lies on the transition path to steady-state or the speci�c trajectory of funda-

mentals, because the observed changes in migration �ows and the capital stock capture agents’

expectations about this sequence of future fundamentals. We show that this model inversion has

a sequential structure, such that we can recover unobserved fundamentals in a sequence of steps,

where we make the minimal set of assumptions in each step, before adding further assumptions

in the next step to recover additional fundamentals.

We use our baseline values for the model’s parameters from Section 5.1 of the paper based

on central values from the existing empirical literature. In a �rst step, we recover bilateral trade

frictions (τnit) from observed bilateral trade shares (Snit). Assuming that bilateral trade frictions

are symmetric (τnit = τint), and normalizing own trade frictions to one (τnnt = τiit = 1), the

model’s gravity equation predictions for goods trade in equation (13) in the paper imply:

SnitSint
SnntSiit

=

(
τnitτint
τnntτiit

)−θ
= (τnit)

−2θ . (S.2.1)

In second step, we solve for productivity (zit) using observed population (`it), labor income

per capita (wit), and the capital stock (kit) and our solutions for bilateral trade frictions (τnit) from

the previous step. From the model’s goods market clearing condition in equation (12) in the paper,

we have:

wit`it =
N∑
n=1

(
wit (`it/kit)

1−µ τnit/zit
)−θ∑N

m=1

(
wmt (`mt/kmt)

1−µ τnmt/zmt
)−θwnt`nt, (S.2.2)

which uniquely determines productivity (zit) up to normalization (or a choice of units). Since

we normalize own trade frictions to one (τnnt = τiit = 1), a change in trade costs with all

trade partners (including oneself) is captured in productivity (zit). As these solutions for bilateral

trade frictions (τnit) and productivity (zit) only use the predictions of the static Armington trade

model and condition on the observed capital stock and population, they hold regardless of what

assumptions are made about capital accumulation and migration.

In a third step, we recover bilateral migration frictions (κgit) from observed bilateral migration

�ows (Digt). Assuming that bilateral migration frictions are symmetric (κgit = κigt), and normal-

izing own migration frictions to one (κggt = κiit = 1), the model’s gravity equation predictions

for migration in equation (16) in the paper imply:

DigtDgit

DggtDiit

=

(
κgitκigt
κggtκiit

)−1/ρ

= (κgit)
−2/ρ . (S.2.3)

In a fourth step, we solve for the expected value of living in each location (vwgt+1) from observed

population (`it) and our solutions for bilateral migration frictions (κgit) from the previous step.

From the model’s population �ow condition in equation (15) in the paper and the assumption of

perfect foresight, we have:

`gt+1 =
N∑
i=1

(
exp

(
βvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βvwmt+1

)
/κmit

)1/ρ
`it, (S.2.4)

which uniquely determines the expected values (vwgt+1) up to a normalization (or choice of units).

Since we normalize own migration frictions to one (κggt = κiit = 1), a change in migration
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frictions with all locations (including oneself) is captured in the expected value (vwgt+1) and hence

in amenities (bgt) in the next step. As these solutions for bilateral migration frictions (κgit) and

expected values (vwgt+1) use only the predictions of the migration model, they hold regardless of

what assumptions are made about patterns of trade in goods.

In a �fth and �nal step, we recover amenities in each location (bit) from observed goods trade

(Snit), observed migration �ows (Dgit), and our solutions for productivity (zit) and expected values

(vwit+1) from the previous steps. Using the model’s value function (14) for a pair of time periods

and the assumption of perfect foresight, we have:

ln bit =
(
vwit − vwit+1

)
+ (1− β) vwit+1 − ln

S
− 1
θ

iit

(Diit)
ρ − ln zit − (1− µ) ln

(
kit
`it

)
, (S.2.5)

which uniquely determines amenities (bit) up to our choices of units for productivity and expected

values. In this �nal step, we use the predictions of both the migration and trade blocs of the model.

Note that this �nal step for amenities in equation (S.2.5) requires expected values for both periods

t and t+1, and hence requires migration �ows for both periods from equations (S.2.3) and (S.2.4).

We thus obtain values for the unobserved fundamentals (zit, bit, τnit, κnit) implied by the

observed values of the endogenous variables under the assumption of perfect foresight, without

making assumptions about where on the transition path to steady-state the economy lies or about

the particular expected future trajectory of fundamentals. Note that these fundamentals are de-

rived under the assumption of symmetric trade and migration costs, which need not necessarily

be satis�ed in the data. Therefore, these fundamentals do not exactly rationalize the observed ex-

penditure shares (Snit) and outmigration probabilities (Digt), although we �nd that the model’s

predictions under this symmetry assumption are strongly correlated with the observed data.

As general equilibrium allocations in the model are homogenous of degree zero in produc-

tivity and amenities, multiplying these fundamentals by scalars leaves allocations unchanged.

Therefore, without loss of generality, we focus on shocks to relative productivity and amenities,

which are invariant to the units in which these variables are measured.

S.2.2 Non-Linear Model Solution Algorithm
In Section 5.3 of the paper, we use our spectral analysis to provide an analytical characterization

of the speed of convergence to steady-state and the interaction between the capital and labor

adjustment margins. Although this spectral analysis uses a linearization of the model, we show

that this linearization provides a good approximation to the transition path of the full non-linear

model. In this section of the Online Supplement, we provide further details on the solution algo-

rithm used to solve for the economy’s transition path in the non-linear model.

Solving for the Sequential Competitive Equilibrium Consider an economy on

a transition path to some unknown steady-state starting from an initial allocation(
{li0}Ni=1 , {ki0}

N
i=1 , {ki1}

N
i=1 , {Sni0}

N
n,i=1 , {Dni,−1}Nn,i=1

)
, given an anticipated sequence of

changes in fundamentals,

{
{żit}Ni=1 ,

{
ḃit

}N
i=1

, {τ̇ijt}Ni,j=1 , {κ̇ijt}
N
i,j=1

}∞
t=1

. The strategy to solve

the sequential competitive equilibrium is as follows:
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1. Initiate the algorithm at t = 0: guess the path of relative changes in transformed expected

utility

{
u̇

(0)
t

}T+1

t=1
, where we de�ne uit ≡ exp

(
β
ρ
vwit

)
,1 and the path of landlord consump-

tion rates,

{
ς

(0)
t

}T+1

t=1
, for a su�cient large T . The path should converge by period T + 1,

i.e. u̇
(0)
iT+1 = 1.

2. Set the rental rates in period t = 1 in accordance to the guessed consumption rates and the

observed allocation

Ri1 =

(
χi1`i1
χi0`i0

)(
1− ς(0)

i1

)−1

∀i.

3. Use the path of transformed expected utility

{
u̇

(0)
t

}T+1

t=1
to get migration rates {Dt}T+1

t=1 :

Ḋigt+1 =
u̇

(0)
gt+2/ (κ̇git+1)1/ρ∑N

m=1Dimtu̇
(0)
mt+2/ (κ̇mit+1)1/ρ

.

4. Use the migration rates to get employment levels in all periods t > 2:

`gt+1 =
N∑
i=1

Digt`it

5. For each period t > 0:

(a) Use `t, `t−1, χt, χt−1 and St−1 to solve for the relative changes in wages ẇt+1 and

the new expenditure shares St+1, by solving the system of non-linear equations

ẇit+1
˙̀
it+1 =

N∑
n=1

Snit+1wnt`nt∑N
k=1 Skitwkt`kt

ẇnt+1
˙̀
nt+1

and

Ṡnit+1 ≡
(
τ̇nit+1ẇit+1 (χ̇it+1)µ−1 /żit+1

)−θ∑N
k=1 Snkt

(
τ̇nkt+1ẇkt+1 (χ̇kt+1)µ−1 /żkt+1

)−θ .
where χ̇it+1 ≡ k̇it+1/ ˙̀

it+1. Note that the initial level of wages wt can be recovered

from the expenditure share matrix St and the population levels `t. Also note that this

system can be solved through an iterative procedure after guessing a vector of relative

changes in wages ẇt+1.

(b) Solve for the implied relative changes in price indices ṗt+1 from

ṗit+1 =

(
N∑
m=1

Simt
(
τ̇imt+1ẇmt+1 (χ̇mt+1)µ−1 /żmt+1

)−θ)−1/θ

.

1
Note that we express the set of equilibrium conditions in terms of transformed workers utility uit ≡ exp

(
β
ρ v

w
it

)
,

whereas in Caliendo et al. (2018), the equilibrium conditions are expressed in terms of exp (vwit).
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(c) Solve for the new rental rates Ṙt+1 using

Rit+1 = (1− δ) +
ẇit+1

ṗit+1χ̇it+1

(Rit − (1− δ)) .

(d) Finally, update the capital labor ratios χ̇t+2 if t < T using

χit+2`it+2 = (1− ςit+1)Rit+1χit+1`it+1,

where recall that we have already solved for the path of population levels in all periods.

6. For each t, solve backwards for

{
u̇

(1)
t

}T+1

t=1
using

u̇it+1 =

(
ḃit+1

ẇit+1

ṗit+1

)β
ρ

(
N∑
g=1

Digtu̇gt+2/ (κ̇git+1)
1
ρ

)β

.

7. For each t, solve backwards for

{
ς

(1)
t

}T+1

t=1
using

ςit =
ςit+1

ςit+1 + βψRψ−1
it+1

,

imposing RT+1 = 1/β.

8. Take the new paths for

{
u̇

(1)
t

}T+1

t=1
and

{
ς

(1)
t

}T+1

t=1
as the new initial conditions, and return

to step 2.

9. Continue until convergence of

{
u̇

(1)
t

}T+1

t=1
and

{
ς

(1)
t

}T+1

t=1
.

S.2.3 Convergent Sequence of Shocks Under Perfect Foresight
We now generalize our analysis of the model’s transition dynamics to any convergent sequence

of future shocks to productivities and amenities under perfect foresight. In particular, we con-

sider an economy that is somewhere on a convergence path towards an initial steady-state with

constant fundamentals at time t = 0, when agents learn about a convergent sequence of future

shocks to productivity and amenities

{
f̃s

}
s≥1

from time t = 1 onwards, where f̃s is a vector of

log di�erences in fundamentals between times s and 0 for each location.

Proposition S.1. Sequence of Shocks Under Perfect Foresight. Consider an economy that is
somewhere on a convergence path towards steady-state at time t = 0, when agents learn about

a convergent sequence of future shocks to productivity and amenities
{
f̃s

}
s≥1

=

{[
z̃s
b̃s

]}
s≥1

from time t = 1 onwards. There exists a 2N × 2N transition matrix (P ) and a 2N × 2N impact
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matrix (R) such that the second-order di�erence equation system in equation (22) in the paper has
a closed-form solution of the form:

x̃t =
∞∑

s=t+1

(
Ψ−1Γ− P

)−(s−t)
R
(
f̃s − f̃s−1

)
+Rf̃t + P x̃t−1 for all t ≥ 1, (S.2.6)

with initial condition x̃0 = 0 and whereΨ, Γ are matrices from the second-order di�erence equation
(22) in the paper and are derived in Online Appendix B.4.7.

Proof. We start by proving the case with a single fundamental shock f̃s at future time s, with

f̃t = 0 for all t 6= s. We then exploit the linear structure and consider a sequence of shocks.

Given that the shock takes place at time s, we know from Proposition 3 in the paper that:

x̃s = Rf̃s + P x̃s−1. (S.2.7)

Following our derivations for (B.71) in the Online Appendix, we know the state variables follow

a system of second-order di�erence equations:

Ψx̃t+2 =

{
Γx̃t+1 + Θx̃t + Πf̃ t ≥ s− 1,

Γx̃t+1 + Θx̃t 0 ≤ t < s− 1.
(S.2.8)

We now solve the second-order di�erence equation (S.2.8) backwards for 0 ≤ t < s− 1. Starting

from t = s− 2, we have:

Γx̃s−1 = Ψx̃s −Θx̃s−2.

Substitute using (S.2.7) and equation (B.72) in the Online Appendix, we obtain:

x̃s−1 =
(
Ψ−1Γ− P

)−1
Rf̃ + Pxs−2.

We can show by induction that, for all t ≥ 1:

x̃t =
(
Ψ−1Γ− P

)−(s−t)
Rf̃ + P x̃t−1.

Hence, with a single shock f̃s at time s > 0, the law of motion of the state variables follows:

x̃t =

{
Rf̃s + P x̃t−1 t ≥ s

(Ψ−1Γ− P )
−(s−t)

Rf̃s + P x̃t−1 1 ≤ t < s.

Given linearity, the law of motion with a sequence of convergent fundamentals follows:

x̃t =
∞∑

s=t+1

(
Ψ−1Γ− P

)−(s−t)
R
(
f̃s − f̃s−1

)
+Rf̃t + P x̃t−1 for all t ≥ 1,

where f̃s − f̃s−1 is the change in fundamental in period s and f̃t is the cumulative change

in fundamental at time t relative to time 0. That the sequence of fundamentals converges

(lims→∞

(
f̃s − f̃s−1

)
→ 0) ensures the summation is well de�ned.
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Therefore, even though we consider a general convergent sequence of shocks to productivity

and amenities in a setting with many locations connected by a rich geography, and with multiple

sources of dynamics from investment and migration, we are again able to obtain a closed-form

solution for the transition path of the spatial distribution of economic activity. Both the transition

matrix P and impact matrix R remain the same same as those in the previous subsection, and

can be recovered from our observed trade and migration share matrices {S, T , D, E} and the

structural parameters of the model {ψ, θ, β, ρ, µ, δ}.

S.2.4 Stochastic Location Characteristics and Rational Expectations
Most previous research on dynamic spatial models has focused on perfect foresight, because of

the challenges of solving non-linear dynamic models in the presence of expectational errors. We

now show that our linearization of the economy’s transition path also accommodates the case

in which agents observe an initial shock to fundamentals and form rational expectations about

future shocks based on a known stochastic process for fundamentals.

In particular, we assume the following AR(1) process for fundamentals, which allows shocks

to productivity and amenities to have permanent e�ects on the level of these variables, and hence

to a�ect the steady-state equilibrium:

∆ ln zit+1 = ρz∆ ln zit +$z
it, |ρz| < 1, (S.2.9)

∆ ln bit+1 = ρb∆ ln bit +$b
it,

∣∣ρb∣∣ < 1,

where we use ∆ ln to denote log changes between two periods, such that ∆ ln zit ≡ ln zit −
ln zit−1; ρz = ρb = 0 corresponds to the special case of a random walk; and $z

it and $b
it are

mean zero and independently and identically distributed innovations. Given this assumed AR(1)

process, we can write the expected values of these future fundamental shocks as:

Et [∆ lnft+s] = N s∆ lnft, N ≡
[
ρz · IN×N 0N×N

0N×N ρb · IN×N

]
, (S.2.10)

where Et [·] is the expectation conditional on the realizations of shocks up to time t.

Proposition S.2. Stochastic Fundamentals and Rational Expectations. Suppose that pro-
ductivity and amenities evolve stochastically according to the AR(1) process (S.2.9) and agents have
rational expectations. There exists a 2N × 2N transition matrix (P ) and a 2N × 2N impact ma-
trix (R) such that the evolution of the economy’s state variables (xt) has the following closed-form
solution:

∆ lnxt+1 = P∆ lnxt+R∆ lnft+
∞∑
s=0

(
Ψ−1Γ− P

)−s
RN s+1 (∆ lnft −∆ lnft−1) . (S.2.11)

Proof. The state variables at time t + 1 are chosen by agents as functions of past state variables

and fundamental shocks realized up to time t. Under rational expectation, agents at each time

t expect a sequence of future fundamental shocks according to (S.2.10). Thus, from Proposition

S.1, we know

(lnxt+1 − lnx∗t )− P (lnxt − lnx∗t ) = Et
∞∑
s=0

(
Ψ−1Γ− P

)−s
R∆ ln ft+s+1,
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(
lnxt − lnx∗t−1

)
− P

(
lnxt−1 − lnx∗t−1

)
= Et−1

∞∑
s=0

(
Ψ−1Γ− P

)−s
R∆ ln ft+s,

where x∗t is the steady-state implied by fundamentals at time t. Taking the di�erence between

the two equations, we get

(lnxt+1 − lnx∗t )− P (lnxt − lnx∗t )−
(
lnxt − lnx∗t−1

)
+ P

(
lnxt−1 − lnx∗t−1

)
= Et

∞∑
s=0

(
Ψ−1Γ− P

)−s
R∆ ln ft+s+1 − Et−1

∞∑
s=0

(
Ψ−1Γ− P

)−s
R∆ ln ft+s.

The left-hand side (LHS) of the above equation can be written as:

LHS = ∆ lnxt+1 − P∆ lnxt − (I − P ) ∆ lnx∗t .

We know Etf̂t+s = N sf̂t, and hence the right-hand side (RHS) of the above equation can be

written as:

RHS =
∞∑
s=0

(
Ψ−1Γ− P

)−s
REt∆ ln ft+s+1 −

∞∑
s=0

(
Ψ−1Γ− P

)−s
REt−1∆ ln ft+s,

=
∞∑
s=0

(
Ψ−1Γ− P

)−s
RN s+1∆ ln ft −

∞∑
s=0

(
Ψ−1Γ− P

)−s
RN s+1∆ ln ft−1,

=
∞∑
s=0

(
Ψ−1Γ− P

)−s
RN s+1 (∆ ln ft −∆ ln ft−1) .

We also know:

∆ lnx∗t = (I − P )−1R∆ ln ft.

We obtain the Proposition by setting the LHS to be equal to the RHS.

In this case, the innovations in fundamental shocks at time t not only a�ect the current-period

state variables (`t, kt), but also a�ect the entire expected sequence of future fundamental shocks,

because of serial correlation in fundamental shocks (ρz and ρb not equal to zero).

S.2.5 Distributional Consequences
The presence of gradual adjustment in the model from migration frictions and capital accumula-

tion has two important implications for the welfare e�ects of shocks to productivity and ameni-

ties. First, these welfare e�ects depend not only on the change in steady-state, but also on the

transition dynamics. Second, there is a distribution of these welfare e�ects, both across landlords

because they are geographically immobile, and across workers because of migration frictions,

which imply that a worker’s initial location matters for the welfare impact of these shocks.

As our approach provides su�cient statistics for the economy’s transition path in response

to shocks to fundamentals, it also provides su�cient statistics for the welfare e�ects of these

shocks. In the remainder of this subsection, we illustrate these su�cient statistics for welfare,

using changes in migration �ows to reveal information about continuation values. In particular,

we suppose that the economy starts from steady-state at time t = 0, at which point agents become
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aware of a permanent change in fundamentals (f̃ ) at time t = 1. Since fundamentals change from

time t = 1 onwards, the change in workers’ welfare at time t = 0 is completely determined by

the change in the continuation value from their optimal location choice:

ṽ0 = βDṽ1, (S.2.12)

where this change in continuation value (βDṽ1) depends on workers’ initial location at time

t = 0, because of migration frictions, as captured by the outmigration matrix (D).

We now show that the expression for population dynamics in equation (20) in the paper can

be used to infer relative changes in continuation values in response to shocks to fundamentals

from these population movements:

˜̀
1 = E ˜̀0 +

β

ρ
(I −ED) (ṽ1 + ς) ,

where the �rst term (E ˜̀0) is equal to zero, because of our assumption that the economy starts

from an initial steady state at time t = 0 (
˜̀
0 = ln `0 − ln `∗ = 0); the presence of the constant

ς re�ects the fact that migration decisions depend on relative expected values across locations,

and hence are invariant to a common change in expected values across all locations.

To compute the impact on the overall level of welfare, we set this constant equal to the average

change in expected values across all locations weighted by population shares (`∗′ · ṽ1), where we

stack the `∗′ vector N times into an N × N matrix L ≡ [`∗′, . . . , `∗′], such that ς = −Lṽ1.

This convenient choice has two simplifying properties: (i) L2 = L; (ii) LD = L, because `∗′

is the Perron-eigenvector of D.
2

Using these properties, we can re-write the above population

dynamics equation as follows:
3

(I −L) ṽ1 =
ρ

β
(I −ED +L)−1 ˜̀

1.

Combining this result with equation (S.2.12), we obtain the following key implication that

population movements at time t = 1 in response to these shocks to fundamentals are su�cient

statistics for their impact on relative expected values for workers in di�erent locations at time

t = 0:
4

(I −L) ṽ0 = ρD (I −ED +L)−1 ˜̀
1,

where Lṽ0 is again a constant vector that represents the average change in expected values

across all locations weighted by initial population shares, and the right-hand side captures rela-

tive changes in expected values across locations, as revealed by the �rst-period population move-

ments.

Finally, we can connect these �rst-period population movements (
˜̀
1) to the productivity (z̃)

and amenity (b̃) shocks using our closed-form solution for the economy’s transition path (26),

which yields our su�cient statistic for workers’ welfare exposure to these shocks.

2
Since `∗′ is the Perron-eigenvector of D and E, we have LD = DL = LE = EL = L. Since population

share sum to one, L× l̃1 = 0.

3
In particular, we use (I −ED) (ṽ1 −Lṽ1) = (I −ED +L) (ṽ1 −Lṽ1), because L2 = L.

4
We pre-multiply both sides of equation (S.2.12) by (I −L) and use (I −L)Dṽ1 = D (I −L) ṽ1 .
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Proposition S.3. Consider an economy that is initially in steady-state at time t = 0 when agents

learn about one-time, permanent shocks to productivity and amenities (f̃ =

[
z̃

b̃

]
) from time t = 1

onwards.
(i) The relative welfare impact for agents initially in each location at time 0 is

ṽ0 −Lṽ0 = ρD (I −ED +L)−1R`f̃ ,

whereR` is the matrix representing the �rst N rows ofR.
(ii) The average welfare impact on all agents, weighted by initial population shares, is

Lṽ0 =
β

1− β
L

 [
C I

]
f̃︸ ︷︷ ︸

direct e�ects from
changes in fundamentals

+
[
A B

] (
I − (1− β)P (I − βP )−1) (I − P )−1Rf̃︸ ︷︷ ︸

indirect e�ects from
changes in state variables

 ,

whereA,B,C are matrices from equation (B.61) of the Online Appendix.

Proof. We start from the migration equation (20) in the paper:

˜̀
1 =

β

ρ
(I −ED) (ṽ1 −Lṽ1) ,

=
β

ρ
(I −ED +L) (ṽ1 −Lṽ1) ,

where the second equality follows from L=L2
. Hence

(I −L) ṽ1 =
ρ

β
(I −ED +L)−1 l̃1,

=
ρ

β
(I −ED +L)−1R`f̃ ,

and the changes in welfare at t = 0 follow

ṽ0 = βDṽ1,

= βLṽ1 + βD (I −L) ṽ1,

= Lṽ0 + ρD (I −ED +L)−1R`f̃ ,

where the third equality follows from LD = L; this completes the proof of the �rst part of the

Proposition.

To prove the second part, note

Lṽ0 = LβDṽ1,

= L
∞∑
s=1

(βD)s
(
Cz̃ + b̃+A ˜̀

s +Bχ̃s

)
,

=
1

1− β
L
[
C I

]
f̃ +L

[
A B

] ∞∑
s=1

βs (I − P s) (I − P )−1Rf̃ ,

=
β

1− β
L
([
C I

]
f̃ +

[
A B

] (
I − (1− β)P (I − βP )−1) (I − P )−1Rf̃

)
,

where the third equality follows from Proposition 4 and the fact LD = L.
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S.2.6 Derivation of Expected Utility
In this subsection, we derive the expected value for a worker of living in location i at time t (vwit )
in equation (14) in the paper. Recall that idiosyncratic mobility shocks are drawn from an extreme

value distribution with the following cumulative distribution function:

F (ε) = e−e
(−ε−γ̄)

,

and corresponding probability density function:

f (ε) = e(−ε−γ̄)e−e
(−ε−γ̄)

.

Using this extreme value distribution, note that:

Prob

[
βEtvwgt+1 − κgi + ρεgt ≥ βEtvwmt+1 − κmi + ρεmt

]
, ∀m 6= g,

Prob

[
β
(
Etvwgt+1 − Etvwmt+1

)
− (κgi − κmi) + ρεit ≥ ρεmt

]
,

Prob

[
ρεmt ≤ β

(
Etvwgt+1 − Etvwmt+1

)
− (κgi − κmi) + ρεgt

]
,

Prob [ρεmt ≤ ρε̄igmt + ρεgt] ,

ε̄igmt ≡
β
(
Etvwgt+1 − Etvwmt+1

)
− (κgi − κmi)

ρ
,

Prob [εkt ≤ ε̄igmt + εgt] .

Now de�ne the expected continuation value for an agent in location i at time t:

Φit = max
{g}N1

{
βEtEε

[
Vw
gt+1

]
− κgi + ρεgt

}
Φit =

N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρεgt

)
f (εgt)

∏
m6=g

F (ε̄igmt + εgt) dεgt.

Using our assumed functional form, we have:

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρεgt

)
e(−εgt−γ̄)e−e

(−εgt−γ̄)
e−

∑
m 6=g e

(−ε̄igmt−εgt−γ̄)
dεgt,

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρεgt

)
e(−εgt−γ̄)e−

∑N
m=1 e

(−ε̄igmt−εgt−γ̄)
dεgt,

since ε̄immt = 0.

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρεgt

)
e(−εgt−γ̄)e−e

(−εgt−γ̄)∑N
m=1 e

(−ε̄igmt)
dεgt.

De�ne:

λigt ≡ log
N∑
m=1

e−ε̄igmt ,
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eλigt =
N∑
m=1

e−ε̄igmt ,

ζgt ≡ εgt + γ̄,

Using these de�nitions:

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρ (ζgt − γ̄)

)
e(−ζgt)e−e

(−ζgt)∑N
m=1 e

(−ε̄igmt)
dζgt,

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρ (ζgt − γ̄)

)
e(−ζgt)e−e

(−ζgt)eλigtdζgt,

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρ (ζgt − γ̄)

)
e(−ζgt)e−e

(−(ζgt−λigt))
dζgt.

Now de�ne another change of variables:

ỹigt ≡ ζgt − λigt.

Using this de�nition:

Φit =
N∑
g=1

∫ ∞
−∞

(
βEtvwgt+1 − κgi + ρ (ỹigt + λigt − γ̄)

)
e

(
−(ỹigt+λigt)−e(

−ỹigt)
)
dỹigt.

Φit =
N∑
g=1

 ∫∞
−∞

(
βEtvwgt+1 − κgi + ρ (λigt − γ̄)

)
e

(
−(ỹigt+λigt)−e(

−ỹigt)
)
dỹigt

+ρ
∫∞
−∞ ỹigte

(
−(ỹigt+λigt)−e(

−ỹigt)
)
dỹigt

 .

Φit =
N∑
i=1

e−λigt


(
βEtvwgt+1 − κgi + ρ (λigt − γ̄)

) ∫∞
−∞ e

(
−ỹigt−e(

−ỹigt)
)
dỹigt

+ρ
∫∞
−∞ ỹigte

(
−(ỹigt+λigt)−e(

−ỹigt)
)
dỹigt

 .

Now note that:

d

dy

[
e−e

−y
]

= e−y−e
−y
,

∫ ∞
−∞

e

(
−ỹigt−e(

−ỹigt)
)
dỹigt =

[
e−e

−ỹigt
]∞
−∞

= [1− 0] ,

which implies:

Φit =
N∑
g=1

e−λigt


(
βEtvwgt+1 − κgi + ρ (λigt − γ̄)

)
+ρ
∫∞
−∞ ỹigte

(
−(ỹigt+λigt)−e(

−ỹigt)
)
dεgt

 .
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Now note also that:

ργ̄ = ρ

∫ ∞
−∞

ỹigte

(
−(ỹigt+λigt)−e(

−ỹigt)
)
dεgt,

Therefore:

Φit =
N∑
g=1

e−λigt
(
βEtvwgt+1 − κgi + ρλigt

)
.

Using the de�nition of λigt, we have:

Φit =
N∑
g=1

e− log
∑N
m=1 e

−ε̄igmt

(
βEtvwgt+1 − κgi + ρ log

N∑
m=1

e−ε̄igmt

)
.

Recall that

ε̄igmt ≡
β
(
Etvwgt+1 − Etvwmt+1

)
− (κgi − κmi)

ρ
.

Therefore(
βEtvwgt+1 − κgi + ρ log

N∑
m=1

e−ε̄igmt

)
=

(
βEtvwgt+1 − κgi + ρ log

N∑
k=1

e−
β(Etv

w
gt+1−Etv

w
mt+1)−(κgi−κmi)
ν

)

= ρ log

(
N∑
m=1

e
βEtv

w
mt+1−κmi
ν

)

= ρ log

(
N∑
m=1

e(βEtv
w
mt+1−κmi)

1/ρ

)
,

and

N∑
g=1

e− log
∑N
m=1 e

−ε̄igmt
=

N∑
g=1

e− log
∑N
m=1 e

−
β(Etv

w
gt+1−Etv

w
mt+1)−(κgi−κmi)
ν ,

=
N∑
g=1

e
− log

[
e
−(βEtvwgt+1−κgi)

1/ρ∑N
m=1 e

(βEtvwmt+1−κmi)
1/ρ
]

=
N∑
g=1

e(βEtv
w
gt+1−κgi)

1/ρ
N∑
m=1

e−(βEtvwmt+1−κmi)
1/ρ

= 1.

Therefore, we have:

Φit = max
{g}N1

{
βEtEε

[
Vw
gt+1

]
− κgi + ρεgt

}
= ρ log

(
N∑
g=1

e(βEtv
w
gt+1−κgi)

1/ρ

)
.

Using this result, we obtain the expression for expected utility in equation (14) in the paper:

vwit = ln

(
wit
pit

)
+ ln bit + ρ log

N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgi

)1/ρ
.
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S.2.7 Derivation of Outmigration Probabilities
In this subsection, we derive the outmigration probabilities (Digt) in equation (16) in the paper.

The probability that a worker migrates from location i to location g at the end of period t is given

by:

Digt = Prob

[
βEtvwgt+1 − κgi

ρ
+ εgt ≥ max

m6=g

{
βEtvwmt+1 − κmi

ρ
+ εmt

}]
,

Digt = Prob

[
β
(
Etvwgt+1 − Etvwmt+1

)
− (κgi − κmi)

ρ
+ εgt ≥ max

m6=g
{εmt}

]
.

Therefore this outmigration probability can be written as:

Digt =

∫ ∞
−∞

f (εgt)
∏
m6=g

F

(
β
(
Etvwgt+1 − Etvwmt+1

)
− (κgi − κmi)

ρ
+ εgt

)
dεgt.

Using our extreme value distributional assumption and the de�nition of ε̄igmt in the previous

subsection, we can write this as:

Digt =

∫ ∞
−∞

e(−εgt−ȳ)e−e
(−εgt−γ̄)∑N

m=1 e
−ε̄igmt

dεgt,

Recall from the previous subsection the following de�nitions:

λigt ≡ log
N∑
m=1

e−ε̄igmt ,

eλigt =
N∑
m=1

e−ε̄igmt ,

ζgt ≡ εgt + γ̄.

Using these de�nitions, our outmigration probability can be written as follows:

Digt =

∫ ∞
−∞

e−ζgte−e
−ζgteλigtdζgt,

Now recall the following additional de�nition from the previous subsection:

ỹigt ≡ ζgt − λigt.

Digt =

∫ ∞
−∞

e−(ỹigt+λigt)e−e
−(ỹigt+λigt)eλigtdỹigt,

Digt = e−λigt
∫ ∞
−∞

e−ỹigte−e
−(ỹigt)

dỹigt,

Digt = e−λigt
∫ ∞
−∞

e−ỹigt−e
−(ỹigt)

dỹigt,

16



Recall that: ∫ ∞
−∞

e

(
−ỹigt−e(

−ỹigt)
)
dỹigt =

[
e−e

−ỹigt
]∞
−∞

= [1− 0] .

Therefore we have

Digt = e−λigt .

Recall

λigt ≡ log
N∑
m=1

e−ε̄igmt ,

Therefore

Digt = e−[log
∑N
m=1 e

−ε̄igmt ],

Recall

ε̄igmt ≡
β (Etvgt+1 − Etvmt+1)− (κgi − κmi)

ρ
.

Therefore

Digt = e

− log

∑N
m=1 e

−
β(Etvgt+1−Etvmt+1)−(κgi−κmi)

ρ


,

Digt = e
− log

e−(βEtvgt+1−κgi)
1/ρ∑N

m=1 e
(βEtvmt+1−κmi)

1/ρ

,

Digt = e
log

[
e(βEtvgt+1−κgi)

1/ρ∑N
m=1 e

−(βEtvmt+1−κmi)
1/ρ
]
,

Digt = e
log

 e
(βEtvgt+1−κgi)

1/ρ

∑N
m=1 e

(βEtvmt+1−κmi)
1/ρ


,

Digt =
e(βEtvgt+1−κgi)1/ρ∑N

m=1 e
(βEtvmt+1−κmi)1/ρ

,

which yields equation (16) in the paper:

Digt =
(exp (βEtvgt+1) /κgi)

1/ρ∑N
m=1 (exp (βEtvmt+1) /κmi)

1/ρ
.

S.3 Isomorphisms
In Section 2 of the paper, we derive our baseline results using the Armington (1969) model of

trade, in which goods are di�erentiated by location. In this section of the Online Supplement,

we show that our results also hold in the class of trade models with a constant trade elasticity

considered by Arkolakis et al. (2012), henceforth ACR.

In Section S.3.1, we consider the Ricardian model of trade based on technology di�erences

of Eaton and Kortum (2002), in which markets are perfectly competitive and production tech-

nologies are constant returns to scale. In Section S.3.2 we consider the new trade theory model of

Krugman (1980), in which markets are monopolistically competitive and production technologies
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are increasing return to scale. Although for simplicity we assume a representative �rm in Section

S.3.2, analogous results also hold in the heterogeneous �rm model of Melitz (2003) with a Pareto

productivity distribution.

In Section S.3.1, the goods market clearing condition in the Eaton and Kortum (2002) model

takes exactly the same form as in our Armington (1969) model in Section 2 of the paper. Com-

bining this goods market clearing condition with our speci�cations of migration decisions and

capital accumulation, we obtain the same system of equations for general equilibrium as in Sec-

tion 2 of the paper. The only di�erence is that the trade elasticity (θ) in the Eaton Kortum (2002)

speci�cation depends on the shape parameter of the Fréchet productivity distribution rather than

the elasticity of substitution between varieties.

In Section S.3.2, the presence of love of variety, increasing returns and transport costs in the

Krugman (1980) model gives rise to agglomeration forces. As a result, the goods market clearing

condition takes a similar form as in the extension of our baseline Armington (1969) model to

incorporate agglomeration forces. Combining this goods market clearing condition with our

speci�cations of migration decisions and capital accumulation, we obtain a similar system of

equations for general equilibrium as in the extension of our baseline Armington (1969) model to

incorporate agglomeration forces.

S.3.1 Ricardian Technology Di�erences
We consider a version of Eaton and Kortum (2002) with labor and capital as the two factors of

production. Migration and capital accumulation are modeled in the same way as in Section 2 of

the paper. The only di�erence from our baseline Armington model in that section of the paper is

the speci�cation of preferences and production.

S.3.1.1 Preferences

Workers’ indirect utility function in location n at time t is assumed to take the following form:

lnunt = ln bnt + lnwnt − ln pnt, (S.3.1)

where bnt are amenities;wnt is the wage; and pnt is the consumption goods price index. Landown-

ers’ indirect utility function takes the same form, but their income depends on the rental rate for

capital (rnt) rather than the wage (wnt). The consumption goods price index (pnt) is de�ned over

consumption of a �xed continuum of goods according to the constant elasticity of substitution

(CES) functional form:

pnt =

[∫ 1

0

pnt (ϑ)1−σ dϑ

] 1
1−σ

, σ > 1, (S.3.2)

where pnt(ϑ) denotes the price of good ϑ in location n.

S.3.1.2 Production

Goods are produced with labor and capital according to a constant returns to scale production

technology. These goods can be traded between locations subject to iceberg variable costs of

trade, such that τni ≥ 1 units must be shipped from location i to location n in order for one unit
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to arrive (where τni > 1 for n 6= i and τnn = 1). Therefore, the price for consumers in location n
of purchasing a good ϑ from location i is:

pnit (ϑ) =
τnitw

µ
itr

1−µ
it

zitai (ϑ)
, 0 < µ < 1, (S.3.3)

where zit captures common determinants of productivity across goods in location i and ai (ϑ)
captures idiosyncratic determinants of productivity for each good ϑ within that location. Pro-

ductivity for each good ϑ in each location i is drawn independently from the following Fréchet

distribution:

Fi (a) = exp
(
−a−θ

)
, θ > 1,

where we normalize the Fréchet scale parameter to one, because it enters the model isomorphi-

cally to zit. Using the properties of this Fréchet distribution, location n’s share of expenditure on

goods produced in location i is:

snit =

(
τnitw

µ
itr

1−µ
it /zit

)−θ∑N
m=1

(
τnmtw

µ
mtr

1−µ
mt /zmt

)−θ , (S.3.4)

and location n’s price index can be expressed as:

pnt =

[
N∑
m=1

(
τnmtw

µ
mtr

1−µ
mt /zmt

)−θ]− 1
θ

(S.3.5)

S.3.1.3 Market Clearing

Goods market clearing implies that income in each location, which equals the sum of the income

of workers and landlords, is equal to expenditure on the goods produced by that location:

(wit`it + ritkit) =
N∑
n=1

Snit (wnt`nt + rntknt) . (S.3.6)

Capital market clearing implies that the rental rate for capital is determined by the requirement

that landlords’ income from the ownership of capital equals payments for its use. Using pro�t

maximization and zero pro�ts, this capital market clearing condition can be expressed as follows:

ritkit =
1− µ
µ

wit`it. (S.3.7)

S.3.1.4 General Equilibrium

Given the state variables {`i0, ki0}, the general equilibrium of the economy is the path of alloca-

tions and prices such that �rms in each location choose inputs to maximize pro�ts, workers make

consumption and migration decisions to maximize utility, landlords make consumption and sav-

ing decisions to maximize utility, and prices clear all markets. For expositional clarity, we collect

the equilibrium conditions and express them in terms of a sequence of four endogenous variables

{`it, kit, wit, vit}∞t=0. All other endogenous variables of the model can be recovered as a function

of these variables. We now show that the system of equations for general equilibrium in this

version of the Eaton and Kortum (2002) model takes exactly the same form as in our baseline

Armington model.
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Capital Accumulation: Using capital market clearing (S.3.7), the price index (S.3.5) and the

analogous derivations for landlords’ consumption-investment decision as in our baseline Arm-

ington model, the capital accumulation equation can be expressed as:

kit+1 = β
1− µ
µ

wit
pit
`it + β (1− δ) kit, (S.3.8)

pnt =

 N∑
i=1

(
wit

(
1− µ
µ

)1−µ

(`it/kit)
1−µ τni/zi

)−θ−1/θ

, (S.3.9)

where for simplicity we assume logarithmic intertemporal utility.

Goods Market Clearing: Using the expenditure share (S.3.4) and capital market clearing

(S.3.7) in the goods market clearing condition (S.3.6), we obtain:

wit`it =
N∑
n=1

Snitwnt`nt, (S.3.10)

Snit =

(
wit (`it/kit)

1−µ τni/zi
)−θ∑N

m=1

(
wmt (`mt/kmt)

1−µ τnm/zm
)−θ , Tint ≡

Snitwnt`nt
wit`it

, (S.3.11)

where Snit is the expenditure share of importer n on exporter i at time t; we have de�ned Tint as

the corresponding income share of exporter i from importer n at time t; and note that the order of

subscripts switches between the expenditure share (Snit) and the income share (Tint), because the

�rst and second subscripts will correspond below to rows and columns of a matrix, respectively.

Population Flow: Using the analogous derivations for migration decisions as in our baseline

Armington model, the population �ow condition for the evolution of the population distribution

over time is given by:

`gt+1 =
N∑
i=1

Digt`it, (S.3.12)

Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κmit

)1/ρ
, Egit ≡

`itDigt

`gt+1

, (S.3.13)

where Digt is the outmigration probability from location i to location g between time t and t+ 1;

we have de�ned Egit as the corresponding inmigration probability to location g from location i
between time t and t + 1; and again note that the order of subscripts switches between the out-

migration probability (Digt) and the inmigration probability (Egit), because the �rst and second

subscripts will correspond below to rows and columns of a matrix, respectively.
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Worker Value Function: Using the analogous derivations for migration decisions as in our

baseline Armington model, the expected value from living in location n at time t can be written

as:

vwnt = ln bnt + ln

(
wnt
pnt

)
+ ρ ln

N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgnt

)1/ρ
. (S.3.14)

S.3.2 New Trade Model
We consider a version of Krugman (1980) with labor and capital as the two factors of production.

Migration and capital accumulation are modeled in the same way as in Section 2 of the paper. The

only di�erence from our baseline Armington model in that section of the paper is the speci�cation

of preferences and production. We now show that the system of equations for general equilibrium

in this version of the Krugman (1980) model takes a similar form as in the extension of our baseline

Armington model with agglomeration economies.

S.3.2.1 Preferences

Workers’ indirect period utility function in location n at time t is assumed to take the following

form:

lnunt = ln bnt + lnwnt − ln pnt, (S.3.15)

where bnt are amenities;wnt is the wage; and pnt is the consumption goods price index. Landown-

ers’ indirect utility function takes the same form, but their income depends on the rental rate for

capital (rnt) rather than the wage (wnt). The consumption goods price index (pnt) is de�ned over

the consumption of a mass of varieties (Mit) from each location i according to the constant elas-

ticity of substitution (CES) functional form:

pnt =

[
N∑
i=1

∫ Mit

0

pnit (j)1−σ dj

] 1
1−σ

, σ > 1, (S.3.16)

where pnit (j) is the price in country n of a variety j produced in country i at time t; the mass of

varieties (Mit) is endogenously determined by free entry; and varieties are substitutes (σ > 1).

S.3.2.2 Production

Varieties are produced under conditions of monopolistic competition and increasing returns to

scale. To produce a variety, a �rm must incur a �xed cost (F ) and a constant marginal cost that

depends on a location’s productivity (zit). The production technology is assumed to be homo-

thetic, such that the �xed and marginal cost use labor and capital with the same intensity. In

particular, the total cost of producing xi (j) units of variety j in location i is given by:

$i (j) =

(
F +

xit (j)

zit

)
wµitr

1−µ
it , 0 < µ < 1. (S.3.17)

Varieties can be traded between countries subject to iceberg variable costs of trade, such that

τni ≥ 1 units must be shipped from country i to country n in order for one unit to arrive (where
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τni > 1 for n 6= i and τnn = 1). The cost to the consumer in location n of sourcing a variety from

location i is thus:

pnit (j) = τnitpiit (j) , (S.3.18)

where piit (j) is the “free on board” price before transport costs. Pro�t maximization and zero

pro�ts imply that this free on board price is a constant markup over marginal cost:

piit (j) = piit =

(
σ

σ − 1

)
wµitr

1−µ
it

zit
, (S.3.19)

and equilibrium variety output is equal to a constant that depends on location productivity:

xit (j) = xit = zit (σ − 1)F. (S.3.20)

Multiplying equilibrium prices and output, variety revenue is given by:

yit = piitxit = σFwµitr
1−µ
it .

Additionally, cost minimization implies that capital payments are a constant multiple of labor

payments:

ritkit =
1− µ
µ

wit`it. (S.3.21)

Using this implication of cost minimization, variety revenue can be re-written as:

yit = σFwit

(
1− µ
µ

)1−µ(
1

χit

)1−µ

. (S.3.22)

The mass of varieties in each location equals aggregate revenue divided by variety variety:

Mit =
ritkit + wit`it

yit
.

Using the constant relationship between capital payments and labor payments (S.3.21) and the

expression for variety revenue (S.3.22), the mass of varieties can be expressed as:

Mit =
`it (χit)

1−µ

σFλ
(

1−µ
µ

)1−µ . (S.3.23)

Using the properties of CES demand, country n’s share of expenditure on goods produced in

country i is:

sni =
Mip

1−σ
ni∑N

m=1Mmp1−σ
nm

.

Using equilibrium prices in equations (S.3.18) and (S.3.19) and the mass of varieties (S.3.23), we

can re-write this expenditure share as:

sni =
`it (χit)

1−µ (τnitwµitr1−µ
it /zit

)1−σ∑N
m=1 `mt (χmt)

1−µ (τnmtwµmtr1−µ
mt /zmt

)1−σ , (S.3.24)
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and the price index (S.3.16) as:

pnt =

 N∑
m=1

`mt (χmt)
1−µ

σFλ
(

1−µ
µ

)1−µ

(
σ

σ − 1
τnmtw

µ
mtr

1−µ
mt /zmt

)1−σ


1
1−σ

. (S.3.25)

Using the relationship between capital and labor payments (S.3.21), we can further re-write the

expenditure share (S.3.24) as:

sni =
`it (χit)

σ(1−µ) (τnitwit/zit)
1−σ∑N

m=1 `mt (χmt)
σ(1−µ) (τnmtwmt/zmt)

1−σ , (S.3.26)

and the price index (S.3.25) as:

pnt =

 N∑
m=1

(
σ
σ−1

)1−σ

σFλ
(

1−µ
µ

)1−µ `mt (χmt)
σ(1−µ)

(
τnmtwmt

(
1− µ
µ

)1−µ

/zmt

)1−σ


1
1−σ

. (S.3.27)

S.3.2.3 Market Clearing

Goods market clearing implies that income in each location, which equals the sum of the income

of workers and landlords, is equal to expenditure on the goods produced by that location:

(wit`it + ritkit) =
N∑
n=1

Snit (wnt`nt + rntknt) . (S.3.28)

Capital market clearing implies that the rental rate for capital is determined by the requirement

that landlords’ income from the ownership of capital equals payments for its use. Using pro�t

maximization and zero pro�ts, this capital market clearing condition is given by equation (S.3.21)

above.

S.3.2.4 General Equilibrium

Given the state variables {`i0, ki0}, the general equilibrium of the economy is the path of alloca-

tions and prices such that �rms in each location choose inputs to maximize pro�ts, workers make

consumption and migration decisions to maximize utility, landlords make consumption and sav-

ing decisions to maximize utility, and prices clear all markets. For expositional clarity, we collect

the equilibrium conditions and express them in terms of a sequence of four endogenous variables

{`it, kit, wit, vit}∞t=0. All other endogenous variables of the model can be recovered as a function

of these variables. We now show that the system of equations for general equilibrium in this

version of the Eaton and Kortum (2002) model takes a similar form as in the extension of our

baseline Armington model with agglomeration economies.
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Capital Accumulation: Using capital market clearing (S.3.21), the price index (S.3.27) and

the analogous derivations for landlords’ consumption-investment decisions as in our baseline

Armington model, the capital accumulation equation can be expressed as:

kit+1 = β
1− µ
µ

wit
pit
`it + β (1− δ) kit, (S.3.29)

pnt =

 N∑
m=1

(
σ
σ−1

)1−σ

σFλ
(

1−µ
µ

)1−µ `mt (χmt)
σ(1−µ)

(
τnmtwmt

(
1− µ
µ

)1−µ

/zmt

)1−σ


1
1−σ

, (S.3.30)

where for simplicity we assume logarithmic intertemporal utility.

Goods Market Clearing: Using the expenditure share (S.3.26) and capital market clearing

(S.3.21) in the goods market clearing condition (S.3.28), we obtain:

wit`it =
N∑
n=1

Snitwnt`nt, (S.3.31)

Snit =
`it (χit)

σ(1−µ) (τnitwit/zit)
1−σ∑N

m=1 `mt (χmt)
σ(1−µ) (τnmtwmt/zmt)

1−σ , Tint ≡
Snitwnt`nt
wit`it

, (S.3.32)

where Snit is the expenditure share of importer n on exporter i at time t; we have de�ned Tint as

the corresponding income share of exporter i from importer n at time t; and note that the order of

subscripts switches between the expenditure share (Snit) and the income share (Tint), because the

�rst and second subscripts will correspond below to rows and columns of a matrix, respectively.

Population Flow: Using the analogous derivations for migration decisions as in our baseline

Armington model, the population �ow condition for the evolution of the population distribution

over time is given by:

`gt+1 =
N∑
i=1

Digt`it, (S.3.33)

Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κmit

)1/ρ
, Egit ≡

`itDigt

`gt+1

, (S.3.34)

where Digt is the outmigration probability from location i to location g between time t and t+ 1;

we have de�ned Egit as the corresponding inmigration probability to location g from location i
between time t and t + 1; and again note that the order of subscripts switches between the out-

migration probability (Digt) and the inmigration probability (Egit), because the �rst and second

subscripts will correspond below to rows and columns of a matrix, respectively.
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Worker Value Function: Using the analogous derivations for migration decisions as in our

baseline Armington model, the expected value from living in location n at time t can be written

as:

vwnt = ln bnt + ln

(
wnt
pnt

)
+ ρ ln

N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgnt

)1/ρ
. (S.3.35)

S.4 Extensions
In this section of the Online Supplement, we consider a number of extensions of our baseline

speci�cation from Section 2 of the paper. In Subsection S.4.1, we show that our results natu-

rally generalize to accommodate shocks to trade and migration frictions, in addition to shocks to

productivity and amenities.

In Subsection S.4.2, we allow for agglomeration and dispersion forces, such that both produc-

tivity and amenities are endogenous to the surrounding concentration of economic activity. In

Subsection S.4.3 we introduce multiple �nal goods sectors with region-speci�c capital. In Section

S.4.4, we incorporate multiple �nal goods sectors with region-sector-speci�c capital. In Section

S.4.5, we further generalizes the analysis to allow for multiple �nal goods sectors with region-

sector-speci�c capital and input-output linkages.

In Subsection S.4.6, we generalize our baseline speci�cation to allow for trade de�cits, follow-

ing the standard approach in the quantitative international trade literature of treating these trade

de�cits as exogenous. In Subsection S.4.7, we allow capital to be used residentially (housing) as

well as commercially.

In Subsection S.4.8, we report an extension to allow landlords to invest in other locations.

Finally, in Section S.4.9, we discuss an extension to incorporate an endogenous labor participation

decision.

S.4.1 Shocks to Trade and Migration Costs
In this Subsection, we derive su�cient statistics for changes in steady-states and the transition

path, allowing for shocks to trade and migration costs, as well as to productivity and amenities,

as discussed in Section 4 of the paper. In the interests of brevity, we focus on the case in which

the economy starts from a steady-state, for which we observe the trade and migration share

matrices (S, T , D, E). For simplicity, we also assume logarithmic intertemporal utility. We

derive su�cient statistics for changes in steady-states and the transition path in response to

small changes in productivities ( d lnz), amenities ( d ln b), trade costs ( d ln τ ) and migration

costs ( d lnκ), using the observed trade and migration matrices from the initial steady-state.

S.4.1.1 Steady-State Su�cient Statistics

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kit+1 = kit = k∗i , `it+1 = `it = `∗i , w
∗
it+1 = w∗it = w∗i and v∗it+1 = v∗it = v∗i , where

we use an asterisk to denote a steady-state value.
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Capital Accumulation. From the capital accumulation equation (11) in the paper, the steady-

state stock of capital solves:

(1− β (1− δ))χ∗i = (1− β (1− δ)) k
∗
i

`∗i
= β

1− µ
µ

w∗i
p∗i
.

Totally di�erentiating, we have:

d lnχ∗i = d ln

(
w∗i
p∗i

)
.

Using the total derivative of real income in equation (B.24) in the Online Appendix, this becomes:

d lnχ∗i = d lnw∗i −
N∑
m=1

S∗im [ d ln τim + d lnw∗m − (1− µ) d lnχ∗m − d ln zm] ,

which can be re-written as:

d lnχ∗i = d lnw∗i −
N∑
m=1

S∗im [ d lnw∗m − (1− µ) d lnχ∗m − d ln zm]− d ln τ in

i ,

where d ln τ in

i is a measure of weighted-average incoming trade costs de�ned as:

d ln τ in

i ≡
N∑
m=1

S∗im d ln τim.

This relationship has the matrix representation:

d lnχ∗ = d lnw∗ − S d lnw∗ + (1− µ)S d lnχ∗ + S d lnz − d ln τ in,

(I − (1− µ)S) d lnχ∗ = (I − S) d lnw∗ + S d lnz − d ln τ in. (S.4.1)

Goods Market Clearing. The total derivative of the goods market clearing condition in equa-

tion (B.26) in the paper can be re-written as:

[
d lnwit

+ d ln `it

]
=


∑N

n=1 Tint ( d lnwnt + d ln `nt)

+θ
∑N

n=1

∑N
m=1 TintSnmt ( d lnwmt − (1− µ) d lnχmt − d ln zmt)

−θ
∑N

n=1 Tint ( d lnwit − (1− µ) d lnχit − d ln zit)

+θ
∑N

n=1 Tint d ln τ in

nt − θ d ln τ out

it

 ,
where d ln τ in

it is de�ned above and d ln τ out

it is de�ned as:

d ln τ out

it ≡
N∑
n=1

Tint d ln τnit.

This relationship above has the following matrix representation:
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d lnwt + d ln `t = T ( d lnwt + d ln `t) + θ

[
(TS − I) ( d lnwt − (1− µ) d lnχt − d lnzt)

+T d ln τ in

t − d ln τ out

t

]
.

We can re-write this relationship as:

[I − T + θ (I − TS)] d lnwt =

[
− (I − T ) d ln `t + θ (I − TS) ( d ln zt + (1− µ) d lnχt)

+θ
[
T d ln τ in

t − d ln τ out

t

] ]
.

In steady-state we have:

[I − T + θ (I − TS)] d lnw∗ =

[
− (I − T ) d ln `∗ + θ (I − TS) ( d ln z + (1− µ) d lnχ∗)

+θ
[
T d ln τ in − d ln τ out

] ]
. (S.4.2)

Population Flow. The total derivative of the population �ow condition in equation (15) in the

paper can be re-written as:

d ln `gt+1 =
N∑
i=1

Egit d ln `it +
1

ρ

N∑
i=1

EgitβEt dvgt+1 −
1

ρ

N∑
i=1

Egit d lnκgit

− 1

ρ

N∑
i=1

Egit

N∑
m=1

DimtβEt dvmt+1 +
1

ρ

N∑
i=1

Egit

N∑
m=1

Dimt d lnκmit,

and hence:

d ln `gt+1 =
N∑
i=1

Egit d ln `it +
1

ρ

N∑
i=1

EgitβEt dvgt+1 −
1

ρ
d lnκin

gt

− 1

ρ

N∑
i=1

Egit

N∑
m=1

DimtβEt dvmt+1 +
1

ρ

N∑
i=1

Egit d lnκout

it ,

where we have de�ned:

d lnκin

gt ≡
N∑
i=1

Egit d lnκgit,

d lnκout

it ≡
N∑
m=1

Dimt d lnκmit.

This total derivative has the following matrix representation:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1 −

1

ρ

(
d lnκin

t −E d lnκout

t

)
.

In steady-state, we have:

d ln `∗ = E d ln `∗ +
β

ρ
(I −ED) dv∗ − 1

ρ

(
d lnκin −E d lnκout

)
. (S.4.3)
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Value function. The total derivative of the value function in equation (14) in the paper can be

re-written as:

dvit =

[
d lnwit −

∑N
m=1 Simt ( d lnwmt − (1− µ) d lnχmt − d ln zmt)− d ln τ in

it

+ d ln bit +
∑N

m=1Dimt (βEt dvmt+1)− d lnκout

it

]
,

where d ln τ in

it and d lnκout

it are de�ned above. The above relationship has the following matrix

representation:

dvt =

[
(I − S) d lnwt + S ( d ln zt + (1− µ) d lnχt)− d ln τ in

t

+ d ln bt − d lnκout

t + βDEt dvt+1

]
.

In steady-state, we have:

dv∗ =

[
(I − S) d lnw∗ + S ( d ln z + (1− µ) d lnχ∗)− d ln τ in

+ d ln b− d lnκout + βD dv∗

]
. (S.4.4)

System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = [I − (1− µ)S]
−1 [

(I − S) d lnw∗ + S d lnz − d ln τ in
]
. (S.4.5)

d lnw∗ = [I − T + θ (I − TS)]
−1
[

(− (I − T ) d ln `∗ + (I − TS) θ ( d ln z + (1− µ) d lnχ∗))
+θ
[
T d ln τ in − d ln τ out

] ]
. (S.4.6)

d ln `∗ = (I −E)
−1
[
β

ρ
(I −ED) dv∗ − 1

ρ

(
d lnκin −E d lnκout

)]
. (S.4.7)

dv∗ = [I − βD]
−1
[

(I − S) d lnw∗ + S ( d ln z + (1− µ) d lnχ∗)− d ln τ in

+ d ln b− d lnκout

]
. (S.4.8)

As the expenditure shares (S) and income shares (T ) are homogeneous of degree zero in factor

prices, we require a numeraire in order for solve for changes in wages. We choose the total income

of all locations as our numeraire (

∑N
i=1w

∗
i `
∗
i =

∑N
i=1 q

∗
i = q = 1), which implies that the log

changes in incomes satisfy q∗ d ln q∗ =
∑N

i=1 q
∗
i d ln q∗i =

∑N
i=1 q

∗
i

dq∗i
q∗i

=
∑N

i=1 dq∗i = 0, where

q∗ is a row vector of the steady-state income of each location. Similarly, the outmigration shares

(D) and inmigration shares (E) are homogeneous of degree zero in the total population of all

locations, which requires a choice of units to solve for population levels. We solve for population

shares, imposing the requirement that the population shares sum to one:

∑N
i=1 `i = ` = 1, which

implies `∗ d ln `∗ =
∑N

i=1 `
∗
i d ln `∗i =

∑N
i=1 `

∗
i

d`∗i
`∗i

=
∑N

i=1 d`∗i = 0, where `∗ is a row vector of

the steady-state population of each location.

S.4.1.2 Su�cient Statistics for Transition Dynamics Starting from Steady-State

We suppose that the economy starts from an initial steady-state distribution of economic activ-

ity {k∗i , `∗i , w
∗
i , v

∗
i }. We consider small shocks to productivity ( d lnz), amenities ( d ln b), trade

costs ( d ln τ ) and commuting costs ( d lnκ), holding constant the economy’s aggregate labor en-

dowment ( d ln ` = 0). We use a tilde above a variable to denote a log deviation from the initial

steady-state, such that χ̃it = lnχit − lnχ∗i , for all variables except for the worker value function

vit; with a slight abuse of notation we use ṽit ≡ vit − v∗i to denote the deviation in levels for the

worker value function.
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Capital Accumulation. From the capital accumulation equation (11) in the paper, we have:

kit+1 = β (1− δ) kit + β
1− µ
µ

wit
pit
`it,

kit+1

`it+1

`it+1

`it
= β (1− δ) kit

`it
+ β

1− µ
µ

wit
pit
,

χit+1
`it+1

`it
= β (1− δ)χit + β

1− µ
µ

wit
pit
, (S.4.9)

while in steady-state we have:

k∗i
`∗i

= β (1− δ) k
∗
i

`∗i
+ β

1− µ
µ

w∗i
p∗i
,

χ∗i = β (1− δ)χ∗i + β
1− µ
µ

w∗i
p∗i
.

χ∗i =
β

(1− β (1− δ))
1− µ
µ

w∗i
p∗i
. (S.4.10)

Dividing both sides of equation (S.4.9) by χ∗i , we have:

χit+1

χ∗i

`it+1

`it
= β (1− δ) χit

χ∗i
+

β

χ∗i

1− µ
µ

wit
pit
,

which using (S.4.10) can be re-written as:

χit+1

χ∗i

`it+1

`it
= β (1− δ) χit

χ∗i
+ (1− β (1− δ)) wit/w

∗
i

pit/p∗i
,

which can be further re-written as:

χit+1

χ∗i

`it+1

`it
− 1 = β (1− δ) χit

χ∗i
+ (1− β (1− δ)) wit/w

∗
i

pit/p∗i
− 1,

χit+1

χ∗i

`it+1

`it
− 1 = β (1− δ)

(
χit
χ∗i
− 1

)
+ (1− β (1− δ))

(
wit/w

∗
i

pit/p∗i
− 1

)
.

Noting that:

xit
x∗i
− 1 ' ln

(
xit
x∗i

)
,

χit+1

χ∗i

`it+1

`it
− 1 ' ln

(
χit+1

χ∗i

`it+1

`it

)
,

we have:

ln

(
χit+1

χ∗i

)
+ ln

(
`it+1

`it

)
= β (1− δ) ln

(
χit
χ∗i

)
+ (1− β (1− δ)) ln

(
wit/w

∗
i

pit/p∗i

)
,

ln

(
χit+1

χ∗i

)
+ ln

(
`it+1/`

∗
i

`it/`∗i

)
= β (1− δ) ln

(
χit
χ∗i

)
+ (1− β (1− δ)) ln

(
wit/w

∗
i

pit/p∗i

)
,
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which can be re-written as follows:

χ̃it+1 = β (1− δ) χ̃it + (1− β (1− δ)) (w̃it − p̃it)− ˜̀it+1 + ˜̀it,
We can re-write the above relationship for the log deviation of the capital-labor ratio from the

initial steady-state as:

χ̃t+1 = β (1− δ) χ̃t + (1− β (1− δ)) (w̃t − p̃t)− ˜̀t+1 + ˜̀
t. (S.4.11)

Taking the total derivative of real income relative to the initial steady-state, we have:

w̃it − p̃it = w̃it −
N∑
m=1

Simt [τ̃imt + w̃mt − (1− µ) χ̃mt − z̃m] ,

w̃it − p̃it = w̃it −
N∑
m=1

Simt [w̃mt − (1− µ) χ̃mt − z̃m]− τ̃ in

imt,

where

τ̃ in

imt ≡
N∑
m=1

Simtτ̃imt.

We can re-write this relationship in matrix form as:

w̃t − p̃t = (I − S) w̃t + (1− µ)Sχ̃t + Sz̃ − τ̃ in.

Using this result in our expression for the dynamics of the capital-labor ratio above, we have:

χ̃t+1 =

 [β (1− δ) I + (1− β (1− δ)) (1− µ)S] χ̃t

+ (1− β (1− δ)) (I − S) w̃t + (1− β (1− δ))Sz̃
− (1− β (1− δ)) τ̃ in − ˜̀t+1 + ˜̀

t

 . (S.4.12)

Goods Market Clearing. The total derivative of the goods market clearing condition in equa-

tion (12) in the paper relative to the initial steady-state has the following matrix representation:

w̃t + ˜̀
t =

[
T
(
w̃t + ˜̀

t

)
+ θ (TS − I) (w̃t − (1− µ) χ̃t − z̃)

+θ [T τ̃ in − τ̃ out]

]
,

where

τ̃ out

it ≡
N∑
n=1

Tintτ̃nit.

We can re-write this relationship as:

w̃t = [I − T + θ (I − TS)]−1

[
− (I − T ) ˜̀t + θ (I − TS) (z̃ + (1− µ) χ̃t)

+θ [T τ̃ in − τ̃ out]

]
. (S.4.13)
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Population Flow. The total derivative of the population �ow condition in equation (15) in the

paper relative to the initial steady-state has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1 −

1

ρ

(
κ̃in −Eκ̃out

)
, (S.4.14)

where

κ̃in

gt ≡
N∑
i=1

Egitκ̃git,

κ̃out

git ≡
N∑
m=1

Dimtκ̃mit.

Value Function. The total derivative of the value function in equation (14) in the paper relative

to the initial steady-state has the following matrix representation:

ṽt =

[
(I − S) w̃t + Sz̃ + (1− µ)Sχ̃t − τ̃ in

+b̃− κ̃out + βDEtṽt+1

]
. (S.4.15)

System of Equations for Transition Dynamics Relative to the Initial Steady-State. Col-

lecting together the capital accumulation equation (S.4.12), the goods market clearing condition

(S.4.13), the population �ow condition (S.4.14), and the value function (S.4.15), the system of equa-

tions for the transition dynamics relative to the initial steady-state takes the following form:

χ̃t+1 =

 [β (1− δ) I + (1− β (1− δ)) (1− µ)S] χ̃t

+ (1− β (1− δ)) (I − S) w̃t + (1− β (1− δ))Sz̃
− (1− β (1− δ)) τ̃ in − ˜̀t+1 + ˜̀

t

 . (S.4.16)

w̃t = [I − T + θ (I − TS)]−1

[
− (I − T ) ˜̀t + θ (I − TS) (z̃ + (1− µ) χ̃t)

+θ [T τ̃ in − τ̃ out]

]
. (S.4.17)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1 −

1

ρ

(
κ̃in −Eκ̃out

)
. (S.4.18)

ṽt =

[
(I − S) w̃t + Sz̃ + (1− µ)Sχ̃t − τ̃ in

+b̃− κ̃out + βDEtṽt+1

]
. (S.4.19)

S.4.2 Agglomeration Forces
In this section of the Online Supplement, we generalize our baseline speci�cation from Section 2

of the paper to introduce agglomeration forces. We allow productivity and amenities to both have

an exogenous component, which captures locational fundamentals such as climate and access to

natural water, and an endogenous component, which captures agglomeration forces, and depends

on the surrounding concentration of economic activity.
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S.4.2.1 Productivity and Amenities

We follow the standard approach in the spatial economics literature of modelling these agglom-

eration forces as a power function of a location’s own population: zit = z̄it`
ηz

it and bit = bit`
ηb

it ,

where ηz > 0 and ηb > 0 parameterize the strength of agglomeration forces in productivity and

amenities respectively.
5

In this extension, the general equilibrium conditions of the model remain

as in Section 2.6 of the paper, except that the price index (10) and the expenditure share (13) are

modi�ed to incorporate agglomeration forces in production (zit = z̄it`
ηz

it ), and the value function

(14) is adjusted to include agglomeration forces in amenities (bit = bit`
ηb

it ).

S.4.2.2 General Equilibrium

Given the state variables {`i0, ki0}, the general equilibrium of the economy is the path of alloca-

tions and prices such that �rms in each location choose inputs to maximize pro�ts, workers make

consumption and migration decisions to maximize utility, landlords make consumption and sav-

ing decisions to maximize utility, and prices clear all markets. For expositional clarity, we collect

the equilibrium conditions and express them in terms of a sequence of four endogenous variables

{`it, kit, wit, vit}∞t=0. All other endogenous variables of the model can be recovered as a function

of these variables.

Capital Accumulation: Using capital market clearing in equation (9) in the paper, the price

index in equation (4) in the paper and the equilibrium pricing rule in equation (2) in the paper,

the law of motion for capital is:

kit+1 = β
1− µ
µ

wit
pit
`it + β (1− δ) kit, (S.4.20)

pnt =

 N∑
i=1

(
wit

(
1− µ
µ

)1−µ

(`it/kit)
1−µ τni/

(
z̄it`

ηz

it

))−θ−1/θ

, (S.4.21)

where for simplicity we assume logarithmic intertemporal utility. The presence of agglomeration

forces implies that the term in `η
z

it appears in the expression for the price index (pnt) in equation

(S.4.21).

Goods Market Clearing: Using the equilibrium pricing rule in equation (2) in the paper, the

CES expenditure share, and capital market clearing in equation (9) in the paper, together with

the goods market clearing condition in equation (8) in the paper, we obtain:

wit`it =
N∑
n=1

Snitwnt`nt, (S.4.22)

5
While for simplicity we assume that agglomeration and dispersion forces only depend on a location’s own

population, it is straightforward to also introduce spillovers across locations, as in Ahlfeldt, Redding, Sturm and

Wolf (2015) and Allen, Arkolakis and Li (2020). Dispersion forces in productivity and amenities can be introduced

through ηz < 0 and ηb < 0 respectively.
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Snit =

(
wit (`it/kit)

1−µ τni/
(
z̄it`

ηz

it

))−θ
∑N

m=1

(
wmt (`mt/kmt)

1−µ τnm/
(
z̄mt`

ηz

mt

))−θ , Tint ≡
Snitwnt`nt
wit`it

, (S.4.23)

where Snit is the expenditure share of importer n on exporter i at time t; we have de�ned Tint as

the corresponding income share of exporter i from importer n at time t; and the only di�erence

from our baseline speci�cation in the paper is the terms in `η
z

it in the expenditure share (Snit)
in equation (S.4.23). Note that the order of subscripts switches between the expenditure share

(Snit) and the income share (Tint), because the �rst and second subscripts will correspond below

to rows and columns of a matrix, respectively.

Population Flow: Using the outmigration probabilities, the population �ow condition for the

evolution of the population distribution over time is given by:

`gt+1 =
N∑
i=1

Digt`it, (S.4.24)

Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κmit

)1/ρ
, Egit ≡

`itDigt

`gt+1

, (S.4.25)

where Digt is the outmigration probability from location i to location g between time t and t+ 1,

and we have de�nedEgit as the corresponding inmigration probability to location g from location

i between time t and t+ 1. Note that the order of subscripts switches between the outmigration

probability (Digt) and the inmigration probability (Egit), because the �rst and second subscripts

will correspond below to rows and columns of a matrix, respectively.

Worker value function: Using the worker indirect utility function in equation (3) in the paper

in the value function, the expected value from living in location n at time t can be written as:

vwnt = ln

(
bnt`

ηb

ntwnt
pnt

)
+ ρ ln

N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgnt

)1/ρ
, (S.4.26)

where the only di�erence from our baseline speci�cation in the paper is the term in lη
b

nt in the

value function in equation (S.4.26).

S.4.2.3 Existence and Uniqueness (Proof of Proposition 6 in the Paper)

We now use the system of equations for general equilibrium (S.4.20)-(S.4.26) to characterize the

existence and uniqueness of a deterministic steady-state equilibrium with time-invariant funda-

mentals {zi, bi, τni, κni} and endogenous variables {v∗i , w∗i , `∗i , k∗i }. Given these time-invariant

fundamentals, we can drop the expectation over future fundamentals, such that Etvwgt+1 = vwgt+1.

Capital-Labor Ratio In steady-state, kit+1 = kit = k∗i , and we can use the capital accumula-

tion condition (S.4.20) to solve for the steady-state capital-labor ratio:

k∗i = β
1− µ
µ

w∗i
p∗i
`∗i + β (1− δ) k∗i ,
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k∗i
`∗i

=
β

1− β (1− δ)
1− µ
µ

w∗i
p∗i
. (S.4.27)

Price Index Using this result for the steady-state capital-labor ratio, we can re-write the price

index in equation (S.4.21) as follows:

(p∗n)−θ =
N∑
i=1

(
w∗i

(
1− µ
µ

)1−µ

(`∗i /k
∗
i )

1−µ τni/
(
z̄i (`

∗
i )
ηz
))−θ

,

(p∗n)−θ =
N∑
i=1

(
1− β (1− δ)

β

)−θ(1−µ)

(w∗i )
−θµ (p∗i )

−θ(1−µ) (`∗i )
ηzθ (τni/zi)

−θ ,

(p∗n)−θ =
N∑
i=1

ψτ̃ni (w
∗
i )
−θµ (p∗i )

−θ(1−µ) (`∗i )
ηzθ , (S.4.28)

ψ ≡
(

1− β (1− δ)
β

)−θ(1−µ)

, τ̃ni ≡ (τni/zi)
−θ .

Goods Market Clearing Condition Using this result for the steady-state capital-labor ratio,

we can also re-write the goods market clearing condition (S.4.22) as follows:

w∗i `
∗
i =

N∑
n=1

(
w∗i (`∗i /k

∗
i )

1−µ τni/
(
z̄i (`

∗
i )
ηz
))−θ

∑N
m=1

(
w∗m (`∗m/k

∗
m)1−µ τnm/

(
z̄m (`∗m)η

z))−θw∗n`∗n,

w∗i `
∗
i =

N∑
n=1

(
w∗i

(
1−µ
µ

)1−µ
(`∗i /k

∗
i )

1−µ τni/
(
z̄i (`

∗
i )
ηz
))−θ

(p∗n)−θ
w∗n`

∗
n,

w∗i `
∗
i =

N∑
n=1

(w∗i )
−θµ
(

1−β(1−δ)
β

)−θ(1−µ)

(p∗i )
−θ(1−µ) (`∗i )

ηzθ (τni/z̄i)
−θ

(p∗n)−θ
w∗n`

∗
n,

(`∗i )
1−ηzθ (w∗i )

1+θµ (p∗i )
θ(1−µ) =

N∑
n=1

(
1− β (1− δ)

β

)−θ(1−µ)

(p∗n)θ (τni/z̄i)
−θ w∗n`

∗
n,

(`∗i )
1−ηzθ (w∗i )

1+θµ (p∗i )
θ(1−µ) =

N∑
n=1

ψτ̃ni (p
∗
n)θ w∗n`

∗
n. (S.4.29)

Value Function We now show how the value function (S.4.26) can be re-written using our

change of variables:

vw∗n = ln

(
bn (`∗n)η

b

w∗n
p∗n

)
+ ρ ln

N∑
g=1

(
exp

(
βvw∗g

)
/κgn

)1/ρ
,
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exp (vw∗n ) =

(
bn (`∗n)η

b

w∗n
p∗n

)[
N∑
g=1

(
exp

(
βvw∗g

)
/κgn

)1/ρ

]ρ
,

exp

(
β

ρ
vw∗n

)
= (`∗n)βη

b/ρ

(
w∗n
p∗n

)β/ρ [ N∑
g=1

(
κgn/b

β

n

)−1/ρ

exp

(
β

ρ
vw∗g

)]β
,

exp

(
β

ρ
vw∗n

)
= (`∗n)βη

b/ρ

(
w∗n
p∗n

)β/ρ [ N∑
g=1

κ̃gn exp

(
β

ρ
vw∗g

)]β
, κ̃gn ≡

(
κgn/b

β

n

)−1/ρ

,

exp

(
β

ρ
vw∗n

)
= (`∗n)βη

b/ρ

(
w∗n
p∗n

)β/ρ
φβn, φn ≡

N∑
g=1

κ̃gn exp

(
β

ρ
vw∗g

)
. (S.4.30)

Using this solution in the de�nition of φn immediately above, we have:

φn =
N∑
g=1

κ̃gn
(
`∗g
)βηb/ρ (

p∗g
)−β/ρ (

w∗g
)β/ρ

φβg . (S.4.31)

Population Flow Condition We now show how the population �ow condition (S.4.24) can be

re-written using our change of variables:

`∗g =
N∑
i=1

(
exp

(
βvw∗g

)
/κgi

)1/ρ∑N
m=1 (exp (βvw∗m ) /κmi)

1/ρ
`∗i ,

`∗g =
N∑
i=1

κ
−1/ρ
gi exp

(
β
ρ
vw∗g

)
∑N

m=1 κ
−1/ρ
mi exp

(
β
ρ
vw∗m

)`∗i ,
`∗g =

N∑
i=1

κ
−1/ρ
gi exp

(
β

ρ
vw∗g

)[ N∑
m=1

κ
−1/ρ
mi exp

(
β

ρ
vw∗m

)]−1

`∗i ,

`∗g =
N∑
i=1

κ̃gi exp

(
β

ρ
vw∗g

)[ N∑
m=1

κ̃mi exp

(
β

ρ
vw∗m

)]−1

`∗i , κ̃gi ≡
(
κgi/b

β

i

)−1/ρ

,

`∗g =
N∑
i=1

κ̃gi exp

(
β

ρ
vw∗g

)
φ−1
i `∗i , φi ≡

N∑
m=1

κ̃mi exp

(
β

ρ
vw∗m

)
.

Now using the value function result (S.4.30) above, we have:

`∗g =
N∑
i=1

κ̃gi
(
`∗g
)βηb/ρ(w∗g

p∗g

)β/ρ
φβgφ

−1
i `∗i ,

(
p∗g
)β/ρ (

w∗g
)−β/ρ (

`∗g
)1−βηb/ρ

φ−βg =
N∑
i=1

κ̃gi`
∗
iφ
−1
i . (S.4.32)
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S.4.2.4 System of Equations

Collecting together these results, the steady-state equilibrium of the model {p∗i , w∗i , `∗i , φ∗i } can

be expressed as the solution to the following system of equations:

(p∗i )
−θ =

N∑
n=1

ψτ̃in (p∗n)−θ(1−µ) (w∗n)−θµ (`∗n)η
zθ , (S.4.33)

(p∗i )
θ(1−µ) (w∗i )

1+θµ (`∗i )
1−ηzθ =

N∑
n=1

ψτ̃ni (p
∗
n)θ w∗n`

∗
n, (S.4.34)

(p∗i )
β/ρ (w∗i )

−β/ρ (`∗i )
1−βηb/ρ (φ∗i )

−β =
N∑
n=1

κ̃in`
∗
n (φ∗n)−1 , (S.4.35)

φ∗i =
N∑
n=1

κ̃ni (p
∗
n)−β/ρ (w∗n)β/ρ (`∗n)βη

b/ρ (φ∗n)β , (S.4.36)

where we have the following de�nitions:

ψ ≡
(

1− β (1− δ)
β

)−θ(1−µ)

, τ̃ni ≡ (τni/zi)
−θ ,

φ∗i ≡
N∑
n=1

κ̃ni exp

(
β

ρ
vw∗n

)
, κ̃in ≡

(
κin/b

β

n

)−1/ρ

.

We now provide a su�cient condition for the existence of a unique steady-state equilibrium in

terms of the properties of a coe�cient matrix (A) of model parameters {ψ, θ, β, ρ, µ, δ, ηz , ηb}
following the approach of Allen, Arkolakis and Li (2020).

Proposition. (Proposition 6 in the paper) A su�cient condition for the existence of a unique
steady-state spatial distribution of economic activity {`∗i , k∗i , w∗i , R∗i , v∗i } (up to a choice of units)
given time-invariant locational fundamentals {z∗i , b

∗
i , τ
∗
ni, κ

∗
ni} is that the spectral radius of a coe�-

cient matrix (AAgg) of model parameters {ψ, θ, β, ρ, µ, δ, ηz , ηb} is less than or equal to one.

Proof. The exponents on the variables on the left-hand side of the system of equations (S.4.33)-

(S.4.36) can be represented as the following matrix:

ΛAgg =


−θ 0 0 0

θ (1− µ) (1 + θµ) (1− ηzθ) 0
β/ρ −β/ρ

(
1− βηb/ρ

)
−β

0 0 0 1

 .
The exponents on the variables on the right-hand side of the system of equations (S.4.33)-(S.4.36)

can be represented as the following matrix:

ΓAgg =


−θ (1− µ) −θµ ηzθ 0

θ 1 1 0
0 0 1 −1
−β/ρ β/ρ βηb/ρ β

 .
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Let AAgg ≡
∣∣∣ΓAgg (ΛAgg)

−1
∣∣∣ and denote the spectral radius (eigenvalue with the largest absolute

value) of this matrix by ρ (AAgg). From Theorem 1 in Allen, Arkolakis and Li (2020), a su�cient

condition for the existence of a unique equilibrium (up to a choice of units) is ρ (AAgg) ≤ 1.

We next derive a sharper su�cient for the case of quasi-symmetric trade and migration costs:

τin = τ̃inτ̃
a
i τ̃

b
n and κin = κ̃inκ̃

c
i κ̃
d
n, where τ̃in = τ̃ni and κ̃in = κ̃ni, as assumed in our empirical

application. In this case of quasi-symmetric trade and migration costs, we can re-write the system

of equations (S.4.33)-(S.4.36) as follows:

p−θi (τ̃ai )−1 =
N∑
n=1

τ̃inτ̃
b
np
−θ
n q−θµn `η

zθ
n , (S.4.37)

pθ−1
i q1+θµ

i `1−ηzθ
i

(
τ̃ bi
)−1

=
N∑
n=1

τ̃inτ̃
a
np

θ−1
n qn`n, (S.4.38)

q
−β/ρ
i `

1−βηb/ρ
i φ−βi (κ̃ci)

−1 =
N∑
n=1

κ̃inκ̃
d
n`nφ

−1
n , (S.4.39)

φi
(
κ̃di
)−1

=
N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n `βη

b/ρ
n φβn. (S.4.40)

From equation (S.4.40), we know:

1 =
N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n `

βηb/ρ
n φβn

φi
(
κ̃di
)−1 .

Multiply the left-hand side of equation (S.4.39) by

∑N
n=1

κ̃inκ̃
c
nq
β/ρ
n `

βηb/ρ
n φβn

φi(κ̃di )
−1 , and move

(κ̃ci)
−1 φ−βi q

−β/ρ
i `

−βηb/ρ
i to the right-hand side:

N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n `

βηb/ρ
n φβn

φi
(
κ̃di
)−1 `i =

N∑
n=1

κ̃inφ
β
i κ̃

c
iq
β/ρ
i `

βηb/ρ
i

φn (κ̃dn)−1 `n,

⇐⇒ `iκ̃
d
i /φi∑N

n=1 κ̃in`nκ̃
d
n/φn

=
κ̃ciφ

β
i q

β/ρ
i `

βηb/ρ
i∑N

n=1 κ̃inκ̃
c
nq

β/ρ
n `

βηb/ρ
n φβn

.

By the Perron-Frobenius theorem, `iκ̃
d
i /φi = xκ̃ciφ

β
i q

β/ρ
i `

βηb/ρ
i for some constant x. Since the scale

of `i is not pinned down by the system of equations—if {`i} is part of a solution to the system of

equations, so is {2`i}—we can without loss of generality set x = 1. Hence:

`
1−βηb/ρ
i = κ̃ci

(
κ̃di
)−1

φ1+β
i q

β/ρ
i ,

`i =
(
ci
(
κ̃di
)−1

φ1+β
i q

β/ρ
i

) 1

1−βηb/ρ
. (S.4.41)
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Now we use the same strategy to reduce equations (S.4.37) and (S.4.38) down to one. Re-write

equation (S.4.37) as:

1 =
N∑
n=1

τ̃inτ̃
b
np
−θ
n q−θµn `η

zθ
n

p−θi (τ̃ai )−1 .

Multiplying the left-hand side of equation (S.4.38) by

∑N
n=1

τ̃inτ̃
b
np
−θ
n q−θµn `η

zθ
n

p−θi (τ̃ai )
−1 :

N∑
n=1

τ̃inτ̃
b
np
−θ
n q−θµn `η

zθ
n

p−θi (τ̃ai )−1 pθ−1
i q1+θµ

i `1−ηzθ
i

(
τ̃ bi
)−1

=
N∑
n=1

τ̃inτ̃
a
np

θ−1
n qn`n,

⇐⇒ τ̃ai p
θ−1
i qi`i∑N

n=1 τ̃inτ̃
a
np

θ−1
n qn`n

=
τ̃ bi p
−θ
i q−θµi `η

zθ
i∑N

n=1 τ̃inτ̃
b
np
−θ
n q−θµn `η

zθ
n

.

Again by the Perron-Frobenius theorem, τ̃ai p
θ−1
i qi`i = yτ̃ bi p

−θ
i q−θµi `η

zθ
i for some constant y. Since

pi is a nominal variable, we can without loss of generality set y = 1; hence

τ̃ai p
θ−1
i qi`i = τ̃ bi p

−θ
i q−θµi `η

zθ
i ,

p−θi = eiq
−θ 1+θµ

1−2θ

i `
−θ 1−ηzθ

1−2θ

i ,

= eiq
−θ 1+θµ

1−2θ

i

(
φ1+β
i q

β/ρ
i

) −θ
1−2θ

1−ηz/θ
1−βηb/ρ

,

= eiq
− θ

1−2θ

(
1+θµ+β

ρ
1−ηz/θ
1−βηb/ρ

)
i φ

−θ
1−2θ

(1+β)
1−ηz/θ
1−βηb/ρ

i , (S.4.42)

where ei = τ̃ bi (τ̃ai )−1
. Now substitute (S.4.41) and (S.4.42) into (S.4.37) and (S.4.40):

eiq
− θ

1−2θ

(
1+θµ+β

ρ
1−ηz/θ
1−βηb/ρ

)
i φ

−θ
1−2θ

(1+β)
1−ηz/θ
1−βηb/ρ

i (τ̃ai )−1 ,

=
N∑
n=1

τ̃inτ̃
b
nenq

− θ
1−2θ

(
1+θµ+β

ρ
1−ηz/θ
1−βηb/ρ

)
n φ

−θ
1−2θ

(1+β)
1−ηz/θ
1−βηb/ρ

n q−θµn

(
κ̃cn
(
κ̃dn
)−1

φ1+β
n qβ/ρn

) ηzθ

1−βηb/ρ
,

=
N∑
n=1

τ̃inτ̃
b
nen

(
κ̃cn
(
κ̃dn
)−1
) ηzθ

1−βηb/ρ
q
− θ

1−2θ

(
1+θµ+β

ρ
1−ηz/θ
1−βηb/ρ

)
−θµ−β

ρ
ηzθ

1−βηb/ρ
n φ

−θ
1−2θ

(1+β)
1−ηz/θ
1−βηb/ρ

+(1+β) ηzθ

1−βηb/ρ
n ,

φi
(
κ̃di
)−1

=
N∑
n=1

κ̃inκ̃
c
nq

β/ρ
n

(
κ̃cn
(
κ̃dn
)−1

φ1+β
n qβ/ρn

) βηb/ρ

1−βηb/ρ
φβn,

=
N∑
n=1

κ̃in

(
κ̃cn
(
κ̃dn
)−1
) βηb/ρ

1−βηb/ρ
κ̃cnq

β
ρ

(
1+

βηb/ρ

1−βηb/ρ

)
n φ

β

(
1+(1+β)

ηb/ρ

1−βηb/ρ

)
n .

We now have two sets of equations in two sets of endogenous variables qi, φi. We now again

apply Theorem 1 in Allen, Arkolakis and Li (2020) for this system of two equations. The matrix

of coe�cients on the left and right-hand side of this system of equations are respectively:

ΛAgg =

[
− θ

1−2θ

(
1 + θµ+ β

ρ
1−ηz/θ

1−βηb/ρ

)
−θ

1−2θ
(1 + β) 1−ηz/θ

1−βηb/ρ

0 1

]
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ΓAgg =

 − θ
1−2θ

(
1 + θµ+ β

ρ
1−ηz/θ

1−βηb/ρ

)
− θµ− β

ρ
ηzθ

1−βηb/ρ
−θ

1−2θ
(1 + β) 1−ηz/θ

1−βηb/ρ + (1 + β) ηzθ
1−βηb/ρ

β
ρ

(
1 + βηb/ρ

1−βηb/ρ

)
β
(

1 + (1 + β) ηb/ρ
1−βηb/ρ

)  .
A su�cient condition for a unique equilibrium is again that the spectral radius of AAgg ≡∣∣∣ΓAgg (ΛAgg)

−1
∣∣∣ is less than or equal to one: ρ (AAgg) ≤ 1. As ηz, ηb → 0, the coe�cient ma-

trices ΛAgg
and ΓAgg

reduce to those in our baseline speci�cation without agglomeration forces,

as characterized in Proposition 1 in the paper.

As the expenditure shares (S) and income shares (T ) are homogeneous of degree zero in

factor prices, we require a choice of units or numeraire in order to solve for wages. We choose

the total income of all locations as our numeraire (

∑N
i=1wit`it =

∑N
i=1 qit = qt = 1). Similarly,

the outmigration shares (D) and inmigration shares (E) are homogeneous of degree zero in the

total population of all locations, which requires a choice of units to solve for population levels.

We solve for population shares, imposing the requirement that the population shares sum to one:∑N
i=1 `i = ` = 1, which implies

∑N
i=1 `

∗
i d ln `∗i =

∑N
i=1 `

∗
i

d`∗i
`∗i

=
∑N

i=1 d`∗i = 0.

S.4.2.5 Comparative Statics

We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics for changes in steady-state and the entire tran-

sition path. In the interests of brevity, we focus on di�erences from our baseline speci�cation

without agglomeration economies.

GoodsMarket Clearing Totally di�erentiating the goods market clearing condition, we have:

[
d lnwit

+ d ln `it

]
=

 ∑N
n=1 Tint ( d lnwnt + d ln `nt)

+θ
∑N
n=1

∑N
m=1 TintSnmt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − ηz d ln `mt − d ln zmt)

−θ
∑N
n=1 Tint ( d ln τnit + d lnwit − (1− µ) d lnχit − ηz d ln `it − d ln zit)

 . (S.4.43)

Value Function. Totally di�erentiating the value function, we have:

dvit =

[
d lnwit −

∑N
m=1 Simt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − ηz d ln `mt − d ln zmt)

+ d ln bit + ηb d ln `mt +
∑N
m=1Dimt (βEt dvmt+1 − d lnκmit)

]
.

(S.4.44)

S.4.2.6 Steady-State Su�cient Statistics

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kit+1 = kit = k∗i , `it+1 = `it = `∗i , w
∗
it+1 = w∗it = w∗i and v∗it+1 = v∗it = v∗i , where

we use an asterisk to denote a steady-state value, and drop the time subscript for the remainder of

this subsection, since we are concerned with steady-states. We consider small shocks to produc-

tivity ( d lnz) and amenities ( d ln b) in each location, holding constant the economy’s aggregate

labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and commuting costs ( d lnκ = 0).
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Capital Accumulation. From the capital accumulation equation (S.4.20), the steady-state

stock of capital solves:

(1− β (1− δ))χ∗i = (1− β (1− δ)) k
∗
i

`∗i
= β

1− µ
µ

w∗i
p∗i
.

Totally di�erentiating, we have:

d lnχ∗i = d ln

(
w∗i
p∗i

)
.

Totally di�erentiating real income, we have:

d lnχ∗i = d lnw∗i −
N∑
m=1

S∗im [ d lnw∗m − (1− µ) d lnχ∗m − ηz d ln `∗m − d ln zm] ,

where we have used and d ln τnm = 0. This relationship has the matrix representation:

d lnχ∗ = d lnw∗ − S d lnw∗ + (1− µ)S d lnχ∗ + ηzS d ln `∗ + S d lnz,

(I − (1− µ)S) d lnχ∗ = (I − S) d lnw∗ + ηzS d ln `∗ + S d lnz. (S.4.45)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.43)

has the following matrix representation:

d lnwt + d ln `t =

[
T ( d lnwt + d ln `t)

+θ (TS − I) ( d lnwt − (1− µ) d lnχt − ηz d ln `t − d lnz)

]
,

where we have used d ln τ = 0. We can re-write this relationship as:

[I − T + θ (I − TS)] d lnwt =

[
− (I − T − θηz (I − TS)) d ln `t

+θ (I − TS) ( d ln z + (1− µ) d lnχt)

]
.

In steady-state we have:

[I − T + θ (I − TS)] d lnw∗ =

[
− (I − T − θηz (I − TS)) d ln `∗

+θ (I − TS) ( d ln z + (1− µ) d lnχ∗)

]
. (S.4.46)

Population Flow. The total derivative of the population �ow condition has the same matrix

representation as in our baseline model:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1.

In steady-state, we have:

d ln `∗ = E d ln `∗ +
β

ρ
(I −ED) dv∗. (S.4.47)
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Value function. The total derivative of the value function (S.4.44) has the following matrix

representation:

dvt =

[
(I − S) d lnwt + S ( d ln z + (1− µ) d lnχt)

+ d ln b+
(
ηzS + ηb

)
d ln `+ βDEt dvt+1

]
,

where we have used d ln τ = d lnκ = 0 and ηb
is a N ×N diagonal matrix with the parameter

ηb along its diagonal. In steady-state, we have:

dv∗ =

[
(I − S) d lnw∗ + S ( d ln z + (1− µ) d lnχ∗)

+ d ln b+
(
ηzS + ηb

)
d ln `∗ + βD dv∗

]
. (S.4.48)

System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = (I − (1− µ)S)−1 ((I − S) d lnw∗ + ηzS d ln `∗ + S d lnz) . (S.4.49)

d lnw∗ = (I − T + θ (I − TS))−1

[
− (I − T − θηz (I − TS)) d ln `∗

+ (I − TS) θ ( d ln z + (1− µ) d lnχ∗)

]
. (S.4.50)

d ln `∗ =
β

ρ
(I −E)−1 (I −ED) dv∗. (S.4.51)

dv∗ = (I − βD)−1

{
d lnw∗ − S ( d lnw∗ − d lnz − (1− µ) d lnχ∗)

+ d ln b+
(
ηzS + ηb

)
d ln `∗

}
. (S.4.52)

As the expenditure shares (S) and income shares (T ) are homogeneous of degree zero in factor

prices, we require a numeraire in order for solve for changes in wages. We choose the total income

of all locations as our numeraire (

∑N
i=1w

∗
i `
∗
i =

∑N
i=1 q

∗
i = q = 1), which implies that the log

changes in incomes satisfy q∗ d ln q∗ =
∑N

i=1 q
∗
i d ln q∗i =

∑N
i=1 q

∗
i

dq∗i
q∗i

=
∑N

i=1 dq∗i = 0, where

q∗ is a row vector of the steady-state income of each location. Similarly, the outmigration shares

(D) and inmigration shares (E) are homogeneous of degree zero in the total population of all

locations, which requires a choice of units to solve for population levels. We solve for population

shares, imposing the requirement that the population shares sum to one:

∑N
i=1 `i = ` = 1, which

implies `∗ d ln `∗ =
∑N

i=1 `
∗
i d ln `∗i =

∑N
i=1 `

∗
i

d`∗i
`∗i

=
∑N

i=1 d`∗i = 0, where `∗ is a row vector of

the steady-state population of each location.

S.4.2.7 Su�cient Statistics for Transition Dynamics Starting from Steady-State

We suppose that the economy starts from an initial steady-state distribution of economic activ-

ity {k∗i , `∗i , w
∗
i , v

∗
i }. We consider small shocks to productivity ( d lnz) and amenities ( d ln b) in

each location, holding constant the economy’s aggregate labor endowment ( d ln `), trade costs

( d ln τ = 0) and commuting costs ( d lnκ = 0). We use a tilde above a variable to denote a log

deviation from the initial steady-state, such that χ̃it = lnχit − lnχ∗i , for all variables except for

the worker value function vit; with a slight abuse of notation we use ṽit ≡ vit − v∗i to denote the

deviation in levels for the worker value function.
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Capital Accumulation. From the capital accumulation equation (S.4.20), and following the

same line of argument as in the baseline model without agglomeration economies, we can derive

the following expression for the deviation of the capital-ratio from its steady-state value:

ln

(
χit+1

χ∗i

)
+ ln

(
`it+1/`

∗
i

`it/`∗i

)
= β (1− δ) ln

(
χit
χ∗i

)
+ (1− β (1− δ)) ln

(
wit/w

∗
i

pit/p∗i

)
,

which can be re-written as follows:

χ̃it+1 = β (1− δ) χ̃it + (1− β (1− δ)) (w̃it − p̃it)− ˜̀it+1 + ˜̀it,
We can re-write the above relationship for the log deviation of the capital-labor ratio from the

initial steady-state as:

χ̃t+1 = β (1− δ) χ̃t + (1− β (1− δ)) (w̃t − p̃t)− ˜̀t+1 + ˜̀
t. (S.4.53)

Taking the total derivative of real income relative to the initial steady-state, we have:

w̃it − p̃it = w̃it −
N∑
m=1

Simt

[
w̃mt − (1− µ) χ̃mt − z̃m − ηz ˜̀m] ,

where we have used d ln τnm = 0. We can re-write this relationship in matrix form as:

w̃t − p̃t = (I − S) w̃t + (1− µ)Sχ̃t + Sz̃ + ηzS ˜̀.
Using this result in our expression for the dynamics of the capital-labor ratio above, we have:

χ̃t+1 =

 [β (1− δ) I + (1− β (1− δ)) (1− µ)S] χ̃t

+ (1− β (1− δ)) (I − S) w̃t + (1− β (1− δ))Sz̃
− ˜̀t+1 + [1 + ηz (1− β (1− δ))S] ˜̀t

 . (S.4.54)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.43)

relative to the initial steady-state has the following matrix representation:

w̃t + ˜̀
t = T

(
w̃t + ˜̀

t

)
+ θ (TS − I)

(
w̃t − (1− µ) χ̃t − z̃ − ηz ˜̀) ,

where we have used d ln τ = 0. We can re-write this relationship as:

w̃t = [I − T + θ (I − TS)]−1

[
− (I − T − θηz (I − TS)) ˜̀t
+θ (I − TS) (z̃ + (1− µ) χ̃t)

]
. (S.4.55)

Population Flow. The total derivative of the population �ow condition relative to the initial

steady-state has the same matrix representation as in the baseline model without agglomeration

economies: ˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.4.56)
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Value Function. The total derivative of the value function (S.4.44) relative to the initial steady-

state has the following matrix representation:

ṽt =

[
(I − S) w̃t + Sz̃ + (1− µ)Sχ̃t

+
(
ηzS + ηb

)
d ln `∗ + b̃+ βDEtṽt+1

]
, (S.4.57)

where we have used d ln τ = d lnκ = 0.

System of Equations for Transition Dynamics Relative to the Initial Steady-State. Col-

lecting together the capital accumulation equation (S.4.54), the goods market clearing condition

(S.4.55), the population �ow condition (S.4.56), and the value function (S.4.57), the system of equa-

tions for the transition dynamics relative to the initial steady-state takes the following form:

χ̃t+1 =

 [β (1− δ) I + (1− β (1− δ)) (1− µ)S] χ̃t

+ (1− β (1− δ)) (I − S) w̃t + (1− β (1− δ))Sz̃
− ˜̀t+1 + [1 + ηz (1− β (1− δ))S] ˜̀t

 . (S.4.58)

w̃t = [I − T + θ (I − TS)]−1

[
− (I − T − θηz (I − TS)) ˜̀t
+θ (I − TS) (z̃ + (1− µ) χ̃t)

]
. (S.4.59)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.4.60)

ṽt =

[
(I − S) w̃t + Sz̃ + (1− µ)Sχ̃t

+
(
ηzS + ηb

)
d ln ˜̀∗ + b̃+ βDEtṽt+1

]
. (S.4.61)

S.4.3 Multiple Sectors (Region-Speci�c Capital)
We consider an economy that consists of many locations indexed by i ∈ {1, . . . , N} and many

sectors indexed by j ∈ {1, . . . , J}. Time is discrete and is indexed by t. The economy consists of

two types of in�nitely-lived agents: workers and landlords. Both workers and landlords have the

same �ow preferences, which are modeled as in the standard Armington model of international

trade. Workers are endowed with one unit of labor that is supplied inelasticity and are geograph-

ically mobile across locations subject to bilateral migration costs. Workers do not have access to

an investment technology and live hand to mouth as in Kaplan and Violante (2014). Landlords

are geographically immobile and own the capital stock in their location. They make a forward-

looking decision over consumption and investment in this local stock of capital. We assume that

capital is geographically immobile once installed, but depreciates gradually at a constant rate δ.

S.4.3.1 Worker Migration Decisions

At the beginning of period t, the economy inherits a mass of workers in each location i and sector

j (`jit), with the total labor endowment of the economy given by ` =
∑N

i=1

∑J
j=1 `

j
it. Workers �rst

produce and consume in their location and sector in period t, before observing mobility shocks

{εhgt} for all possible locations g ∈ {1, . . . , N} and sectors h ∈ {1, . . . , J} and deciding where to

move for period t+ 1. Workers face bilateral migration costs {κhjgit}, which vary by both location

and sector. The value function for a worker in location i and sector j at time t (Vj,w
it ) is equal to
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the current �ow of utility in that location and sector plus the expected continuation value next

period from the optimal choice of location and sector:

Vj,w
it = lnuj,wit + max

{g}N1 {h}
J
1

{
βEt

[
Vh,w
gt+1

]
− κhjgit + ρεhgt

}
, (S.4.62)

where we use the superscript w to denote workers; we assume logarithmic �ow utility (lnuj,wit );

β is the discount rate; E [·] denotes an expectation taken over the distribution for idiosyncratic

mobility shocks; ρ captures the dispersion of idiosyncratic mobility shocks; and we assume κjjiit =

1 and κhjgit > 1 for g 6= i and h 6= j.
We make the conventional assumption that the idiosyncratic mobility shocks are drawn from

an extreme value distribution:

F (ε) = e−e
(−ε−γ̄)

, (S.4.63)

where γ is the Euler-Mascheroni constant.

Under this assumption, the expected value for a worker of living in location i at time t (vj,wit )

can be re-written in the following form:

vj,wit = lnuj,wit + ρ log
N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

. (S.4.64)

The corresponding probability of migrating from location-sector ij to location-sector gh satis�es

a gravity equation:

Djh
igt =

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

∑N
m=1

∑J
o=1

(
exp

(
βEtvo,wmt+1

)
/κojmit

)1/ρ
. (S.4.65)

S.4.3.2 Worker Consumption

Worker preferences are modeled as in the standard Armington model of trade. As workers do not

have access to an investment technology, they choose their consumption of varieties each period

to maximize their �ow utility in their location and sector that period. Worker �ow indirect utility

in location n and sector j depends on local amenities (bjnt), the wage (wjnt), and the consumption

goods price index (pit):
lnuj,wnt = ln bjnt + lnwjnt − ln pnt, (S.4.66)

where amenities (bjnt) capture characteristics of a location and sector that make it a more attrac-

tive place to live and work regardless of the wage and cost of consumption goods (e.g., climate

and rewarding work). In this section of the Online Supplement, we assume that amenities are

exogenous.

The consumption goods price index (pnt) in location n depends on the consumption goods

price index for each sector h in that location (phnt):

pnt =
J∏
h=1

(
phnt
)ψh

, 0 < ψh < 1,
J∑
h=1

ψh = 1, (S.4.67)
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where the consumption goods price index for each sector h in location n depends on the price of

the variety sourced from each location i within that sector h (phnit):

phnt =

[
N∑
i=1

(
phnit
)−θ]−1/θ

, θ = σ − 1, σ > 1, (S.4.68)

where σ > 1 is the constant elasticity of substitution (CES) between varieties; θ = σ − 1 is

the trade elasticity; and for simplicity, we assume a common elasticity of substitution and trade

elasticity across all sectors.

Utility maximization implies that goods consumption expenditure on each sector (phntc
h
nt) is a

constant share of overall goods consumption expenditure (pntcnt) in each location:

phntc
h
nt = ψhpntcnt = ψh

N∑
j=1

wjnt`
j
nt. (S.4.69)

Using constant elasticity of substitution (CES) demand for individual varieties of goods, the share

of location n’s expenditure within sector h on the goods produced by location i is:

Shnit ≡
(
phnit
)−θ∑N

m=1

(
phnmt

)−θ . (S.4.70)

S.4.3.3 Production

Producers in each location i and sector j use labor (`jit) and capital (kjit) to produce output (yjit) of

the variety supplied by that location in that sector. Production is assumed to occur under condi-

tions of perfect competition and subject to the following constant returns to scale technology:

yjit = zjit

(
`jit
µj

)µj (
kjit

1− µj

)1−µj

, 0 < µj < 1, (S.4.71)

where zjit denotes productivity in location i in sector j at time t. As for amenities above, we

assume in this section of the Online Supplement that productivity is exogenous.

We assume that trade between locations is subject to iceberg variable costs of trade, such that

τ jnit ≥ 1 units of a good must be shipped from location i in order for one unit to arrive in location

n, where τ jnit > 1 for n 6= i and τ jiit = 1. From pro�t maximization, the cost to a consumer in

location n of sourcing the good produced by location i in sector j depends on iceberg trade costs

and constant marginal costs:

pjnit = τ jnitp
j
iit =

τ jnit
(
wjit
)µj

(rit)
1−µj

zjit
, (S.4.72)

where pjiit is the “free on board” price of the good supplied by location i before transport costs.

From pro�t maximization and zero pro�ts, total payments to each factor of production are a

constant share of total revenue:

wjit`
j
it = µjpjiity

j
it, (S.4.73)

ritk
j
it =

(
1− µj

)
pjiity

j
it, (S.4.74)

where capital mobility across sectors within regions ensures the same return to capital across

sectors within regions (rjit = rit).
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S.4.3.4 Landlord Consumption

Landlords in each location choose their consumption and investment in capital to maximize their

intertemporal utility subject to their intertemporal budget constraint. Landlords’ intertemporal

utility equals the present discounted value of their �ow utility, which we assume for simplicity

takes the same logarithmic form as for workers:

vkit =
∞∑
t=0

βt ln ckit, (S.4.75)

where we use the superscript k to denote landlords; ckit is the consumption goods index for land-

lords; and β is the discount rate. Since landlords are geographically immobile, we omit the term

in amenities from their �ow utility, because this does not a�ect the equilibrium in any way, and

hence is without loss of generality.

The consumption goods index for landlords (ckit) takes exactly the same form as for work-

ers and is a Cobb-Douglas aggregate of consumption indexes for each sector, where these con-

sumption indexes for each sector are constant elasticity of substitution (CES) functions of the

consumption of varieties from each location. Therefore, the consumption goods price index (pnt)
takes the same form as in equation (S.4.67), and the consumption goods price index for each sector

(pjnt) takes the same form as in equation (S.4.68). Under these assumptions, the landlords’ utility

maximization problem is weakly separable. First, we solve for the optimal consumption-savings

decision across time periods for overall goods consumption. Second, we solve for the optimal al-

location of consumption across sectors within each time period. Third, we solve for the optimal

allocation of consumption across location varieties within each sector.

Beginning with landlords’ optimal consumption-saving decision, we assume that the invest-

ment technology for capital in each location uses the varieties from all locations with the same

functional form as consumption. In particular, landlords in a given location can produce one unit

of capital in that location using one unit of the consumption index in that location. We assume

that capital is geographically immobile once installed and depreciates at a constant rate δ. The

intertemporal budget constraints for landlords in each location requires that total income from

the existing stock of capital (

∑J
j=1 ritk

j
it) equals the total value of goods consumption (pitc

k
it) and

net investment (pit (kit+1 − (1− δ) kit)):

ritkit =
J∑
j=1

ritk
j
it = pitc

k
it + ritkit + pit (kit+1 − (1− δ) kit) . (S.4.76)

Combining landlords’ intertemporal utility (S.4.75) and budget constraint (S.4.76), the landlords’

intertemporal optimization problem is:

max
{ct,kkt+1}

∞∑
t=0

βt ln ckit, (S.4.77)

subject to pitc
k
it + pit (kit+1 − (1− δ) kit) = ritkit.

We can write this problem as the following Lagrangian:

L =
∞∑
t=0

βt ln ckit − ξt
[
pitc

k
it + pit (kit+1 − (1− δ) kit)− ritkit

]
. (S.4.78)
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The �rst-order conditions are:

{cit}
βt

cit
− pitξt = 0,

{kit+1} (rit+1 + pit+1 (1− δ)) ξt+1 − pitξt = 0,

Together these �rst-order conditions imply:

cit+1

cit
= β

pitµt
pit+1µt+1

= β (rit+1/pit+1 + (1− δ)) , (S.4.79)

where the transversality condition implies:

lim
t→∞

βt
kit+1

cit
= 0.

Our assumption of logarithmic �ow utility and the property that the intertemporal budget

constraint is linear in the stock of capital together imply that landlords’ optimal consumption-

saving decision involves a constant saving rate, as in Moll (2014). We conjecture the following

policy functions:

pitc
k
it = (1− β) (rit + pit (1− δ)) kit, (S.4.80)

kit+1 = β (rit/pit + (1− δ)) kit. (S.4.81)

Substituting the consumption policy function (S.4.80) into the Euler equation (S.4.79), we con�rm

that these conjectured policy functions are indeed the optimal consumption-savings choice:

ckit+1

ckit
=

(rit+1/pit+1 + (1− δ)) kit+1

(rit/pit + (1− δ)) kit
,

= β (rit+1/pit+1 + (1− δ)) .

Given this optimal consumption-saving decision in equations (S.4.80)-(S.4.81), our assumption

of Cobb-Douglas preferences across sectors implies that landlords allocate constant shares of

consumption expenditure across sectors within time periods, as for workers in equation (S.4.69).

Similarly, our assumption of constant elasticity of substitution (CES) preferences across locations

within sectors implies that landlords in location n allocate the same share of expenditure on

location i within sector j, as for workers in equation (S.4.70).

S.4.3.5 Market Clearing

Goods market clearing implies that revenue in each location in each sector equals expenditure

on the goods produced by that location and sector:

pjity
j
it = ψj

N∑
n=1

J∑
h=1

Sjnit
(
whnt`

h
nt + rntk

h
nt

)
,

wjit`
j
it + rntk

j
nt = ψj

N∑
n=1

J∑
h=1

Sjnit
(
whnt`

h
nt + rntk

h
nt

)
,
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wjit`
j
it +

1− µj

µj
wjit`

j
it = ψj

N∑
n=1

J∑
h=1

Sjnit

(
whnt`

h
nt +

1− µh

µh
whnt`

h
nt

)
,

1

µj
wjit`

j
it = ψj

N∑
n=1

J∑
h=1

Sjnit
1

µh
whnt`

h
nt. (S.4.82)

Capital market clearing implies that the rental rate for capital is determined by the requirement

that landlords’ income from the ownership of capital equals payments for its use. Using the

property that payments to capital and labor are constant shares of total revenue in equations

(S.4.73) and (S.4.74), we can write payments for capital in each sector as:

ritk
j
it =

1− µj

µj
wjit`

j
it. (S.4.83)

Therefore capital market clearing implies:

kjit =

1−µj
µj

wjit`
j
it∑J

o=1
1−µo
µo

woit`
o
it

kit. (S.4.84)

Re-arranging the relationship between sector-level payments to capital and labor in equation

(S.4.83), the equilibrium rental rate for capital is given by:

rit =
1− µj

µj
wjit`

j
it

kjit
.

Using this result in capital market clearing (S.4.84), we can re-write this capital market clearing

condition as:

rit =

(
J∑
o=1

1− µo

µo
woit`

o
it

)
/kit. (S.4.85)

S.4.3.6 General Equilibrium

Given the state variables {`jit, k
j
it} for each sector j and location i, the general equilibrium of

the economy is the path of allocations and prices such that �rms in each location choose inputs

to maximize pro�ts, workers make consumption and migration decisions to maximize utility,

landlords make consumption and investment decisions to maximize utility, and prices clear all

markets. For expositional clarity, we collect the equilibrium conditions and express them in terms

of a sequence of four endogenous variables

{
`jit, k

j
it, w

j
it, v

j
it

}∞
t . All other endogenous variables

of the model can be recovered as a function of these variables.

Capital Accumulation: Using capital market clearing (S.4.85), the price index (S.4.67) and the

equilibrium pricing rule (S.4.72), the capital accumulation equation (S.4.81) becomes:

kit+1 = β (1− δ) kit + β

J∑
o=1

ϑoit`
o
it, (S.4.86)
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ϑoit =
1− µo

µo
woit
pit
, kjit =

ϑjit`
j
it∑J

o=1 ϑ
o
it`

o
it

kit.

pnt =
J∏
j=1

 N∑
i=1

(
wjit

(
1− µj

µj

)1−µj (
`jit/k

j
it

)1−µj
τ jnit/z

j
it

)−θ−ψj/θ . (S.4.87)

Goods Market Clearing: From the goods market clearing condition (S.4.82), we have:

1

µj
wjit`

j
it = ψj

N∑
n=1

J∑
h=1

Sjnit
1

µh
whnt`

h
nt. (S.4.88)

Sjnit =

(
τ jnit
(
wjit
)µj

(rit)
1−µj /zjit

)−θ
∑N

m=1

(
τ jnmt

(
wjmt

)µj
(rmt)

1−µj /zjmt

)−θ , T jhint ≡
ψjSjnit

1
µh
whnt`

h
nt

1
µj
wjit`

j
it

,

where Sjnit is the expenditure share of importer n on exporter i in sector j at time t, and we have

de�ned T jhint as the corresponding income share of exporter i from importer n at time t. Note that

the order of subscripts switches between the expenditure share (Sjnit) and the income share (T jhint),
because the �rst and second subscripts will correspond below to rows and columns of a matrix,

respectively.

Population Flow: Using the out-migration probabilities (S.4.65), the population �ow condition

for the evolution of the population distribution over time is given by:

`hgt+1 =
N∑
i=1

J∑
j=1

Djh
igt`

j
it, (S.4.89)

Djh
igt =

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

∑N
m=1

∑J
o=1

(
exp

(
βEtvo,wmt+1

)
/κojmit

)1/ρ
, Ehj

git ≡
`jitD

jh
igt

`hgt+1

,

where Djh
igt is the outmigration probability from sector j in location i to sector h in location g

at time t, and we have de�ned Ehj
git as the corresponding inmigration probability to sector h in

location g from sector j in location i at time t. Note that the order of subscripts switches between

the outmigration probability (Djh
igt) and the inmigration probability (Ehj

git), because the �rst and

second subscripts will correspond below to rows and columns of a matrix, respectively.

Worker Value Function: Using the worker indirect utility function (S.4.66) in the value func-

tion (S.4.62), the expected utility from working in sector j in location n at time t can be written

as:

vj,wnt = ln bjnt + ln

(
wjnt
pnt

)
+ ρ log

N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

. (S.4.90)
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S.4.3.7 Comparative Statics

We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics for changes in steady-state and the entire tran-

sition path.

Prices. Using the relationship between capital and labor payments (S.4.84), the pricing rule

(S.4.72) can be re-written as follows:

pjnit =
τ jnit
(
wjit
) (

1−µj
µj

)1−µj (
1

χjit

)1−µj

zjit
, (S.4.91)

where χjit is the capital-labor ratio in sector j:

χjit ≡
kjit
`jit
.

Totally di�erentiating this pricing rule, we have:

d ln pjnit =
[

d ln τ jnit + d lnwjit −
(
1− µj

)
d lnχjit − d ln zjit

]
. (S.4.92)

Expenditure Shares. Totally di�erentiating this expenditure share equation (S.4.70), we get:

d lnSjnit = θ

(
N∑
h=1

Sjnht d ln pjnht − d ln pjnit

)
. (S.4.93)

Price Indices. Totally di�erentiating the consumption goods price index in equation (S.4.68),

we have:

d ln pjnt =
N∑
m=1

Sjnmt d ln pjnmt. (S.4.94)

Migration Shares. Totally di�erentiating the outmigration share in equation (S.4.65), we get:

d lnDjh
igt =

1

ρ

[(
βEt dvh,wgt+1 − d lnκhjgit

)
−

N∑
m=1

J∑
o=1

Djo
imt

(
βEt dvo,wmt+1 − d lnκojmit

)]
. (S.4.95)

Real Income. Totally di�erentiating real income we have:

d lnϑjit = d ln

(
wjit
pit

)
= d lnwjit −

J∑
h=1

ψh d ln phit,

d lnϑjit = d ln

(
wjit
pit

)
= d lnwjit −

J∑
h=1

ψh
N∑
m=1

Shnmt d ln phimt,

d lnϑjit = d ln

(
wjit
pit

)
= d lnwjit −

J∑
h=1

ψh
N∑
m=1

Shimt

[
d ln τhimt + d lnwhmt

−
(
1− µh

)
d lnχhmt − d ln zhmt

]
, (S.4.96)
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Goods Market Clearing. Totally di�erentiating the goods market clearing condition (S.4.82),

we have:

dwjit
wjit

+
d`jit
`jit

=
N∑
n=1

J∑
h=1

ψh
Shnit

1
µh
whnt`

h
nt

1
µj
wjit`

j
it

(
dwhnt
whnt

+
d`hnt
`hnt

+
dShnit
Shnit

)
.

Using our result for the derivative of expenditure shares in equation (S.4.93) above, we can rewrite

this as:

dwjit
wjit

+
d`jit
`jit

=
N∑
n=1

J∑
h=1

T jhint

(
dwhnt
whnt

+
d`hnt
`hnt

+ θ

(
N∑
m=1

Shnmt
dphnmt
phnmt

− dphnit
phnit

))
,

T jhint ≡ ψh
Shnit

1
µh
whnt`

h
nt

1
µj
wjit`

j
it

,

[
d lnwjit

+ d ln `jit

]
=


∑N
n=1

∑J
h=1 T

jh
int

(
d lnwhnt + d ln `hnt

)
+θ
∑N
n=1

∑J
h=1

∑N
m=1 T

jh
intS

h
nmt

(
d ln τhnmt + d lnwhmt −

(
1− µh

)
d lnχhmt − d ln zmt

)
−θ
∑N
n=1

∑J
h=1 T

jh
int

(
d ln τhnit + d lnwhit −

(
1− µh

)
d lnχhit − d ln zit

)
 . (S.4.97)

Population Flow. Totally di�erentiating the population �ow condition (S.4.89) we have:

d`hgt+1

`hgt+1

=
N∑
i=1

J∑
j=1

Ehj
git

[
d`jit
`jit

+
dDjh

igt

Djh
igt

]
,

d ln `hgt+1 =

N∑
i=1

J∑
j=1

Ehjgit

[
d ln `jit +

1

ρ

[(
βEt dvh,wgt+1 − d lnκhjgit

)
−

N∑
m=1

J∑
o=1

Djoimt

(
βEt dvo,wmt+1 − d lnκojmit

)]]
. (S.4.98)

Value Function. Note that the value function is:

vj,wit = ln

 wjit∏J
h=1

[∑N
m=1

(
phimt

)−θ]−ψh/θ
+ ln bjit + ρ ln

N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

,

[
N∑
m=1

(
phimt

)−θ]−1/θ

=

((
phiit
)−θ

Shiit

)−1/θ

, τhiit = 1,

J∏
h=1

[
N∑
m=1

(
phimt

)−θ]−ψh/θ
=

J∏
h=1

((
phiit
)−θ

Shiit

)−ψh/θ
,

N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

=

(
exp

(
βEtvj,wit+1

)
/κjjiit

)1/ρ

Djj
iit

, κjjiit = 1,

vj,wit = lnwjit −
J∑
h=1

ψh
(

1

θ
lnShiit + ln phiit

)
+ ln bjit + βEtvj,wit+1 − ρ lnDjj

iit. (S.4.99)
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Note that the value function can be equivalently written as:

vj,wit = ln ξj + lnϑiit + ln bjit + βEtvj,wit+1 − ρ lnDjj
iit,

where ξj = µj

1−µj . Totally di�erentiating the value function (S.4.99) we have:

vj,wit = lnwjit −
J∑
h=1

ψh
(

1

θ
lnShiit + ln phiit

)
+ ln bjit + βEtvj,wit+1 − ρ lnDjj

iit. (S.4.100)

dvj,wit = d lnwjit −
J∑
h=1

ψh
(

1

θ
d lnShiit + d ln phiit

)
+ d ln bjit + βEt dvj,wit+1 − ρ d lnDjj

iit,

d lnShiit = −θ d ln phiit + θ

[
N∑
m=1

Shimt d ln phimt

]
,

d lnDjj
iit =

1

ρ

[
βEt dvj,wit+1 − d lnκjjiit −

N∑
m=1

J∑
o=1

Djo
imt

(
βEt dvo,wmt+1 − d lnκojmit

)]
.

Using these results in the derivative of the value function, we have:

dvjit =

[
d lnwjit −

∑J
h=1 ψ

h
(

1
θ

d lnShiit + d ln phiit
)

+ d ln bjit +
∑N

m=1

∑J
o=1D

jo
imt

(
βEt dvo,wmt+1 − d lnκojmit

) ] ,
where we have used d lnκjjiit = 0. Using the total derivative of the pricing rule (S.4.92), we can

re-write this derivative of the value function as follows:

dvjit =

[
d lnwjit −

∑J
h=1 ψ

h
∑N
m=1 S

h
imt

(
d ln τhnmt + d lnwhmt −

(
1− µh

)
d lnχhmt − d ln zmt

)
+ d ln bjit +

∑N
m=1

∑J
o=1D

jo
imt

(
βEt dvo,wmt+1 − d lnκojmit

) ]
, (S.4.101)

which can be equivalently written as:

dvjit =

[
d lnϑjit + d ln bjit +

N∑
m=1

J∑
o=1

Djo
imt

(
βEt dvo,wmt+1 − d lnκojmit

)]
.

S.4.3.8 Steady-state Su�cient Statistics

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kjit+1 = kjit = kj∗i , `jit+1 = `jit = `j∗i , wjit+1 = wjit = wj∗i and vjit+1 = vjit = vj∗i ,

where we use an asterisk to denote a steady-state value. We consider a small common shock to

productivity across all sectors ( d lnz) and amenities across all sectors ( d ln b) in each location,

holding constant the economy’s aggregate labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0)

and commuting costs ( d lnκ = 0).
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Capital Accumulation. From the capital accumulation equation (S.4.86), the steady-state

stock of capital solves:

k∗i = β (1− δ) k∗i + β
J∑
o=1

ϑo∗i `
o∗
i ,

(1− β (1− δ)) k∗i = β

J∑
o=1

ϑo∗i `
o∗
i .

But from capital market clearing, we also have:

kj∗i =
ϑj∗i `

j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

k∗i .

and hence:

J∑
o=1

ϑo∗i `
o∗
i = ϑj∗i `

j∗
i

k∗i
kj∗i

.

Using this result in the capital accumulation equation, we have:

(1− β (1− δ)) kj∗i = βϑj∗i `
j∗
i ,

and hence:

ϑj∗i =
(1− β (1− δ))

β

kj∗i
`j∗i

=
(1− β (1− δ))

β
χj∗i .

Totally di�erentiating, we have:

d lnχ∗i = d lnϑj∗i ,

d lnϑj∗i = d lnw∗i − d ln p∗i .

From the total derivative of real income (S.4.96) above, this becomes:

d lnϑj∗i = d lnw∗i −
N∑
m=1

J∑
h=1

ψhShim
[

d lnw∗m −
(
1− µh

)
d lnϑj∗i − d ln zhm

]
,

where we have used d ln τhimt = 0. This relationship has the following matrix representation:

d lnϑ∗ = d lnw∗ − S ( d lnw − (I − µ) d lnϑ∗ − d lnz) , (S.4.102)

where d lnϑ∗ and d lnw∗ are NJ × 1 vectors; S is a NJ ×NJ matrix with elements:

Snit = Sjnit =
J∑
h=1

ψhSnit,

and µ is NJ × NJ diagonal matrix whose (ij)-th element on the diagonal is µj . Note that the

evolution of the regional capital stock is given by:

kit =
J∑
j=1

kjit,
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dkit =
J∑
j=1

dkjit,

dkit
kit

=
J∑
j=1

kjit
kit

dkjit
kjit

,

d ln kit =
J∑
j=1

kjit
kit

d ln kjit,

d ln kit =
J∑
j=1

kjit
kit

(
d lnϑjit + d ln `jit

)
,

which can be written as:

d lnkreg
t = K ( d lnϑt + d ln `t) ,

where kregt is a N × 1 vector of regional capital stocks; K is the N × NJ matrix whose (i, jo)
element is the steady-state share of capital in location i employed in location j sector o; ϑt and

`t are NJ × 1 vectors.

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.97)

has the following matrix representation:

d lnwt + d ln `t = T ( d lnwt + d ln `t) + θ (TS − I) ( d lnwt − (I − µ) d lnχt − d lnz) ,

where these matrices have NJ ×NJ elements and we have used d ln τ = 0. In steady-state we

have:

d lnw∗ + d ln `∗ = T ( d lnw∗ + d ln `∗) + θ (TS − I) ( d lnw∗ − (I − µ) d lnϑ∗ − d lnz) . (S.4.103)

Population Flow. The total derivative of the population �ow condition (S.4.98) has the follow-

ing matrix representation:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1,

where these matrices again have NJ ×NJ elements. In steady-state, we have:

d ln `∗ =
β

ρ
(I −E)−1 (I −ED) dv∗. (S.4.104)

Value function. The total derivative of the value function has the following matrix represen-

tation:

dvt = d lnϑt + d ln b+ βDEt dvt+1,

where these matrices again have NJ × NJ elements and we have used d lnκ = 0. In steady-

state, we have:

dv∗ = (I − βD)−1 [ d lnϑ∗ + d ln b] . (S.4.105)
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System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnϑ∗ = d lnw∗ − S ( d lnw − (I − µ) d lnϑ∗ − d lnz) . (S.4.106)

d lnw∗ + d ln `∗ = T ( d lnw∗ + d ln `∗) + θ (TS − I) ( d lnw∗ − (I − µ) d lnϑ∗ − d lnz) . (S.4.107)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (S.4.108)

dv∗ = (I − βD)
−1

[ d lnϑ∗ + d ln b] . (S.4.109)

d ln kreg∗ = K ( d lnϑ∗
i + d ln `∗i ) . (S.4.110)

S.4.3.9 Su�cient Statistics for Transition Dynamics

Suppose that the economy starts from an initial steady-state. Consider a small shock to pro-

ductivity ( d lnz) and amenities ( d ln b) in each sector and location, holding constant the econ-

omy’s aggregate labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and commuting costs

( d lnκ = 0). We use a tilde above a variable to denote a log-deviation from the initial steady-

state, such that
˜̀
it = ln `it − ln `∗i , for all variables except for the worker value function vit; with

a slight abuse of notation we use ṽit ≡ vit − v∗i to denote the deviation in levels for the worker

value function.

Capital Accumulation. From the capital accumulation equation (S.4.86), we have:

kit+1 = β (1− δ) kit + β
J∑
o=1

ϑoit`
o
it.

Dividing by the steady-state capital stock we have:

kit+1

k∗i
= β (1− δ) kit

k∗i
+ β

J∑
o=1

ϑoit`
o
it

k∗i
.

We know from above that the steady-state capital stock is given by:

k∗i =
β

1− β (1− δ)

J∑
o=1

ϑo∗i `
o∗
i .

Therefore we can re-write the capital accumulation equation as:

kit+1

k∗i
= β (1− δ) kit

k∗i
+ (1− β (1− δ))

J∑
o=1

ϑoit`
o
it∑J

o=1 ϑ
o∗
i `

o∗
i

.

kit+1

k∗i
= β (1− δ) kit

k∗i
+ (1− β (1− δ))

J∑
o=1

ϑo∗i `
o∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

ϑoit`
o
it

ϑo∗i `
o∗
i

,

which can be further re-written as:

kit+1

k∗i
− 1 = β (1− δ)

(
kit
k∗i
− 1

)
+ (1− β (1− δ))

J∑
o=1

ϑo∗i `
o∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

(
ϑoit`

o
it

ϑo∗i `
o∗
i

− 1

)
,
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Noting that

kit
k∗i
− 1 ' ln

(
kit
k∗i

)
,

we have:

ln

(
kit+1

k∗i

)
= β (1− δ) ln

(
kit
k∗i

)
+ (1− β (1− δ))

J∑
o=1

ϑo∗i `
o∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

ln

(
ϑoit`

o
it

ϑo∗i `
o∗
i

)
,

which can be re-written in matrix form as:

k̃reg
t+1 = β (1− δ) k̃reg

t + (1− β (1− δ))K
(
ϑ̃t + ˜̀

t

)
, (S.4.111)

where kreg
t+1 and kreg

t are N × 1 vectors; K is the N × NJ matrix whose (i, jo) element is the

steady-state share of capital in location i employed in location j sector o; ϑt and `t are NJ × 1
vectors.

To derive the cross-industry allocation, note:

kjit
kj∗i

=
ϑjit`

j
it∑J

o=1 ϑ
o
it`

o
it

kit

kj∗i
,

kjit
kj∗i

=
ϑjit`

j
it∑J

o=1 ϑ
o
it`

o
it

kit
ϑj∗i `

j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

k∗i

,

kjit
kj∗i

=
ϑjit`

j
it/ϑ

j∗
i `

j∗
i∑J

o=1 ϑ
o
it`

o
it/
(∑J

o=1 ϑ
o∗
i `

o∗
i

) kit
k∗i
,

kjit
kj∗i

=
ϑjit`

j
it/ϑ

j∗
i `

j∗
i∑J

o=1
ϑoit`

o
it

ϑj∗i `
j∗
i

ϑj∗i `
j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

kit
k∗i
,

ln

(
kjit
kj∗i

)
= ln

(
ϑjit`

j
it

ϑj∗i `
j∗
i

)
− ln

(
J∑
o=1

ϑoit`
o
it

ϑj∗i `
j∗
i

ϑj∗i `
j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

)
+ ln

(
kit
k∗i

)
.

Note that:

ln

(
J∑
o=1

ϑoit`
o
it

ϑj∗i `
j∗
i

ϑj∗i `
j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

)
'

J∑
o=1

ϑj∗i `
j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

ln

(
ϑoit`

o
it

ϑj∗i `
j∗
i

)
,

ϑoit`
o
it

ϑj∗i `
j∗
i

' 1.

Using this result above, we have:

ln

(
kjit
kj∗i

)
= ln

(
ϑjit`

j
it

ϑj∗i `
j∗
i

)
−

J∑
o=1

ϑj∗i `
j∗
i∑J

o=1 ϑ
o∗
i `

o∗
i

ln

(
ϑoit`

o
it

ϑj∗i `
j∗
i

)
+ ln

(
kit
k∗i

)
.

In matrix representation, we have:

k̃j
t − ˜̀jt = ϑ̃j

t − 1︸︷︷︸
N×1

⊗
(
K
(
ϑ̃t + ˜̀t)+ kreg

t

)
. (S.4.112)
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Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.97)

relative to the initial steady-state has the following matrix representation:

w̃t + ˜̀
t =

 T
(
w̃t + ˜̀

t

)
+θ (TS − I)

(
w̃t − (I − µ)

(
k̃j
t − ˜̀t)− z̃)

 ,
where these matrices have NJ ×NJ elements; we have used d ln τ = 0; and we again use the

superscript j for capital (kj
t ) to distinguish sector-location capital from aggregate location capital

(kreg
t ). We can re-write this matrix representation as:

[I − T + θ (I − TS)] w̃t = − (I − T ) ˜̀t + θ (I − TS)

[
(I − µ)

(
k̃jt − ˜̀t)+ z̃

]
,

w̃t = [I − T + θ (I − TS)]
−1
[
− (I − T ) ˜̀t + θ (I − TS)

[
(I − µ)

(
k̃jt − ˜̀t)+ z̃

]]
. (S.4.113)

Population Flow. The total derivative of the population �ow condition (S.4.98) relative to the

initial steady-state has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1, (S.4.114)

where again these matrices have NJ ×NJ elements.

Value Function. The total derivative of the value function relative to the initial steady-state

has the following matrix representation:

ṽt = (I − S) w̃t + S
[
(I − µ)

(
k̃j
t − ˜̀t)+ z̃

]
+ b̃+ βDEtṽt+1, (S.4.115)

where again these matrices have NJ ×NJ elements; we have used d ln τ = d lnκ = 0; and we

use the superscript j for capital (kj
t ) to distinguish sector-location capital from aggregate location

capital (kreg
t ).

Real Income. The total derivative of real income relative to the initial steady-state has the

following matrix representation:

ϑ̃t = (I − S) w̃t + S
[
(I − µ)

(
k̃j
t − ˜̀t)+ z̃

]
, (S.4.116)

where again these matrices have NJ ×NJ elements and we have used d ln τ = 0.

System of Equations for Transition Dynamics. Collecting together the system of equations

for the transition dynamics, we have:

ϑ̃t = (I − S) w̃t + S
[
(I − µ)

(
k̃jt − ˜̀t)+ z̃

]
, (S.4.117)

w̃t = [I − T + θ (I − TS)]
−1
[
− (I − T ) ˜̀t + θ (I − TS)

[
(I − µ)

(
k̃jt − ˜̀t)+ z̃

]]
, (S.4.118)
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˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1, (S.4.119)

ṽt = (I − S) w̃t + S
[
(I − µ)

(
k̃jt − ˜̀t)+ z̃

]
+ b̃+ βDEtṽt+1, (S.4.120)

k̃regt+1 = β (1− δ) k̃regt + (1− β (1− δ))K
(
ϑ̃t + ˜̀

t

)
, (S.4.121)

k̃jt − ˜̀jt = ϑ̃j
t − 1︸︷︷︸

N×1

⊗
(
K
(
ϑ̃t + ˜̀t)+ kregt

)
. (S.4.122)

S.4.4 Multiple Sector-Regions (Sector-Location Speci�c Capital)
We consider an economy that consists of many locations indexed by i ∈ {1, . . . , N} and many

sectors indexed by j ∈ {1, . . . , J}. Time is discrete and is indexed by t. The economy consists

of two types of in�nitely-lived agents: workers and landlords. Both workers and landlords have

the same �ow preferences, which are modeled as in the standard Armington model of interna-

tional trade. Workers are endowed with one unit of labor that is supplied inelasticity and are

geographically mobile across sectors and locations subject to bilateral migration costs. Workers

do not have access to an investment technology and live hand to mouth as in Kaplan and Violante

(2014). Landlords are geographically immobile and own the capital stock in their location. They

make a forward-looking decision over consumption and investment in this local stock of capital.

We assume that capital is geographically immobile once installed, but depreciates gradually at a

constant rate δ.

S.4.4.1 Worker Migration Decisions

At the beginning of each period t, the economy inherits a mass of workers in each sector j and

location i (`jit), with the total labor endowment of the economy given by ` =
∑N

i=1

∑J
j=1 `it.

Workers �rst produce and consume in their sector and location in period t, before observing

mobility shocks {εhgt} for all possible sectors h ∈ {1, . . . , J} and locations g ∈ {1, . . . , N} and

deciding where to move for period t + 1. Workers face bilateral migration costs that vary by

sector and location, where κhjgit denotes the cost of moving from sector j in location i to sector h

in location g. The value function for a worker in sector j and location i at time t (Vj,w
it ) is equal to

the current �ow of utility in that sector and location plus the expected continuation value next

period from the optimal choice of sector and location:

Vj,w
it = lnuj,wit + max

{g}N1 {h}
J
1

{
βEt

[
Vh,w
gt+1

]
− κhjgit + ρεhgt

}
, (S.4.123)

where we use the superscriptw to denote workers; we assume logarithmic �ow utility (lnuj,wit ); β
denotes the discount rate; E [·] denotes an expectation taken over the distribution for idiosyncratic

mobility shocks; ρ captures the dispersion of idiosyncratic mobility shocks; and we assume κjjiit =

1 and κhjgit > 1 for g 6= i and h 6= j.
We make the conventional assumption that the idiosyncratic mobility shocks are drawn from

an extreme value distribution:

F (ε) = e−e
(−ε−γ̄)

, (S.4.124)

where γ is the Euler-Mascheroni constant.
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Under this assumption, the expected value for a worker of living in location i at time t (vj,wit )

can be re-written in the following form:

vj,wit = lnuj,wit + ρ log
N∑
g=1

K∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

. (S.4.125)

The corresponding probability of migrating from location-sector ij to location-sector gh satis�es

a gravity equation:

Djh
igt =

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

∑N
m=1

∑J
o=1

(
exp

(
βEtvo,wmt+1

)
/κojkit

)1/ρ
. (S.4.126)

S.4.4.2 Worker Consumption

Worker preferences are modeled as in the standard Armington model of trade. As workers do not

have access to an investment technology, they choose their consumption of varieties each period

to maximize their �ow utility in their location and sector that period. Worker �ow indirect utility

in location n and sector j depends on local amenities (bjnt), the wage (wjnt), and the consumption

goods price index (pit):
lnuj,wnt = ln bjnt + lnwjnt − ln pnt, (S.4.127)

where amenities (bnt) capture characteristics of a location that make it a more attractive place to

live regardless of the wage and cost of consumption goods (e.g., climate and scenic views). In this

section of the Online Supplement, we assume that amenities are exogenous.

The consumption goods price index (pnt) in location n depends on the consumption goods

price index for each sector h in that location (phnt):

pnt =
J∏
h=1

(
phnt
)ψh

, 0 < ψh < 1,
J∑
h=1

ψh, (S.4.128)

where the consumption goods price index for each sector h in location n depends on the price of

the variety sourced from each location i within that sector h (phnit):

phnt =

[
N∑
i=1

(
phnit
)−θ]−1/θ

, θ = σ − 1, σ > 1, (S.4.129)

where σ > 1 is the constant elasticity of substitution (CES) between varieties; θ = σ − 1 is

the trade elasticity; and for simplicity, we assume a common elasticity of substitution and trade

elasticity across all sectors.

Utility maximization implies that goods consumption expenditure on each sector (phntc
h
nt) is a

constant share of overall goods consumption expenditure (pntcnt) in each location:

phntc
h
nt = ψhpntcnt. (S.4.130)

Using constant elasticity of substitution (CES) demand for individuals varieties of goods, the share

location n’s expenditure within sector h on the goods produced by location i is:

Shnit ≡
(
phnit
)−θ∑N

m=1

(
phnmt

)−θ . (S.4.131)
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S.4.4.3 Production

Producers in each location i and sector j use labor (`jit) and capital (kjit) to produce output (yjit) of

the variety supplied by that location in that sector. Production is assumed to occur under condi-

tions of perfect competition and subject to the following constant returns to scale technology:

yjit = zjit

(
`jit
µj

)µj (
kjit

1− µj

)1−µj

, 0 < µj < 1, (S.4.132)

where zjit denotes productivity in location i in sector j at time t. As for amenities above, we

assume in this section of the Online Supplement that productivity is exogenous.

We assume that trade between locations is subject to iceberg variable costs of trade, such that

τ jnit ≥ 1 units of a good must be shipped from location i in order for one unit to arrive in location

n, where τ jnit > 1 for n 6= i and τ jiit = 1. From pro�t maximization, the cost to a consumer in

location n of sourcing the good produced by location i within sector j is:

pjnit = τ jnitp
j
iit =

τ jnit
(
wjit
)µj (

rjit
)1−µj

zjit
, (S.4.133)

where pjiit is the “free on board” price of the good supplied by location i before transport costs;

rjit is the rate of return to capital, which now varies across both sectors j and locations i, because

capital is speci�c to both a sector and location.

From pro�t maximization problem and zero pro�ts, payments for labor and building capital

are constant shares of revenue:

wjit`
j
it = µjpjiity

j
it, (S.4.134)

rjitk
j
it =

(
1− µj

)
pjiity

j
it, (S.4.135)

where the immobility of capital across sectors once installed implies that the rate of return on

capital need not be equalized across sectors and locations out of steady-state (rjit 6= rhnt).

S.4.4.4 Landlord Consumption

Landlords in each location and sector choose their consumption and investment in capital to

maximize their intertemporal utility subject to the intertemporal budget constraint. Landlords’

intertemporal utility equals the present discounted value of their �ow utility, which we assume

for simplicity takes the same logarithmic form as for workers:

vj,kit =
∞∑
t=0

βt ln cj,kit , (S.4.136)

where we use the superscript k to denote landlords; cj,kit is the consumption index for landlords

in location i and sector j; and β denotes the discount rate. Since landlords are immobile, we omit

the term in amenities from their �ow utility, because this does not a�ect the equilibrium in any

way, and hence is without loss of generality.

The consumption goods index for landlords (cj,kit ) takes exactly the same form as for work-

ers and is a Cobb-Douglas aggregate of consumption indexes for each sector, where these con-

sumption indexes for each sector are constant elasticity of substitution (CES) functions of the
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consumption of varieties from each location. Therefore, the consumption goods price index (pnt)
takes the same form as in equation (S.4.128), and the consumption goods price index for each

sector (pjnt) takes the same form as in equation (S.4.129). Under these assumptions, the landlords’

utility maximization problem is weakly separable. First, we solve for the optimal consumption-

savings decision across time periods for overall goods consumption. Second, we solve for the

optimal allocation of consumption across sectors within each time period. Third, we solve for

the optimal allocation of consumption across location varieties within each sector.

Beginning with landlords’ optimal consumption-saving, we assume that the investment tech-

nology for capital in each location and sector uses the varieties from all locations with the same

functional form as consumption. In particular, landlords in a given location and sector can pro-

duce one unit of capital for that sector and location using one unit of the consumption index

for that sector and location. We assume that capital is geographically immobile once installed

and depreciates at a constant rate δ. The intertemporal budget constraint for landlords in each

location requires that total income from the existing stock of capital (rjitk
j
it) equals the total value

of goods consumption (pitc
j,k
it ) and net investment (pit

(
kjit+1 − (1− δj) kjit

)
):

rjitk
j
it = pitc

j,k
it + pit

(
kjit+1 −

(
1− δj

)
kjit
)
. (S.4.137)

Combining landlords’ intertemporal utility (S.4.136) and budget constraint (S.4.137), their in-

tertemporal optimization problem is:

max
{cj,kt ,kj,kt+1}

∞∑
t=0

βt ln cj,kit , (S.4.138)

subject to pitc
j,k
it + pit

(
kjit+1 −

(
1− δj

)
kjit
)

= rjitk
j
it.

We can write this problem as the following Lagrangian:

L =
∞∑
t=0

βt ln cj,kit − ξ
j
t

[
pitc

j,k
it + pit

(
kjit+1 −

(
1− δj

)
kjit
)
− rjitk

j
it

]
. (S.4.139)

The �rst-order conditions are: {
cj,kit

} βt

cj,kit
− pitξjt = 0,

{
kjit+1

} (
rjit+1 + pit+1

(
1− δj

))
ξjt+1 − pitξ

j
t = 0.

Together these �rst-order conditions imply:

cj,kit+1

cj,kit
= β

pitµ
j
t

pit+1µ
j
t+1

= β
(
rjit+1/pit+1 +

(
1− δj

))
, (S.4.140)

where the transversality condition implies:

lim
t→∞

βt
kjit+1

cj,kit
= 0.
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Our assumption of logarithmic �ow utility and the property that the intertemporal budget

constraint is linear in the stock of capital together imply that landlords’ optimal consumption-

saving decision involves a constant saving rate, as in Moll (2014). We conjecture the following

policy functions:

pitc
j,k
it = (1− β)

(
rjit + pit

(
1− δj

))
kjit, (S.4.141)

kjit+1 = β
(
rjit/pit +

(
1− δj

))
kjit. (S.4.142)

Substituting the consumption policy function (S.4.141) into the Euler equation (S.4.140), we con-

�rm that these conjectured policy functions are indeed the optimal consumption-savings choice:

cj,kit+1

cj,kit
=

(
rjit+1/pit+1 + (1− δj)

)
kjit+1(

rjit/pit + (1− δj)
)
kjit

,

= β
(
rjit+1/pit+1 +

(
1− δj

))
.

Given this optimal consumption-saving decision in equations (S.4.141)-(S.4.142), our assump-

tion of Cobb-Douglas preferences across sectors implies that landlords allocate constant shares of

consumption expenditure across sectors within time periods, as for workers in equation (S.4.130).

Similarly, our assumption of constant elasticity of substitution (CES) preferences across locations

within sectors implies that landlords in location n allocate the same share of expenditure in lo-

cation i within sector j as for workers in equation (S.4.131).

S.4.4.5 Market Clearing

Goods market clearing implies that revenue in each region-sector equals expenditure on the goods

produced by that region-sector:

pjiity
j
it =

N∑
n=1

ψjSjnit

J∑
h=1

(
whnt`

h
nt + rhntk

h
nt

)
,

wjit`
j
it + rjntk

j
nt =

N∑
n=1

ψjSjnit

J∑
h=1

(
whnt`

h
nt + rhntk

h
nt

)
,

wjit`
j
it +

1− µj

µj
wjit`

j
it =

N∑
n=1

ψjSjnit

J∑
h=1

(
whnt`

h
nt +

1− µh

µh
whnt`

h
nt

)
,

(
1

µj

)
wjit`

j
it =

N∑
n=1

J∑
h=1

ψjSjnit

(
1

µh

)
whnt`

h
nt. (S.4.143)

Capital market clearing implies that the rental rate for capital is determined by the requirement

that landlords’ income from the ownership of capital equals payments for its use. Using the

property that payments to capital and labor are constant shares of total revenue in equations

(S.4.134) and (S.4.135), we can write payments for capital in each sector as:

rjitk
j
it =

1− µj

µj
wjit`

j
it. (S.4.144)
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S.4.4.6 General Equilibrium

Given the state variables {`ji0, kji0} for each sector j and location i, the general equilibrium of

the economy is the path of allocations and prices such that �rms in each location choose inputs

to maximize pro�ts, workers make consumption and migration decisions to maximize utility,

landlords make consumption and investment decisions to maximize utility, and prices clear all

markets. For expositional clarity, we collect the equilibrium conditions and express them in terms

of a sequence of four endogenous variables

{
`jit, k

j
it, w

j
it, v

j
it

}∞
t=0

. All other endogenous variables

of the model can be recovered as a function of these variables.

Capital Accumulation: Using capital market clearing (S.4.144), the price index (S.4.128) and

the equilibrium pricing rule (S.4.133), the capital accumulation equation (S.4.142) can be re-

written as:

kjit+1 = β
1− µj

µj
wjit
pit
`jit + β

(
1− δj

)
kjit, (S.4.145)

pnt =
J∏
h=1

 N∑
i=1

(
wjit

(
1− µj

µj

)1−µj (
`jit/k

j
it

)1−µj
τ jnit/z

j
it

)−θ−ψh/θ . (S.4.146)

Goods Market Clearing: Using the equilibrium pricing rule (S.4.133), the expenditure share

(S.4.131) and capital market clearing (S.4.144) in the goods market clearing condition (S.4.143),

we obtain: (
1

µj

)
wjit`

j
it =

N∑
n=1

J∑
h=1

ψjSjnit

(
1

µh

)
whnt`

h
nt, (S.4.147)

Shnit ≡

(
wjit
(
`jit/k

j
it

)1−µj
τ jnit/z

j
it

)−θ
∑N

m=1

(
wjmt

(
`jmt/k

j
mt

)1−µj
τ jnmt/z

j
mt

)−θ , T jhint ≡
ψjSjnit

(
1/µh

)
whnt`

h
nt

(1/µj)wjit`
j
it

, (S.4.148)

where Shnit is the expenditure share of importer n on each exporter i at time t, and we have de�ned

T jhint as the corresponding income share of exporter i from each importer n at time t. Note that

the order of subscripts switches between the expenditure share (Shnit) and the income share (T jhint),
because the �rst and second subscripts will correspond below to rows and columns of a matrix,

respectively.

Population Flow: Using the outmigration probabilities (S.4.126), the population �ow condition

for the evolution of the employment distribution over time is given by:

`hgt+1 =
N∑
i=1

J∑
j=1

Djh
igt`

j
it, (S.4.149)

Djh
igt =

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

∑N
m=1

∑J
o=1

(
exp

(
βEtvo,wmt+1

)
/κojkit

)1/ρ
, Ehj

git ≡
`jitD

jh
igt

`hgt+1

, (S.4.150)

63



where Djh
igt is the outmigration probability from sector j in location i to sector h in location g

between time t and t+ 1, and we have de�ned Ehj
git as the corresponding inmigration probability

to sector h in location g from sector j in location i between time t and t+1. Note that the order of

subscripts switches between the outmigration probability (Djh
igt) and the inmigration probability

(Ehj
git), because the �rst and second subscripts will correspond below to rows and columns of a

matrix, respectively.

Worker Value Function: Using the worker indirect utility function (S.4.127) in the value func-

tion (S.4.125), the expected value from living in location n at time t can be written as:

vj,wit = ln

[
bjntw

j
nt

pnt

]
+ ρ log

N∑
g=1

K∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

. (S.4.151)

S.4.4.7 Comparative Statics

We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics for changes in steady-state and the entire tran-

sition path.

Prices. Using the relationship between capital and labor payments (S.4.144), the pricing rule

(S.4.133) can be re-written as follows:

pjnit =
τ jnitw

j
it

(
1−µj
µj

)1−µj (
1

χjit

)1−µj

zjit
, (S.4.152)

where χjit is the capital-labor ratio in sector j in region i:

χjit ≡
kjit
`jit
.

Totally di�erentiating this pricing rule, we have:

d ln pjnit = d ln τ jnit + d lnwjit −
(
1− µj

)
d lnχjit − d ln zjit. (S.4.153)

Expenditure Shares. Totally di�erentiating the expenditure share equation (S.4.131), we get:

d lnSjnit = θ

(
N∑
h=1

Sjnht d ln pjnht − d ln pjnit

)
. (S.4.154)

Price Indices. Totally di�erentiating the industry consumption goods price index in equation

(S.4.128), we have:

d ln pjnt =
N∑
m=1

Sjnmt d ln pjnmt. (S.4.155)
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Migration Shares. Totally di�erentiating the outmigration share equation (S.4.126), we get:

d lnDjh
igt =

1

ρ

[(
βEt dvh,wgt+1 − d lnκhjgit

)
−

N∑
m=1

J∑
o=1

Djo
imt

(
βEt dvo,wmt+1 − d lnκojmit

)]
. (S.4.156)

Real Income. Totally di�erentiating real income we have:

d ln

(
wjit
pit

)
= d lnwjit − d ln pit,

d ln

(
wjit
pit

)
= d lnwjit −

J∑
h=1

ψh
N∑
m=1

Shimt d ln phimt,

d ln

(
wjit
pit

)
= d lnwjit −

J∑
h=1

ψh
N∑
m=1

Shimt
[

d ln τhimt + d lnwhmt −
(
1− µh

)
d lnχhmt − d ln zhmt

]
. (S.4.157)

GoodsMarket Clearing. Totally di�erentiating the goods market clearing condition (S.4.143),

we have:

dwjit
wjit

+
d`jit
`jit

=
N∑
n=1

J∑
h=1

ψjSjnit
(
1/µh

)
whnt`

h
nt

(1/µj)wjit`
j
it

(
dwhnt
whnt

+
d`hnt
`hnt

+
dSjnit
Sjnit

)
.

Using our result for the derivative of expenditure shares in equation (S.4.154) above, we can

rewrite this as:

dwjit
wjit

+
d`jit
`jit

=
N∑
n=1

J∑
h=1

T jhint

(
dwhnt
whnt

+
d`hnt
`hnt

+ θ

(
N∑
m=1

Sjnmt
dpjnmt

pjnmt
− dpjnit

pjnit

))
,

T jhint ≡
ψjSjnit

(
1/µh

)
whnt`

h
nt

(1/µj)wjit`
j
it

.

[
d lnwjit

+ d ln `jit

]
=


∑N
n=1

∑J
h=1 T

jh
int

(
d lnwhnt + d ln `hnt

)
+θ
∑N
n=1

∑N
m=1

∑J
h=1 T

jh
intS

j
nmt

(
d ln τ jnmt + d lnwjmt −

(
1− µj

)
d lnχjmt − d ln zjmt

)
−θ
(

d ln τ jnit + d lnwjit −
(
1− µj

)
d lnχjit − d ln zjit

)
 . (S.4.158)

Population Flow. Totally di�erentiating the population �ow condition (S.4.149) we have:

d`hgt+1

`hgt+1

=
N∑
i=1

J∑
j=1

Ehj
git

[
d`jit
`jit

+
dDjh

igt

Djh
igt

]
,

d ln `hgt+1 =
N∑
i=1

J∑
j=1

Ehjgit

[
d ln `jit +

1

ρ

(
βEt dvhgt+1 − d lnκhjgi −

N∑
m=1

J∑
o=1

Djoimt

(
βEt dvomt+1 − d lnκojmit

))]
. (S.4.159)

65



Value Function. Note that the value function can be re-written using the following results:

vj,wit = ln
wjit∏J

o=1

[∑N
m=1 p

−θ
imt

]−ψo/θ + ln bjit + ρ ln
N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

,

J∏
o=1

[
N∑
m=1

(poimt)
−θ

]−ψo/θ
=

J∏
o=1

(
(poiit)

−θ

Soiit

)−ψo/θ
, τ oiit = 1,

N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

=

(
exp

(
βEtvj,wit+1

)
/κjjiit

)1/ρ

Djj
iit

, κjjiit = 1,

vj,wit = lnwjit +
J∑
o=1

ψo
[
−1

θ
lnSoiit − ln poiit

]
+ ln bjit + βEtvj,wit+1 − ρ lnDjj

iit. (S.4.160)

Totally di�erentiating the value function (S.4.160) we have:

dvj,wit = d lnwjit +
J∑
o=1

ψo
[
−1

θ
d lnSoiit − d ln poiit

]
+ d ln bjit + βEt dvj,wit+1 − ρ d lnDjj

iit,

d lnSoiit = −θ d ln poiit + θ

[
N∑
m=1

Soimt d ln poimt

]
,

d lnDjj
iit =

1

ρ

[
βEt dvjit+1 − d lnκjjiit −

N∑
m=1

J∑
h=1

Djh
imt

(
βEtvhmt+1 − d lnκhjmit

)]
.

Using these results in the derivative of the value function, we have:

dvj,wit =

[
d lnwjit −

∑J
o=1 ψ

o
∑N

m=1 S
o
imt d ln poimt

+ d ln bjit +
∑N

m=1

∑J
h=1D

jh
imt

(
βEt dvhmt+1 − d lnκhjmit

) ] ,
where we have used d lnκjjiit = 0. Using the total derivative of the pricing rule (S.4.153), we can

re-write this derivative of the value function as follows:

dvj,wit =

[
d lnwjit −

∑J
o=1 ψ

o
∑N
m=1 S

o
imt ( d ln τonmt + d lnwomt − (1− µo) d lnχomt − d ln zomt)

+ d ln bjit +
∑N
m=1

∑J
h=1D

jh
imt

(
βEt dvhmt+1 − d lnκhjmit

) ]
.

(S.4.161)

S.4.4.8 Steady-state

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kjit+1 = kjit = kj∗i , `jit+1 = `jit = `j∗i , wj∗it+1 = wj∗it = wj∗i and vj∗it+1 = vj∗it = vj∗i ,

where we use an asterisk to denote a steady-state value. We consider small common shocks to

productivities across all sectors ( d lnz) and to amenities across all sectors ( d ln b) in each lo-

cation, holding constant the economy’s aggregate labor endowment ( d ln ` = 0), trade costs

( d ln τ = 0) and commuting costs ( d lnκ = 0).
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Capital Accumulation. From the capital accumulation equation (S.4.145), the steady-state

stock of building capital solves:

kj∗i = β

[
rj∗i
p∗i

+
(
1− δj

)]
kj∗i .

(
1− β

(
1− δj

))
kj∗i = β

rji
pi
kj∗i .

From the relationship between labor and capital payments, we have:

rjit
pit
kjit =

1− µj

µj
wjit`

j
it

pit
.

Using this result in the expression for the steady-state capital stock above, we have:

(
1− β

(
1− δj

))
kj∗i = β

1− µj

µj
wj∗i `

j∗
i

p∗i
.

Totally di�erentiating, we have:

d lnχj∗i = d ln

(
wj∗i
pj∗i

)
.

From the total derivative of real income (S.4.157) above, this becomes:

d lnχj∗i = d lnwj∗it −
N∑
m=1

J∑
h=1

ψhShimt
[

d lnwh∗mt −
(
1− µh

)
d lnχh∗mt − d ln zmt

]
.

which has the matrix representation:

d lnχ∗ = d lnw∗ − S ( d lnw∗ − (I − µ) d lnχ∗ − d lnz) , (S.4.162)

where d lnχ∗ and d lnw∗ are NJ × 1 vectors; S is a NJ ×NJ matrix with elements:

Snit = Sjnit =
J∑
h=1

ψhShimt.

and µ is NJ ×NJ diagonal matrix whose (ij)-th element on the diagonal is µj .

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.158)

has the following matrix representation:

d lnwt + d ln `t = T ( d lnwt + d ln `t) + θ (TS − I) ( d lnw − (I − µ) d lnχt − d lnz) ,

where these matrices have NJ ×NJ elements. In steady-state we have:

d lnw∗ + d ln `∗ = T ( d lnw∗ + d ln `∗) + θ (TS − I) ( d lnw∗ − (I − µ) d lnχ∗ − d lnz) . (S.4.163)
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Population Flow. The total derivative of the population �ow condition (S.4.159) has the fol-

lowing matrix representation:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1,

where these matrices again have NJ ×NJ elements. In steady-state, we have:

d ln `∗ =
β

ρ
(I −E)−1 (I −ED) dv∗. (S.4.164)

Value function. The total derivative of the value function has the following matrix represen-

tation:

dvt = (I − S) d lnwt + S ( d ln z + (1− µ) d lnχt) + d ln b+ βDEt dvt+1,

where these matrices again have NJ ×NJ elements. In steady-state, we have:

dv∗ = (I − βD)−1 [(I − S) d lnw∗ + S ( d ln z + (I − µ) d lnχ∗) + d ln b] . (S.4.165)

System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = (I − S) d lnw∗ + S (I − µ) d lnχ∗ + S d lnz. (S.4.166)

d lnw∗ + d ln `∗ = T ( d lnw∗ + d ln `∗) + θ (TS − I) ( d lnw∗ − (I − µ) d lnχ∗ − d lnz) . (S.4.167)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (S.4.168)

dv∗ = (I − βD)
−1

[(I − S) d lnw∗ + S ( d ln z + (I − µ) d lnχ∗) + d ln b] . (S.4.169)

S.4.4.9 Transition Dynamics

Suppose that the economy starts from an initial steady-state. Consider a small shock to pro-

ductivity ( d lnz) and amenities ( d ln b) in each sector and location, holding constant the econ-

omy’s aggregate labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and commuting costs

( d lnκ = 0). We use a tilde above a variable to denote a log deviation from the initial steady-

state, such that
˜̀
it = `it−`∗i , for all variables except for the worker value function vit, where with

a slight abuse of notation we use ṽit = vit − v∗i to denote the deviation in levels for the worker

value function.

Capital Accumulation. From the capital accumulation equation (S.4.145), we have:

kjit+1 = β
rjit
pit
kjit + β

(
1− δj

)
kjit.

From the relationship between labor and capital payments, we have:

rjit
pit
kjit =

1− µj

µj
wjit`

j
it

pit
.
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Using this result in the capital accumulation equation above, we have:

kjit+1 = β
(
1− δj

)
kjit + β

1− µj

µj
wjit`

j
it

pit
,

kjit+1

`jit+1

`jit+1

`jit
= β

(
1− δj

) kjit
`jit

+ β
1− µj

µj
wjit
pit
,

χjit+1

`jit+1

`jit
= β

(
1− δj

)
χjit + β

1− µj

µj
wjit
pit
, (S.4.170)

while in steady-state we have:

kj∗i
`j∗i

= β
(
1− δj

) kj∗i
`j∗i

+ β
1− µj

µj
wj∗i
p∗i
,

χj∗i = β
(
1− δj

)
χj∗i + β

1− µj

µj
wj∗i
p∗i
.

χj∗i =
β

(1− β (1− δj))
1− µj

µj
wj∗i
p∗i
. (S.4.171)

Dividing both sides of equation (S.4.170) by χj∗i , we have:

χjit+1

χj∗i

`jit+1

`jit
= β

(
1− δj

) χjit
χj∗i

+
β

χj∗i

1− µj

µj
wjit
pjit
,

which using (S.4.171) can be re-written as:

χjit+1

χj∗i

`jit+1

`jit
= β

(
1− δj

) χjit
χj∗i

+
(
1− β

(
1− δj

)) wjit/wj∗i
pit/p∗i

,

which can be further re-written as:

χjit+1

χj∗i

`jit+1

`jit
− 1 = β

(
1− δj

) χjit
χj∗i

+
(
1− β

(
1− δj

)) wjit/wj∗i
pit/p∗i

− 1,

χjit+1

χj∗i

`jit+1

`jit
− 1 = β

(
1− δj

)( χjit
χj∗i
− 1

)
+
(
1− β

(
1− δj

))(wjit/wj∗i
pit/p∗i

− 1

)
.

Noting that:

xit
x∗i
− 1 ' ln

(
xit
x∗i

)
,

χjit+1

χj∗i

`jit+1

`jit
− 1 ' ln

(
χjit+1

χj∗i

`jit+1

`jit

)
,
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we have:

ln

(
χjit+1

χj∗i

)
+ ln

(
`jit+1

`jit

)
= β

(
1− δj

)
ln

(
χjit
χj∗i

)
+
(
1− β

(
1− δj

))
ln

(
wjit/w

j∗
i

pit/p∗i

)
,

ln

(
χjit+1

χj∗i

)
+ ln

(
`jit+1/`

j∗
i

`jit/`
j∗
i

)
= β

(
1− δj

)
ln

(
χjit
χj∗i

)
+
(
1− β

(
1− δj

))
ln

(
wjit/w

j∗
i

pit/p∗i

)
,

which can be re-written as follows:

χ̃jit+1 = β
(
1− δj

)
χ̃jit +

(
1− β

(
1− δj

)) (
w̃jit − p̃it

)
− ˜̀jit+1 + ˜̀jit.

We can rewrite this relationship in matrix form as:

χ̃t+1 = β (I − δ) χ̃t + (I − β (I − δ)) (w̃t − p̃t)− ˜̀t+1 + ˜̀
t,

where these matrices have NJ × NJ elements. Now, from the total derivative of real income

(S.4.157), we have :

w̃jit − p̃it = w̃jit −
N∑
m=1

Sjnmt
[
w̃jmt −

(
1− µj

)
χ̃jmt + z̃jm

]
,

where we have used d ln τ jim = 0. We can re-write this relationship in matrix form as:

w̃t − p̃t = (I − S) w̃t + S (I − µ) χ̃t + Sz̃.

Using this result in our expression for the dynamics of the capital-labor ratio above, we have:

χ̃t+1 =

 [β (I − δ) + (I − β (I − δ))S (I − µ)] χ̃t

+ (I − β (I − δ)) (I − S) w̃t

(I − β (I − δ))Sz̃ − ˜̀t+1 + ˜̀
t

 . (S.4.172)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.158)

relative to the initial steady-state has the following matrix representation:

w̃t + ˜̀
t = T

(
w̃t + ˜̀

t

)
+ θ (TS − I) (w̃t − (I − µ) χ̃t − z̃) ,

where these matrices have NJ × NJ elements and we have used d ln τ = 0. This expression

can be re-written as:

w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) [(I − µ) χ̃t + z̃]

]
. (S.4.173)

Population Flow. The total derivative of the population �ow condition (S.4.159) relative to the

initial steady-state has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1, (S.4.174)

where again these matrices have NJ ×NJ elements.
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Value function. The total derivative of the value function relative to the initial steady-state

has the following matrix representation:

ṽt = (I − S) w̃t + S [(I − µ) χ̃t + z̃] + b̃+ βDEtṽt+1, (S.4.175)

where again these matrices haveNJ×NJ elements and we have used d ln τ = 0 and d lnκ = 0.

System of Equations for Transition Dynamics. Collecting together the system of equations

for the transition dynamics, we have:

χ̃t+1 =

[
[β (I − δ) I + (I − β (I − δ))S] [(I − µ) χ̃t + z̃]

+ (I − β (I − δ)) (I − S) w̃t − ˜̀t+1 + ˜̀
t

]
. (S.4.176)

w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) [(I − µ) χ̃t + z̃]

]
. (S.4.177)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.4.178)

ṽt = (I − S) w̃t + S [(I − µ) χ̃t + z̃] + b̃+ βDEtṽt+1. (S.4.179)

S.4.5 Input-Output Linkages (Sector-Location Speci�c Capital)
We consider an economy that consists of many locations indexed by i ∈ {1, . . . , N} and many

sectors indexed by j ∈ {1, . . . , J}. Time is discrete and is indexed by t. The economy consists

of two types of in�nitely-lived agents: workers and landlords. Both workers and landlords have

the same �ow preferences, which are modeled as in the standard Armington model of interna-

tional trade. Workers are endowed with one unit of labor that is supplied inelasticity and are

geographically mobile across sectors and locations subject to bilateral migration costs. Workers

do not have access to an investment technology and live hand to mouth as in Kaplan and Violante

(2014). Landlords are geographically immobile and own the capital stock in their location. They

make a forward-looking decision over consumption and investment in this local stock of capital.

We assume that capital is geographically immobile once installed, but depreciates gradually at a

constant rate δ.

S.4.5.1 Worker Migration Decisions

At the beginning of each period t, the economy inherits a mass of workers in each sector j and

location i (`jit), with the total labor endowment of the economy given by ` =
∑N

i=1

∑J
j=1 `it.

Workers �rst produce and consume in their sector and location in period t, before observing

mobility shocks {εhgt} for all possible sectors h ∈ {1, . . . , J} and locations g ∈ {1, . . . , N} and

deciding where to move for period t + 1. Workers face bilateral migration costs that vary by

sector and location, where κhjgit denotes the cost of moving from sector j in location i to sector h

in location g. The value function for a worker in sector j and location i at time t (Vj,w
it ) is equal to

the current �ow of utility in that sector and location plus the expected continuation value next

period from the optimal choice of sector and location:

Vj,w
it = lnuj,wit + max

{g}N1 {h}
J
1

{
βEt

[
Vh,w
gt+1

]
− κhjgit + ρεhgt

}
, (S.4.180)
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where we use the superscriptw to denote workers; we assume logarithmic �ow utility (lnuj,wit ); β
denotes the discount rate; E [·] denotes an expectation taken over the distribution for idiosyncratic

mobility shocks; ρ captures the dispersion of idiosyncratic mobility shocks; and we assume κjjiit =

1 and κhjgit > 1 for g 6= i and h 6= j.
We make the conventional assumption that the idiosyncratic mobility shocks are drawn from

an extreme value distribution:

F (ε) = e−e
(−ε−γ̄)

, (S.4.181)

where γ is the Euler-Mascheroni constant.

Under this assumption, the expected value for a worker of living in location i at time t (vj,wit )

can be re-written in the following form:

vj,wit = lnuj,wit + ρ log
N∑
g=1

K∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

. (S.4.182)

The corresponding probability of migrating from location-sector ij to location-sector gh satis�es

a gravity equation:

Djh
igt =

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

∑N
m=1

∑J
o=1

(
exp

(
βEtvo,wmt+1

)
/κojkit

)1/ρ
. (S.4.183)

The population �ow condition implies:

`hgt+1 =
N∑
i=1

J∑
j=1

Djh
igt`

j
it. (S.4.184)

We also de�ne a corresponding inmigration probabilityEhj
git, which captures the share of workers

in destination g and sector h at time t+ 1 that inmigrated from origin i and sector j at time t:

Ehj
git ≡

`jitD
jh
igt

`hgt+1

. (S.4.185)

Note that the order of subscripts switches between the outmigration probability and the inmi-

gration probability, because the �rst and second subscripts will correspond below to rows and

columns of a matrix, respectively.

S.4.5.2 Worker Consumption

Worker preferences are modeled as in the standard Armington model of trade. As workers do not

have access to an investment technology, they choose their consumption of varieties each period

to maximize their �ow utility in their location and sector that period. Worker �ow indirect utility

in location n and sector j depends on local amenities (bjnt), the wage (wjnt), and the consumption

goods price index (pnt):
lnuj,wnt = ln bjnt + lnwjnt − ln pnt, (S.4.186)

where amenities (bnt) capture characteristics of a location that make it a more attractive place to

live regardless of the wage and cost of consumption goods (e.g., climate and scenic views). In this

section of the Online Supplement, we assume that amenities are exogenous.
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The consumption goods price index (pnt) in location n depends on the consumption goods

price index for each sector h in that location (phnt):

pnt =
J∏
h=1

(
phnt
)ψh

, 0 < ψh < 1,
J∑
h=1

ψh, (S.4.187)

where the consumption goods price index for each sector h in location n depends on the price of

the variety sourced from each location i within that sector h (phnit):

phnt =

[
N∑
i=1

(
phnit
)−θ]−1/θ

, θ = σ − 1, σ > 1, (S.4.188)

where σ > 1 is the constant elasticity of substitution (CES) between varieties; θ = σ − 1 is

the trade elasticity; and for simplicity, we assume a common elasticity of substitution and trade

elasticity across all sectors.

Utility maximization implies that goods consumption expenditure on each sector (phntc
h
nt) is a

constant share of overall goods consumption expenditure (pntcnt) in each location:

phntc
h
nt = ψhpntcnt. (S.4.189)

Using constant elasticity of substitution (CES) demand for individual varieties of goods, the share

of location n’s expenditure within sector h on the goods produced by location i is:

Shnit ≡
(
phnit
)−θ∑N

m=1

(
phnmt

)−θ . (S.4.190)

S.4.5.3 Production

Producers in each location i and sector j use labor, capital and intermediate inputs to produce the

variety supplied by that location in that sector. Production is assumed to occur under conditions

of perfect competition and subject to the following unit cost function:

Cj
it =

(wjit
zjit

)µj

(rit)
1−µj

γj J∏
h=1

(
phit
)γj,h

,
J∑
h=1

γj,h = 1− γj, (S.4.191)

where (1− γj) is the share of intermediates in production costs; γj,h is the share of materials

from sector h used in sector j; zjit denotes labor-augmenting productivity in location i in sector

j at time t. As for amenities above, we assume in this section of the Online Supplement that

productivity is exogenous.

We assume that trade between locations is subject to iceberg variable costs of trade, such that

τ jnit ≥ 1 units of a good must be shipped from location i in order for one unit to arrive in location

n, where τ jnit > 1 for n 6= i and τ jiit = 1. From pro�t maximization, the cost to a consumer in

location n of sourcing the good produced by location i within sector j is:

pjnit = τ jnitp
j
iit = τ jnit

(wjit
zjit

)µj

(rit)
1−µj

γj J∏
h=1

(
phit
)γj,h

, (S.4.192)
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where pjiit is the “free on board” price of the good supplied by location i before transport costs.

From pro�t maximization problem and zero pro�ts, payments for labor and capital in each

sector are constant shares of revenue in that sector:

wjit`
j
it = γjµjyjit, (S.4.193)

rjitk
j
it = γj

(
1− µj

)
yjit, (S.4.194)

where `jit is labor input; kjit is capital input; and yjit denotes revenue; the immobility of capital

across sectors and locations once installed implies that the rate of return on capital need not be

equalized across sectors and locations out of steady-state (rjit 6= rhnt).

S.4.5.4 Landlord Consumption

Landlords in each location and sector choose their consumption and investment in capital to

maximize their intertemporal utility subject to the intertemporal budget constraint. Landlords’

intertemporal utility equals the present discounted value of their �ow utility, which we assume

for simplicity takes the same logarithmic form as for workers:

vj,kit =
∞∑
t=0

βt ln cj,kit , (S.4.195)

where we use the superscript k to denote landlords; cj,kit is the consumption index for landlords

in location i and sector j; and β denotes the discount rate. Since landlords are immobile, we omit

the term in amenities from their �ow utility, because this does not a�ect the equilibrium in any

way, and hence is without loss of generality.

The consumption goods index for landlords (cj,kit ) takes exactly the same form as for work-

ers and is a Cobb-Douglas aggregate of consumption indexes for each sector, where these con-

sumption indexes for each sector are constant elasticity of substitution (CES) functions of the

consumption of varieties from each location. Therefore, the consumption goods price index (pnt)
takes the same form as in equation (S.4.187), and the consumption goods price index for each sec-

tor (pjnt) takes the same form as in equation (S.4.188). Under these assumptions, landlords’ utility

maximization problem is weakly separable. First, we solve for the optimal consumption-savings

decision across time periods for overall goods consumption. Second, we solve for the optimal al-

location of consumption across sectors within each time period. Third, we solve for the optimal

allocation of consumption across location varieties within each sector.

Beginning with landlords’ optimal consumption-saving decision, we assume that the invest-

ment technology for capital in each location and sector uses the varieties from all locations with

the same functional form as consumption. In particular, landlords in a given location and sector

can produce one unit of capital in that location and sector using one unit of the consumption in-

dex for that location and sector. We assume that capital is geographically immobile once installed

and depreciates at a constant rate δj . The intertemporal budget constraint for landlords in each

location requires that total income from the existing stock of capital (rjitk
j
it) equals the total value

of goods consumption (pitc
j,k
it ) and net investment (pit

(
kjit+1 − (1− δj) kjit

)
):

rjitk
j
it = pitc

j,k
it + pit

(
kjit+1 −

(
1− δj

)
kjit
)
. (S.4.196)
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Combining landlords’ intertemporal utility (S.4.195) and budget constraint (S.4.196), their in-

tertemporal optimization problem is:

max
{cj,kt ,kj,kt+1}

∞∑
t=0

βt ln cj,kit , (S.4.197)

subject to pitc
j,k
it + pit

(
kjit+1 −

(
1− δj

)
kjit
)

= rjitk
j
it.

We can write this problem as the following Lagrangian:

L =
∞∑
t=0

βt ln cj,kit − ξ
j
t

[
pitc

j,k
it + pit

(
kjit+1 −

(
1− δj

)
kjit
)
− rjitk

j
it

]
. (S.4.198)

The �rst-order conditions are: {
cj,kit

} βt

cj,kit
− pitξjt = 0,

{
kjit+1

} (
rjit+1 + pit+1

(
1− δj

))
ξjt+1 − pitξ

j
t = 0,

Together these �rst-order conditions imply:

cj,kit+1

cj,kit
= β

pitµ
j
t

pit+1µ
j
t+1

= β
(
rjit+1/pit+1 +

(
1− δj

))
, (S.4.199)

where the transversality condition implies:

lim
t→∞

βt
kjit+1

cj,kit
= 0.

Our assumption of logarithmic �ow utility and the property that the intertemporal budget

constraint is linear in the stock of capital together imply that landlords’ optimal consumption-

saving decision involves a constant saving rate, as in Moll (2014). We conjecture the following

policy functions:

pitc
j,k
it = (1− β)

(
rjit + pit

(
1− δj

))
kjit, (S.4.200)

kjit+1 = β
(
rjit/pit +

(
1− δj

))
kjit. (S.4.201)

Substituting the consumption policy function (S.4.200) into the Euler equation (S.4.199), we con-

�rm that these conjectured policy functions are indeed the optimal consumption-savings choice:

cj,kit+1

cj,kit
=

(
rjit+1/pit+1 + (1− δj)

)
kjit+1(

rjit/pit + (1− δj)
)
kjit

,

= β
(
rjit+1/pit+1 +

(
1− δj

))
.

Given this optimal consumption-saving decision in equations (S.4.200)-(S.4.201), our assump-

tion of Cobb-Douglas preferences across sectors implies that landlords allocate constant shares of

consumption expenditure across sectors within time periods, as for workers in equation (S.4.189).

Similarly, our assumption of constant elasticity of substitution (CES) preferences across locations

within sectors implies that landlords in location n allocate the same share of expenditure on

location i within sector j, as for workers in equation (S.4.190).
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S.4.5.5 Goods Market Clearing

Goods market clearing implies that income in each location and sector equals expenditure on the

goods produced in that location and sector:

yjit =
N∑
n=1

Sjnitx
j
n, (S.4.202)

where yjit is total income in sector j in location i and xjn is total expenditure on industry j in

region n at time t. Total expenditure is the sum of �nal consumption and intermediate goods

expenditure and is given by:

xjnt = ψj
J∑
h=1

(
whnt`

h
nt + rhntk

h
nt

)
+

J∑
h=1

γh,jyhnt.

Combining these two relationships, we have:

yjit =
N∑
n=1

Sjnit

[
ψj

J∑
h=1

(
whnt`

h
nt + rhntk

h
nt

)
+

J∑
h=1

γh,jyhnt

]
,

which can be re-written as:

yjit =
N∑
n=1

Sjnit

[
ψj

J∑
h=1

γhyhnt +
J∑
h=1

γh,jyhnt

]
, (S.4.203)

=
N∑
n=1

J∑
h=1

Sjnit
[
ψjγh + γh,j

]
yhnt.

S.4.5.6 Capital Market Clearing

Capital market clearing implies that the rental rate for capital is determined by the requirement

that landlords’ income from the ownership of capital equals payments for its use. Using the

property that payments to capital and labor are constant shares of total revenue in equations

(S.4.193) and (S.4.194), we can write payments for capital in each sector as:

rjitk
j
it =

1− µj

µj
wjit`

j
it. (S.4.204)

S.4.5.7 Comparative Statics

We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics for changes in steady-state and the entire tran-

sition path.
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Industry Price Indices. Totally di�erentiating the industry consumption goods price index in

equation (S.4.187), we have:

dpjnt

pjnt
=

N∑
m=1

Sjnmt
dpjnmt

pjnmt
,

d ln pjnt =
N∑
m=1

Sjnmt d ln pjnmt. (S.4.205)

Prices. Using the relationship between capital and labor payments (S.4.204), the pricing rule

(S.4.192) can be re-written as follows:

pjnit = τ jnit

(
wjit
zjit

)γj (
1− µj

µj

)(1−µj)γj ( 1

χjit

)(1−µj)γj J∏
h=1

(
phit
)γj,h

, (S.4.206)

where χjit is the capital-labor ratio in sector j in region i:

χjit ≡
kjit
`jit
.

Totally di�erentiating this pricing rule, we have:

d ln pjnit =

[
d ln τ jnit + γj d lnwjit − (1− µj) γj d lnχjit

−γj d ln zjit +
∑J

h=1 γ
j,h d ln phit

]
. (S.4.207)

Combining the total derivatives of the the price index (S.4.205) and prices (S.4.209), we have:

d ln pjnit =

[
d ln τ jnit + γj d lnwjit − (1− µj) γj d lnχjit
−γj d ln zjit +

∑J
h=1

∑N
m=1 γ

j,hShimt d ln phimt

]
,

which can be re-written as:

d ln pjnit =

[
d ln τ jnit + γj d lnwjit − (1− µj) γj d lnχjit
−γj d ln zjit +

∑J
h=1

∑N
m=1 Σjh

im d ln phimt

]
,

where Σjh
im ≡ γj,hShimt.

De�ne Γ ≡ [I −Σ]−1
as the Leontief inverse of the shares Σjh

im, we can write this relationship

as:

d ln pjnit =
N∑
m=1

J∑
o=1

Γjoim [ d ln τ onmt + γo d lnwomt − (1− µo) γo d lnχomt − γo d ln zomt] . (S.4.208)

Expenditure Shares. Totally di�erentiating the expenditure share equation (S.4.190), we get:

d lnSjnit = θ

(
N∑
h=1

Sjnht d ln pjnht − d ln pjnit

)
. (S.4.209)

Using the total derivatives of prices above (S.4.208), this total derivative of the expenditure shares

can be written as:

d lnSjnit = θ

[
N∑
h=1

Sjnht

N∑
m=1

J∑
o=1

Γjohm −
N∑
m=1

J∑
o=1

Γjoim

] [
d ln τonmt + γo d lnwomt

− (1− µo) γo d lnχomt − γo d ln zomt

]
. (S.4.210)
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Migration Shares. Totally di�erentiating this expenditure share equation (S.4.183), we get:

d lnDjh
igt =

1

ρ

[(
βEt dvh,wgt+1 − d lnκhjgit

)
−

N∑
m=1

J∑
o=1

Djo
imt

(
βEt dvo,wmt+1 − d lnκojmit

)]
. (S.4.211)

Labor Payments. Totally di�erentiating labor payments (S.4.193), we have:

wjit`
j
it = γjµjyjit,

dwjit
wjit

wjit`
j
it +

d`jit
`jit

wjit`
j
it = γjµjyjit

dyjit
yjit

,

dwjit
wjit

+
d`jit
`jit

=
γjµjyjit
wjit`

j
it

dyjit
yjit

,

dwjit
wjit

+
d`jit
`jit

= ξji
dyjit
yjit

,

d lnwjit + d ln `jit = ξji d ln yjit, (S.4.212)

ξji ≡
γjµjyjit
wjit`

j
it

.

GoodsMarket Clearing. Totally di�erentiating the goods market clearing condition (S.4.203),

we have:

yjit =
N∑
n=1

J∑
h=1

Sjnit
[
ψjγh + γh,j

]
yhnt,

dyjit
yjit

yjit =
N∑
n=1

J∑
h=1

Sjnit
[
ψjγh + γh,j

]
yhnt

dSjnit
Sjnit

+
N∑
n=1

J∑
h=1

Sjnit
[
ψjγh + γh,j

]
yhnt

dyhnt
yhnt

,

which can be re-written as:

d ln yjit =

[ ∑N
n=1 ϑ

j
in d lnSjnit +

∑N
n=1

∑J
h=1 Θjh

in d lnSjnit
+
∑N

n=1 ϑ
j
in d ln yhnt +

∑N
n=1

∑J
h=1 Θjh

in d ln yhnt

]
,

where ϑjin ≡
Sjnitψ

j
∑J

h=1 γ
hyhnt

yjit
, Θjh

in ≡
Sjnitγ

h,jyhnt
yjit

.

Using equation (S.4.212), we can re-write this relationship as:

d ln yjit =

[ ∑N
n=1 ϑ

j
in d lnSjnit +

∑N
n=1

∑J
h=1 Θjh

in d lnSjnit

+
∑N

n=1

∑J
h=1

Sjnitψ
jγhyhnt
yjit

1
ξhi

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

∑J
h=1 Θjh

in d ln yhnt

]
.
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Using the de�nition of ξji ≡
γjµjyjit
wjit`

j
it

, we have:

d ln yjit =

[ ∑N
n=1 ϑ

j
in d lnSjnit +

∑N
n=1

∑J
h=1 Θjh

in d lnSjnit

+
∑N

n=1

∑J
h=1

Sjnitψ
jγhyhnt
yjit

whit`
h
it

γhµhyhit

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

∑J
h=1 Θjh

in d ln yhnt

]
.

Using wjit`
j
it = γjµjyjit, we can re-write this further as:

d ln yjit =

[ ∑N
n=1 ϑ

j
in d lnSjnit +

∑N
n=1

∑J
h=1 Θjh

in d lnSjnit
+
∑N

n=1

∑J
h=1 ϑ

jh
in

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

∑J
h=1 Θjh

in d ln yhnt

]
,

where ϑjhin ≡
Sjnitψ

jγhyhnt
yjit

.

d ln yjit

[
1−

N∑
n=1

J∑
h=1

Θjh
in d ln yhnt

]
=

[ ∑N
n=1

∑J
h=1 ϑ

jh
in

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

[
ϑjin +

∑J
h=1 Θjh

in

]
d lnSjnit

]
.

Taking the Leontief inverse of Θjh
in , we have:

d ln yjit =
N∑
m=1

J∑
o=1

∆jo
im

[ ∑N
n=1

∑J
h=1 ϑ

oh
mn

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

[
ϑomn +

∑J
h=1 Θoh

mn

]
d lnSonmt

]
.

Using equation (S.4.212), this becomes:

d lnwjit + d ln `jit = ξji

N∑
m=1

J∑
o=1

∆jo
im

[ ∑N
n=1

∑J
h=1 ϑ

oh
mn

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

[
ϑomn +

∑J
h=1 Θoh

mn

]
d lnSonmt

]
. (S.4.213)

Population Flow. Totally di�erentiating the population �ow condition (S.4.184) we have:

d ln `hgt+1 =

N∑
i=1

J∑
j=1

Ehjgit

[
d ln `jit + d lnDjh

igt

]
,

d ln `hgt+1 =

N∑
i=1

J∑
j=1

Ehjgit

[
d ln `jit +

1

ρ

(
βEt dvhgt+1 − d lnκhjgi −

N∑
m=1

J∑
o=1

Djoimt

(
βEt dvomt+1 − d lnκojmit

))]
. (S.4.214)

Value Function. Note that the value function can be re-written using the following results:

vj,wit = ln
wjit∏J

o=1

[∑N
m=1 p

−θ
imt

]−ψo/θ + ln bjit + ρ ln
N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

,

J∏
o=1

[
N∑
m=1

(poimt)
−θ

]−ψo/θ
=

J∏
o=1

(
(poiit)

−θ

Soiit

)−ψo/θ
, τ oiit = 1,
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N∑
g=1

J∑
h=1

(
exp

(
βEtvh,wgt+1

)
/κhjgit

)1/ρ

=

(
exp

(
βEtvj,wit+1

)
/κjjiit

)1/ρ

Djj
iit

, κjjiit = 1,

vj,wit = lnwjit +
J∑
o=1

ψo
[
−1

θ
lnSoiit − ln poiit

]
+ ln bjit + βEtvj,wit+1 − ρ lnDjj

iit. (S.4.215)

Totally di�erentiating the value function (S.4.215) we have:

dvj,wit = d lnwjit +
J∑
o=1

ψo
[
−1

θ
d lnSoiit − d ln poiit

]
+ d ln bjit + βEt dvj,wit+1 − ρ d lnDjj

iit,

d lnSoiit = −θ d ln poiit + θ

[
N∑
m=1

Soimt d ln poimt

]
,

d lnDjj
iit =

1

ρ

[
βEt dvjit+1 − d lnκjjiit −

N∑
m=1

J∑
h=1

Djh
imt

(
βEtvhmt+1 − d lnκhjmit

)]
.

Using these results in the derivative of the value function, we have:

dvj,wit =

[
d lnwjit −

∑J
o=1 ψ

o
∑N

m=1 S
o
imt d ln poimt

+ d ln bjit +
∑N

m=1

∑J
h=1D

jh
imt

(
βEt dvhmt+1 − d lnκhjmit

) ] ,
where we have used d lnκjjiit = 0. From the total derivative of prices in equation (S.4.208), we

have:

d ln poimt =
N∑
n=1

J∑
h=1

Γohmz
[

d ln τhint + γh d lnwhnt −
(
1− µh

)
γh d lnχhnt − γh d ln zhnt

]
.

Using this result in the value function above, we obtain:

dvj,wit =

 d lnwjit −
∑J
o=1

∑N
m=1 ψ

oSoimt
∑N
n=1

∑J
h=1 Γohmz

[
d ln τhint + γh d lnwhnt

−
(
1− µh

)
γh d lnχhnt − γh d ln zhnt

]
+ d ln bjit +

∑N
m=1

∑J
h=1D

jh
imt

(
βEt dvhmt+1 − d lnκhjmit

)
 . (S.4.216)

S.4.5.8 Steady-state

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kjit+1 = kjit = kj∗i , `jit+1 = `jit = `j∗i , wj∗it+1 = wj∗it = wj∗i and vj∗it+1 = vj∗it = vj∗i ,

where we use an asterisk to denote a steady-state value. We consider small common shocks to

productivities across all sectors ( d lnz) and to amenities across all sectors ( d ln b) in each lo-

cation, holding constant the economy’s aggregate labor endowment ( d ln ` = 0), trade costs

( d ln τ = 0) and commuting costs ( d lnκ = 0).
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Capital Accumulation. From the capital accumulation equation (S.4.201), the steady-state

stock of building capital solves:

kj∗i = β

[
rji
pi

+
(
1− δj

)]
kj∗i .

(
1− β

(
1− δj

))
kj∗i = β

rji
pi
kj∗i .

From the relationship between labor and capital payments, we have:

rjit
pit
kjit =

1− µj

µj
wjit`

j
it

pit
,

Using this result in the expression for the steady-state capital stock above, we have:(
1− β

(
1− δj

))
kj∗i = β

1− µj

µj
wj∗i `

j∗
i

p∗i
. (S.4.217)

We now derive an expression for the total derivative of real income:

d ln

(
wj∗i
p∗i

)
= d lnwj∗i − d ln p∗i .

The total derivative of the aggregate price index is given by:

d ln p∗i =
N∑
m=1

J∑
h=1

ψhSh∗im d ln ph∗im.

Using our expression for the total derivative of prices above (S.4.208), we can re-write this total

derivative of the aggregate price index as:

d ln p∗i =
N∑
m=1

J∑
h=1

ψhSh∗im

N∑
n=1

J∑
o=1

Γhomn [γo d lnwo∗nt − (1− µo) γo d lnχo∗nt − γo d ln zont] .

where have used d ln τ jnit = 0. Using these results in equation (S.4.217), the change the steady-

state capital labor ratio is given by:

d lnχj∗i = d lnwj∗it −
N∑
m=1

J∑
h=1

ψhSh∗im

N∑
n=1

J∑
o=1

Γhomn [γo d lnwo∗nt − (1− µo) γo d lnχo∗nt − γo d ln zont] ,

which has the matrix representation:

d lnχ∗ = d lnw∗ − S ( d lnw∗ − (I − µ) d lnχ∗ − d lnz) , (S.4.218)

where d lnχ∗ and d lnw∗ areNJ×NJ matrices; λ is aNJ×NJ diagonal matrix whose (ij)-th
element on the diagonal is λj ; and S is a NJ ×NJ matrix with elements:

Sjnit =
N∑
n=1

J∑
o=1

N∑
m=1

J∑
h=1

Γhomnγ
o.
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Goods Market Clearing. Recall that the total derivative of the expenditure share in equation

(S.4.210) is:

d lnSjnmt = θ

[
N∑
h=1

Sjnht

N∑
g=1

J∑
o=1

Γjohg −
N∑
g=1

J∑
o=1

Γjomg

] [
γo d lnwogt − (1− µo) γo d lnχogt − γo d ln zogt

]
,

where we have used d ln τ jnit = 0. We can re-write this total derivative of the expenditure share

as:

d lnSjnmt = θ

[
N∑
h=1

Sjnht

N∑
g=1

J∑
o=1

Λjohg −
N∑
g=1

J∑
o=1

Λjomg

] [
d lnwogt − (1− µo) d lnχogt − d ln zogt

]
,

where Λjo
hg ≡ γoΓjohg.

Recall that the total derivative of the goods market clearing condition is:

d lnwjit + d ln `jit = ξji

N∑
m=1

J∑
o=1

∆jo
im

[ ∑N
n=1

∑J
h=1 ϑ

oh
mn

(
d lnwhnt + d ln `hnt

)
+
∑N

n=1

[
ϑomn +

∑J
h=1 Θoh

mn

]
d lnSonmt

]
.

Using this expression for the total derivative of the expenditure share in the total derivative of

the goods market clearing condition in equation (S.4.213), we obtain:

d lnwjit + d ln `jit =


ξji
∑N

m=1

∑J
o=1 ∆jo

im

∑N
n=1

∑J
h=1 ϑ

oh
mn

(
d lnwhnt + d ln `hnt

)
+


ξji
∑N

m=1

∑J
o=1 ∆jo

imθ
∑N

n=1

[
ϑomn +

∑J
h=1 Θoh

mn

]
×
∑N

g=1

[∑N
h=1 S

j
nht

∑J
o=1 Λjo

hg −
∑J

o=1 Λjo
mg

]
×
[

d lnwogt − (1− µo) d lnχogt
− d ln zogt

]


 .

To simplify notation, we de�ne Πjo
im ≡ ξji∆

jo
im as the network-adjusted share of income in sec-

tor j in location i derived from selling to sector o in location m. We also de�ne Υj
nmg ≡∑N

h=1 S
j
nht

∑J
o=1 Λjo

hg−
∑J

o=1 Λjo
mg as the elasticity of location n’s expenditure in sector j on goods

from location i with respect to the price of goods in that sector from location m. Using this no-

tation, we can re-write the above goods market clearing condition as:

d lnwjit + d ln `jit =


∑N

n=1

∑N
m=1

∑J
o=1

∑J
h=1 Πjo

imϑ
oh
mn

(
d lnwhnt + d ln `hnt

)
+

{
θ
∑N

n=1

∑N
m=1

∑J
o=1

∑N
g=1 Πjo

im

[
ϑomn +

∑J
h=1 Θoh

mn

]
×Υj

nmg

[
d lnwogt − (1− µo) d lnχogt − d ln zogt

] }  .
We can write this goods market clearing condition in matrix form as:

d lnwt + d ln `t = T ( d lnwt + d ln `t) + θM ( d lnwt − (I − µ) d lnχt − d lnz) ,

where these matrices have NJ × NJ elements. In particular, T is a NJ × NJ matrix with

elements:

Tin =
N∑
m=1

J∑
o=1

J∑
h=1

Πjo
imϑ

oh
mn,
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andM is a NJ ×NJ matrix with elements:

Min =
N∑
m=1

J∑
o=1

N∑
g=1

Πjo
im

[
ϑomn +

J∑
h=1

Θoh
mn

]
Υj
nmg.

In steady-state we have:

d lnw∗ + d ln `∗ = T ( d lnw∗ + d ln `∗) + θM ( d lnw∗ − (I − µ) d lnχ∗ − d lnz) . (S.4.219)

Population Flow. The total derivative of the population �ow condition (S.4.214) has the fol-

lowing matrix representation:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1,

where these matrices again have NJ ×NJ elements. In steady-state, we have:

d ln `∗ =
β

ρ
(I −E)−1 (I −ED) dv∗. (S.4.220)

Value function. Recall from equation (S.4.216) that the total derivative of the value function

is given by:

dvj,wit =

 d lnwjit −
∑N
n=1

∑J
h=1

∑N
m=1

∑J
o=1 ψ

oSoimtΓ
oh
mz

[
γh d lnwhnt

−
(
1− µh

)
γh d lnχhnt − γh d ln zhnt

]
+ d ln bjit +

∑N
n=1

∑J
h=1D

jh
intβEt dvhnt+1

 ,
where we have used d ln τ jnit = 0 and d lnκhjmit = 0. This total derivative of the value function

has the following matrix representation:

dvt = d lnwt − S [ d lnwt − (I − µ) d lnχt − d lnz] + d ln b+ βDEt dvt+1,

where these matrices again have NJ ×NJ elements. Recall that the matrix S has elements Sjint
given by:

Sjint =
J∑
h=1

N∑
m=1

J∑
o=1

ψoSo∗imΓohmnγ
h.

The matrixD has elements Dj
nit given by:

Dj
int =

J∑
h=1

Djh
int.

In steady-state, this total derivative of the value function becomes:

dv∗ = (I − βD)−1 [(I − S) d lnw∗ + S ( d ln z + (I − µ) d lnχ∗) + d ln b] . (S.4.221)
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System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = (I − S) d lnw∗ + S (I − µ) d lnχ∗ + S d lnz. (S.4.222)

d lnw∗ + d ln `∗ = T ( d lnw∗ + d ln `∗) + θM ( d lnw∗ − (I − µ) d lnχ∗ − d lnz) . (S.4.223)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (S.4.224)

dv∗ = (I − βD)
−1

[(I − S) d lnw∗ + S ( d ln z + (I − µ) d lnχ∗) + d ln b] . (S.4.225)

S.4.5.9 Transition Dynamics

Suppose that the economy starts from an initial steady-state. Consider a small common shock to

productivity across sectors ( d lnz) and amenities across sectors ( d ln b) in each location, holding

constant the economy’s aggregate labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and

commuting costs ( d lnκ = 0). We use a tilde above a variable to denote a log deviation from the

initial steady-state, such that
˜̀
it = `it − `∗i , for all variables except for the worker value function

vit, where with a slight abuse of notation we use ṽit = vit − v∗i to denote the deviation in levels

for the worker value function.

Capital Accumulation. From the capital accumulation equation (S.4.201), we have:

kjit+1 = β
rjit
pit
kjit + β

(
1− δj

)
kjit.

From the relationship between labor and capital payments, we have:

rjit
pit
kjit =

1− µj

µj
wjit`

j
it

pit
.

Using this result in the capital accumulation equation above, we have:

kjit+1 = β
(
1− δj

)
kit + β

1− µj

µj
wjit`

j
it

pit
,

kjit+1

`jit+1

`jit+1

`jit
= β

(
1− δj

) kjit
`jit

+ β
1− µj

µj
wjit
pit
,

χjit+1

`jit+1

`jit
= β

(
1− δj

)
χjit + β

1− µj

µj
wjit
pit
, (S.4.226)

while in steady-state we have:

kj∗i
`j∗i

= β
(
1− δj

) kj∗i
`j∗i

+ β
1− µj

µj
wj∗i
p∗i
,

χj∗i = β
(
1− δj

)
χj∗i + β

1− µj

µj
wj∗i
p∗i
.
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χj∗i =
β

(1− β (1− δj))
1− µj

µj
wj∗i
p∗i
. (S.4.227)

Dividing both sides of equation (S.4.226) by χj∗i , we have:

χjit+1

χj∗i

`jit+1

`jit
= β

(
1− δj

) χjit
χj∗i

+
β

χj∗i

1− µj

µj
wjit
pjit
,

which using (S.4.227) can be re-written as:

χjit+1

χj∗i

`jit+1

`jit
= β

(
1− δj

) χjit
χj∗i

+
(
1− β

(
1− δj

)) wjit/wj∗i
pit/p∗i

,

which can be further re-written as:

χjit+1

χj∗i

`jit+1

`jit
− 1 = β

(
1− δj

) χjit
χj∗i

+
(
1− β

(
1− δj

)) wjit/wj∗i
pit/p∗i

− 1,

χjit+1

χj∗i

`jit+1

`jit
− 1 = β

(
1− δj

)( χjit
χj∗i
− 1

)
+
(
1− β

(
1− δj

))(wjit/wj∗i
pit/p∗i

− 1

)
.

Noting that:

xit
x∗i
− 1 ' ln

(
xit
x∗i

)
,

χjit+1

χj∗i

`jit+1

`jit
− 1 ' ln

(
χjit+1

χj∗i

`jit+1

`jit

)
,

we have:

ln

(
χjit+1

χj∗i

)
+ ln

(
`jit+1

`jit

)
= β

(
1− δj

)
ln

(
χjit
χj∗i

)
+
(
1− β

(
1− δj

))
ln

(
wjit/w

j∗
i

pit/p∗i

)
,

ln

(
χjit+1

χj∗i

)
+ ln

(
`jit+1/`

j∗
i

`jit/`
j∗
i

)
= β

(
1− δj

)
ln

(
χjit
χj∗i

)
+
(
1− β

(
1− δj

))
ln

(
wjit/w

j∗
i

pit/p∗i

)
,

which can be re-written as follows:

χ̃jit+1 = β
(
1− δj

)
χ̃jit +

(
1− β

(
1− δj

)) (
w̃jit − p̃it

)
− ˜̀jit+1 + ˜̀jit.

We can rewrite this relationship in matrix form as:

χ̃t+1 = β (I − δ) χ̃t + (I − β (I − δ)) (w̃t − p̃t)− ˜̀t+1 + ˜̀
t,

where these matrices have NJ × NJ elements. Following an analogous analysis as for steady-

state above, the total derivative of real income relative to the initial steady-state can be written

in matrix form as:

w̃t − p̃t = (I − S) w̃t + S (I − µ) χ̃t + Sz̃,

where we have used d ln τ̃ = 0. Using this result in our expression for the dynamics of the

capital-labor ratio above, we have:

χ̃t+1 =

[
[β (I − δ) + (I − β (I − δ))S] [(I − µ) χ̃t + Sz̃]

+ (I − β (I − δ)) (I − S) w̃t − ˜̀t+1 + ˜̀
t

]
. (S.4.228)
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Goods Market Clearing. Following an analogous analysis as for steady-state above, the total

derivative of the goods market clearing condition can be written in matrix form as:

w̃t + ˜̀
t = T

(
w̃t + ˜̀

t

)
+ θM (w̃t − (I − µ) χ̃t − z̃) ,

where these matrices have NJ × NJ elements and we have used d ln τ̃ = 0. This expression

can be re-written as:

w̃t = [I − T − θM ]−1
[
− (I − T ) ˜̀t − θM [(I − µ) χ̃t + z̃]

]
. (S.4.229)

Population Flow. The total derivative of the population �ow condition (S.4.214) relative to the

initial steady-state has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1, (S.4.230)

where again these matrices have NJ ×NJ elements.

Value function. Following an analogous analysis as for steady-state above, the total derivative

of the value function relative to the initial steady-state can be written in matrix form as:

ṽt = (I − S) w̃t + S [(I − µ) χ̃t + z̃] + b̃+ βDEtṽt+1, (S.4.231)

where again these matrices haveNJ×NJ elements and we have used d ln τ = 0 and d lnκ = 0.

System of Equations for Transition Dynamics. Collecting together the system of equations

for the transition dynamics, we have:

χ̃t+1 =

[
[β (I − δ) I + (I − β (I − δ))S] [(I − µ) χ̃t + z̃]

+ (I − β (I − δ)) (I − S) w̃t − ˜̀t+1 + ˜̀
t

]
. (S.4.232)

w̃t = [I − T − θM ]−1
[
− (I − T ) ˜̀t − θM [(I − µ) χ̃t + z̃]

]
. (S.4.233)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.4.234)

ṽt = (I − S) w̃t + S [(I − µ) χ̃t + z̃] + b̃+ βDEtṽt+1. (S.4.235)

S.4.6 Trade De�cits
In this section of the Online Supplement, we consider an extension of our baseline model in

Section 2 of the paper to allow for trade de�cits. As the model does not generate predictions for

how trade imbalances respond to shocks, we follow the standard approach in the quantitative

international trade literature of treating these imbalances as exogenous. We apportion these

trade de�cits fully to worker income, assuming that expenditure equals income for landlords. In

particular, we allow the ratio of per capita expenditure to per capita income (dnt) for workers to

di�er exogenously across locations and over time. When workers choose whether to move to a

location, they take into account not only the labor income in that region but also this exogenous

ratio of expenditure to income, which corresponds to a transfer to workers by location.
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S.4.6.1 General Equilibrium

Given the state variables {`i0, ki0} and a path for the ratio of expenditure to income {dit}, the

general equilibrium of the economy is the path of allocations and prices such that �rms in each

location choose inputs to maximize pro�ts, workers make consumption and migration decisions

to maximize utility, landlords make consumption and investment decisions to maximize utility,

and prices clear all markets. For expositional clarity, we collect the equilibrium conditions and

express them in terms of a sequence of four endogenous variables {`it, kit, wit, vit}∞t=0. All other

endogenous variables of the model can be recovered as a function of these variables. The con-

ditions for general equilibrium take a similar form as in our baseline model in Section 2 of the

paper.

Capital Accumulation: Using capital market clearing from equation (11) in the paper, the

price index from equation in the paper (4) and the equilibrium pricing rule from equation (2) in

the paper, and assuming logarithmic intertemporal utility for simplicity, the capital accumulation

equation becomes:

kit+1 = β
1− µ
µ

wit
pit
`it + β (1− δ) kit. (S.4.236)

pnt =

 N∑
i=1

(
wit

(
1− µ
µ

)1−µ

(`it/kit)
1−µ τni/zi

)−θ−1/θ

. (S.4.237)

Goods Market Clearing: Using the equilibrium pricing rule (2) in the paper, the expenditure

share (13) in the paper and the relationship between factor payments from equation (11) in the

paper, the goods market clearing condition with trade de�cits can be written as:

wit`it =
N∑
n=1

Snitdntwnt`nt, (S.4.238)

Snit =

(
wit (`it/kit)

1−µ τni/zi
)−θ∑N

m=1

(
wmt (`mt/kmt)

1−µ τnm/zm
)−θ , Tint ≡

Snitwnt`nt
wit`it

,

where Snit is the expenditure share of importer n on exporter i at time t, and we have de�ned

Tint as the corresponding income share of exporter i from importer n at time t. Note that the

order of subscripts switches between the expenditure share (Snit) and the income share (Tint),
because the �rst and second subscripts will correspond below to rows and columns of a matrix,

respectively.

Population Flow: Using the out-migration probabilities, the population �ow condition for the

evolution of the population distribution over time is given by:

`gt+1 =
N∑
i=1

Digt`it, (S.4.239)
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Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κmit

)1/ρ
, Egit ≡

`itDigt

`gt+1

,

where Digt is the out-migration probability from location i to location g between time t and

t+ 1, and we have de�ned Egit as the corresponding in-migration probability to location g from

location i between time t and t + 1. Note that the order of subscripts switches between the out-

migration probability (Digt) and the inmigration probability (Egit), because the �rst and second

subscripts will correspond below to rows and columns of a matrix, respectively.

Worker Value Function: Using the worker indirect utility function from equation (4) in the

paper in the value function from equation (7), the expected value from living in location n at time

t can be written as:

vwnt = ln bnt + ln

(
dntwnt
pnt

)
+ ρ ln

N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgnt

)1/ρ
. (S.4.240)

S.4.6.2 Comparative Statics

We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics. In the interests of brevity, we focus on rela-

tionships that di�er from the baseline model in Section 2 of the paper.

Real Expenditure. Totally di�erentiating real expenditure we have:

d ln

(
ditwit
pit

)
= d ln dit + d lnwit − d ln pit,

d ln

(
ditwit
pit

)
=

[
d ln dit + d lnwit

−
∑N
m=1 Snmt [ d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt]

]
. (S.4.241)

Goods Market Clearing Totally di�erentiating the goods market clearing condition in equa-

tion (12) in the paper, we have:

dwit
wit

+
d`it
`it

=
N∑
n=1

Snitdntwnt`nt
wit`it

(
ddnt
dnt

+
dwnt
wnt

+
d`nt
`nt

+ θ

(
N∑
h=1

Snht
dpnht
pnht

− dpnit
pnit

))
,

dwit
wit

+
d`it
`it

=
N∑
n=1

Tint

(
ddnt
dnt

+
dwnt
wnt

+
d`nt
`nt

+ θ

(∑
h∈N

Snht
dpnht
pnht

− dpnit
pnit

))
,

Tint =
Snitdntwnt`nt

wit`it
,

[
d lnwit

+ d ln `it

]
=

 ∑N
n=1 Tint ( d ln dnt + d lnwnt + d ln `nt)

+θ
∑N
n=1

∑N
m=1 TintSnmt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

−θ
∑N
n=1 Tint ( d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit)

 . (S.4.242)
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Value Function. Note that the value function can be re-written using the following results:

vit = ln

 ditwit[∑N
m=1 p

−θ
imt

]−1/θ

+ ln bit + ρ ln
N∑
g=1

(exp (βEtvgt+1) /κgit)
1/ρ ,

[
N∑
m=1

p−θimt

]−1/θ

=

(
p−θiit
Siit

)−1/θ

, τiit = 1,

N∑
g=1

(exp (βEtvgt+1) /κgit)
1/ρ =

(exp (βEtvit+1) /κiit)
1/ρ

Diit

, κiit = 1,

vit = −1

θ
lnSiit + ln dit + lnwit − ln piit + ln bit + βEtvit+1 − ρ lnDiit. (S.4.243)

Totally di�erentiating this expression for the value function, we have:

dvit = −1

θ
d lnSiit + d ln dit + d lnwit − d ln piit + d ln bit + βEt dvit+1 − ρ d lnDiit,

where

d lnSiit = −θ d ln piit + θ

[
N∑
m=1

Simt d ln pimt

]
,

d lnDiit =
1

ρ

[
βEt dvit+1 − d lnκiit −

N∑
m=1

Dimt (βEtvmt+1 − d lnκmit)

]
.

Using these results for d lnSiit and d lnDiit in the expression for dvit above, we have:

dvit =

[
d ln dit + d lnwit −

∑N
m=1 Simt d ln pimt

+ d ln bit +
∑N

m=1Dimt (βEt dvmt+1 − d lnκmit)

]
,

where we have used d lnκiit = 0. Using the pricing rule, we can re-write this derivative of the

value function as follows:

dvit =

[
d ln dit + d lnwit −

∑N
m=1 Simt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

+ d ln bit +
∑N
m=1Dimt (βEt dvmt+1 − d lnκmit)

]
. (S.4.244)

S.4.6.3 Steady-State Su�cient Statistics

Suppose that the economy starts from an initial steady-state with constant fundamentals {zi, bi,
di, τni, κni} and constant values of the endogenous variables: kjit+1 = kjit = kj∗i , `jit+1 = `jit =

`j∗i , wjit+1 = wjit = wj∗i and vjit+1 = vjit = vj∗i , where we use an asterisk to denote a steady-

state value. We consider a small common shock to productivity across sectors ( d lnz), amenities

across sectors ( d ln b) and trade de�cits across sectors ( d lnd) in each location, holding constant

the economy’s aggregate labor endowment ( d ln `), trade costs ( d ln τ ) and commuting costs

( d lnκ = 0).
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Capital Accumulation. From the capital accumulation equation in equation (11) in the paper,

the steady-state stock of capital solves:

(1− β (1− δ))χ∗i = (1− β (1− δ)) k
∗
i

`∗i
= β

1− µ
µ

w∗i
p∗i
.

Totally di�erentiating, we have:

d lnχ∗i = d ln

(
w∗i
p∗i

)
.

Using the total derivative of real income, this becomes:

d lnχ∗i = d lnw∗i −
N∑
m=1

S∗im [ d lnw∗m − (1− µ) d lnχ∗m − d ln zm] ,

where we have used and d ln τnm = 0. This relationship has the matrix representation:

d lnχ∗ = d lnw∗ − S d lnw∗ + (1− µ)S d lnχ∗ + S d lnz,

(I − (1− µ)S) d lnχ∗ = (I − S) d lnw∗ + S d lnz. (S.4.245)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.242)

has the following matrix representation:

d lnwt + d ln `t =

[
T ( d lnd+ d lnwt + d ln `t)

+θ (TS − I) ( d lnwt − (1− µ) d lnχt − d lnz)

]
,

where we have used d ln τ = 0. We can re-write this relationship as:

[I − T + θ (I − TS)] d lnwt =

[
T d lnd− (I − T ) d ln `t

+θ (I − TS) ( d ln z + (1− µ) d lnχt)

]
.

In steady-state we have:

[I − T + θ (I − TS)] d lnw∗ =

[
T d lnd− (I − T ) d ln `∗

+θ (I − TS) ( d ln z + (1− µ) d lnχ∗)

]
. (S.4.246)

Population Flow. The total derivative of the population �ow condition has the same matrix

representation as in our baseline model:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1.

In steady-state, we have:

d ln `∗ = E d ln `∗ +
β

ρ
(I −ED) dv∗. (S.4.247)
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Value function. The total derivative of the value function (S.4.244) has the following matrix

representation:

dvt =

[
d lnd+ (I − S) d lnwt

+S ( d ln z + (1− µ) d lnχt) + d ln b+ βDEt dvt+1

]
,

where we have used d ln τ = d lnκ = 0. In steady-state, we have:

dv∗ =

[
d lnd+ (I − S) d lnw∗

+S ( d ln z + (1− µ) d lnχ∗) + d ln b+ βD dv∗

]
. (S.4.248)

System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = [I − (1− µ)S]−1 [(I − S) d lnw∗ + S d lnz] . (S.4.249)

d lnw∗ = [I − T + θ (I − TS)]−1

[
T d lnd− (I − T ) d ln `∗

+ (I − TS) θ ( d ln z + (1− µ) d lnχ∗)

]
. (S.4.250)

d ln `∗ =
β

ρ
(I −E)−1 (I −ED) dv∗. (S.4.251)

dv∗ = [I − βD]−1

[
d lnd+ d lnw∗

−S ( d lnw∗ − d lnz − (1− µ) d lnχ∗) + d ln b

]
. (S.4.252)

As the expenditure shares (S) and income shares (T ) are homogeneous of degree zero in factor

prices, we require a numeraire in order for solve for changes in wages. We choose the total income

of all locations as our numeraire (

∑N
i=1w

∗
i `
∗
i =

∑N
i=1 q

∗
i = q = 1), which implies that the log

changes in incomes satisfy q∗ d ln q∗ =
∑N

i=1 q
∗
i d ln q∗i =

∑N
i=1 q

∗
i

dq∗i
q∗i

=
∑N

i=1 dq∗i = 0, where

q∗ is a row vector of the steady-state income of each location. Similarly, the outmigration shares

(D) and inmigration shares (E) are homogeneous of degree zero in the total population of all

locations, which requires a choice of units to solve for population levels. We solve for population

shares, imposing the requirement that the population shares sum to one:

∑N
i=1 `i = ` = 1, which

implies `∗ d ln `∗ =
∑N

i=1 `
∗
i d ln `∗i =

∑N
i=1 `

∗
i

d`∗i
`∗i

=
∑N

i=1 d`∗i = 0, where `∗ is a row vector of

the steady-state population of each location.

In the interest of brevity, we focus above on deriving su�cient statistics for changes in steady-

states in the presence of trade de�cits. Nevertheless, analogous su�cient statistics results for

transition paths can be derived in the presence of trade de�cits, as in our baseline model in Section

2 of the paper.

S.4.7 Residential Capital (Housing)
In this section of the Online Supplement, we consider an extension of our baseline model in Sec-

tion 2 of the paper to allow capital to be used residentially as well as commercially. We consider

an economy that consists of many locations indexed by i ∈ {1, . . . , N}. Time is discrete and is

indexed by t. The economy consists of two types of in�nitely-lived agents: workers and land-

lords. Both workers and landlords have the same �ow preferences, which are modeled as in the

standard Armington model of international trade. Workers are endowed with one unit of labor
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that is supplied inelasticity and are geographically mobile across locations subject to bilateral mi-

gration costs. Workers do not have access to an investment technology and live hand to mouth as

in Kaplan and Violante (2014). Landlords are geographically immobile and own the capital stock

in their location. They make a forward-looking decision over consumption and investment in

this local stock of capital. We assume that capital is geographically immobile once installed and

depreciates gradually at a constant rate δ.

S.4.7.1 Worker Migration Decisions

Worker migration decisions are modeled as in our baseline model in Section 2 of the paper. The

expected value for a worker of living in location i at time t (vwit ) is:

vwit = lnuwit + ρ log
N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ
. (S.4.253)

The probability of migrating from location i to location g is:

Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κkit

)1/ρ
. (S.4.254)

S.4.7.2 Worker Consumption

As workers do not have access to an investment technology, they choose their consumption of

varieties each period to maximize their �ow utility in the location in which they have chosen to

live in that period. Worker static utility depends on local amenities (bnt), goods consumption (cwnt)
and residential use of capital (kwnt):

lnunt = ln bnt + α ln cwnt + (1− α) ln kwnt, 0 < α < 1, (S.4.255)

where cwnt is a consumption index for workers in location n de�ned over the consumption of the

variety supplied by each location i (cwnit):

cwnt =

[
N∑
i=1

(cwni)
θ
θ+1

] θ+1
θ

, θ = σ − 1, σ > 1, (S.4.256)

where σ > 1 is the constant elasticity of substitution (CES) between varieties and θ = σ − 1 is

the trade elasticity. Amenities (bnt) capture exogenous characteristics of a location that make it a

more attractive place to live regardless of the wage and cost of consumption goods (e.g., climate

and scenic views).

The corresponding worker indirect utility function depends on amenities (bnt), the wage (wnt),
the rental rate for capital (rnt) and the consumption goods price index (pnt):

lnunt = ln bnt + lnwnt − α ln pnt − (1− α) ln rnt, (S.4.257)

where the consumption goods price index (pnt) in location n depends of the price of the variety

sourced from each location i (pnit):

pnt =

[
N∑
i=1

p−θnit

]−1/θ

. (S.4.258)
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From the �rst-order conditions for worker utility maximization, total worker payments for goods

consumption and residential capital use are constant multiples of total worker income:

pntcnt = αwnt`nt, (S.4.259)

rntk
w
nt = (1− α)wnt`nt. (S.4.260)

Using constant elasticity of substitution (CES) demand for individual varieties of goods, the share

location n’s expenditure on the goods produced by location i is:

Snit ≡
p−θnit∑N

m=1 p
−θ
nmt

. (S.4.261)

S.4.7.3 Production

Producers in each location use labor (`it) and commercial capital (kyit) to produce output (yit) of

the variety supplied by that location. Production is assumed to occur under conditions of perfect

competition and subject to the following constant returns to scale technology:

yit = zit

(
`it
µ

)µ(
kyit

1− µ

)1−µ

, 0 < µ < 1, (S.4.262)

where zit denotes exogenous productivity in location i at time t.
We assume that trade between locations is subject to iceberg variable costs of trade, such that

τnit ≥ 1 units of a good must be shipped from location i in order for one unit to arrive in location

n, where τnit > 1 for n 6= i and τiit = 1. From pro�t maximization, the cost to a consumer in

location n of sourcing the good produced by location i is:

pnit = τnitpiit =
τnitw

µ
itr

1−µ
it

zit
, (S.4.263)

where piit is the “free on board” price of the good supplied by location i before trade costs.

From pro�t maximization problem and zero pro�ts, total payments to each factor of produc-

tion are a constant share of total revenue:

wit`it = µpityit, (S.4.264)

ritk
y
it = (1− µ) pityit. (S.4.265)

S.4.7.4 Landlord Consumption

Landlords in each location choose their consumption and investment in capital to maximize their

intertemporal utility subject to their intertemporal budget constraint. Landlords’ intertemporal

utility equals the present discounted value of their �ow utility, which we assume for simplicity

takes the same logarithmic form as for workers:

vkit =
∞∑
t=0

βt
[
α ln ckit + (1− α) ln kkit

]
, (S.4.266)
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where ckit is a consumption index de�ned over the consumption of the good supplied by each

location (ckimt) as in equation (S.4.256); kknt denotes is landlords’ residential use of capital; and β
denotes the discount rate.

We assume that the investment technology for capital in each location uses the varieties from

all locations with the same functional form as consumption. In particular, landlords in a given

location can produce one unit of capital in that location using one unit of the consumption index

in that location. We assume that capital is geographically immobile once installed and depre-

ciates at a constant rate δ. The intertemporal budget constraint for landlords in each location

requires that total income from the existing stock of capital (ritkit) equals the total value of goods

consumption (pitc
k
it), residential capital use (ritk

k
it), and net investment (pit (kit+1 − (1− δ) kit)):

ritkit = pitc
k
it + ritk

k
it + pit (kit+1 − (1− δ) kit) . (S.4.267)

Combining the landlords intertemporal utility (S.4.266) and budget constraint (S.4.267), the

landlord’s intertemporal optimization problem is:

max
{ct,kkt+1}

∞∑
t=0

βt
[
α ln ckit + (1− α) ln kkit

]
, (S.4.268)

subject to pitc
k
it + pit (kit+1 − (1− δ) kit) = rit

(
kit − kkit

)
.

We can write this problem as the following Lagrangian:

L =

∞∑
t=0

βt
[
α ln ckit + (1− α) ln kkit

]
− ξt

[
pitc

k
it + pit (kit+1 − (1− δ) kit)− rit

(
kit − kkit

)]
. (S.4.269)

The �rst-order conditions are:

{cit} α
βt

cit
− pitξt = 0,

{kit+1} (rit+1 + pit+1 (1− δ)) ξt+1 − pitξt = 0,{
kkit
}

(1− α)
βt

kkit
− ritξt = 0.

Together these �rst-order conditions imply:

cit+1

cit
= β

pitµt
pit+1µt+1

= β (rit+1/pit+1 + (1− δ)) , (S.4.270)

ritk
k
it

pitcit
=

1− α
α

, (S.4.271)

where the transversality condition implies:

lim
t→∞

βt
kit+1

cit
= 0.
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Our assumption of logarithmic �ow utility and the property that the intertemporal budget

constraint is linear in the stock of capital together imply that landlords’ optimal consumption-

saving decision involves a constant saving rate, as in Moll (2014). We conjecture the following

policy functions:

pitc
k
it = α (1− β) (rit + pit (1− δ)) kit, (S.4.272)

ritk
k
it = (1− α) (1− β) (rit + pit (1− δ)) kit, (S.4.273)

kit+1 = β (rit/pit + (1− δ)) kit. (S.4.274)

Substituting the consumption policy function (S.4.272) into the Euler equation (S.4.270), we con-

�rm that these conjectured policy functions are indeed the optimal consumption-savings choice:

ckit+1

ckit
=

(rit+1/pit+1 + (1− δ)) kit+1

(rit/pit + (1− δ)) kit
,

= β (rit+1/pit+1 + (1− δ)) .

S.4.7.5 Market Clearing

Goods market clearing implies that revenue in each location equals expenditure on the goods

produced by that location:

pityit = α
N∑
n=1

Snit (wnt`nt + rntknt) ,

wit`it + ritk
y
it = α

N∑
n=1

Snit (wnt`nt + rntknt) ,

wit`it +
1− µ
µ

wit`it = α
N∑
n=1

Snit (wnt`nt + rntknt) ,

wit`it +
1− µ
µ

wit`it = α

N∑
n=1

Snit

(
wnt`nt +

(
1− α
α

+
1− µ
αµ

)
wnt`nt

)
,

wit`it +
1− µ
µ

wit`it =
N∑
n=1

Snit

(
αwnt`nt +

(
(1− α) +

1− µ
µ

)
wnt`nt

)
,

1

µ
wit`it =

αµ+ (1− α)µ+ (1− µ)

µ

N∑
n=1

Snitwnt`nt,

1

µ
wit`it =

1

µ

N∑
n=1

Snitwnt`nt,

wit`it =
N∑
n=1

Snitwnt`nt. (S.4.275)
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The capital market clearing condition equates the income received by landlords from ownership

of capital to payments for the residential and commercial use of capital. Using workers’ expen-

diture on residential capital (S.4.260), payments for labor (S.4.264) and capital (S.4.265) in pro-

duction, and landlords’ expenditure on residential capital (S.4.271), this capital market clearing

condition can be expressed as:

ritkit = ritk
k
it + ritk

w
it + ritk

y
it,

ritkit = (1− α) ritkit + (1− α)wit`it +
1− µ
µ

wit`it

ritkit =

(
1− α
α

+
1− µ
αµ

)
wit`it. (S.4.276)

S.4.7.6 General Equilibrium

Given the state variables {`i0, ki0}, the general equilibrium of the economy is the path of alloca-

tions and prices such that �rms in each location choose inputs to maximize pro�ts, workers make

consumption and migration decisions to maximize utility, landlords make consumption and in-

vestment decisions to maximize utility, and prices clear all markets. For expositional clarity, we

collect the equilibrium conditions and express them in terms of a sequence of four endogenous

variables {`it, kit, wit, vit}∞t=0. All other endogenous variables of the model can be recovered as a

function of these variables.

Capital Accumulation: Using capital market clearing (S.4.276), the price index (S.4.258) and

the equilibrium pricing rule (S.4.263), the capital accumulation equation (S.4.274) becomes:

kit+1 = β

(
1− α
α

+
1− µ
αµ

)
wit
pit
`it + β (1− δ) kit, (S.4.277)

pnt =

 N∑
i=1

(
wit

(
1− µ
µ

)1−µ

(`it/kit)
1−µ τnit/zit

)−θ−1/θ

.

Goods Market Clearing: Using the equilibrium pricing rule (S.4.263), the expenditure share

(S.4.261) and capital market clearing (S.4.276), the goods market clearing condition (S.4.275) can

be written as:

wit`it =
N∑
n=1

Snitwnt`nt. (S.4.278)

Snit ≡
p−θnit∑N

m=1 p
−θ
nmt

, Tint ≡
Snitwnt`nt
wit`it

,

where Snit is the expenditure share of importer n on exporter i at time t, and we have de�ned

Tint as the corresponding income share of exporter i from importer n at time t. Note that the

order of subscripts switches between the expenditure share (Snit) and the income share (Tint),
because the �rst and second subscripts will correspond below to rows and columns of a matrix,

respectively.
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Population Flow: Using the outmigration probabilities (S.4.254), the population �ow condition

for the evolution of the population distribution over time is given by:

`gt+1 =
N∑
i=1

Digt`it, (S.4.279)

Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κkit

)1/ρ
, Egit ≡

`itDigt

`gt+1

,

where Digt is the outmigration probability from location i to location g between time t and time

t + 1, and we have de�ned Egit as the corresponding inmigration probability to location g from

location i between time t and t + 1. Note that the order of subscripts switches between the out-

migration probability (Digt) and the inmigration probability (Egit), because the �rst and second

subscripts will correspond below to rows and columns of a matrix, respectively.

Worker Value Function: Using the worker indirect utility function (S.4.255) in the value func-

tion (S.4.253), the expected value from living in location n at time t can be written as:

vwit = ln bnt + ln

 wαnt

pαnt

((
1−α
α

+ 1−µ
αµ

)
`nt
knt

)1−α

+ ρ log
N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ
.

S.4.7.7 Comparative Statics

We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics for changes in steady-state and the entire tran-

sition path.

Prices Using the relationship between capital and labor payments (S.4.276), the pricing rule

(S.4.263) can be re-written as follows:

pnit =
τnitwit

(
1−α
α

+ 1−µ
αµ

)1−µ (
1
χit

)1−µ

zit
, (S.4.280)

where χit is the capital-labor ratio:

χit ≡
kit
`it
.

Totally di�erentiating this pricing rule, we have:

d ln pnit = d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit. (S.4.281)

Expenditure Shares Totally di�erentiating this expenditure share equation (S.4.261), we get:

d lnSnit = θ

(
N∑
h=1

Snht d ln pnht − d ln pnit

)
. (S.4.282)
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Price Indices Totally di�erentiating the consumption goods price index in equation (S.4.258),

we have:

d ln pnt =
N∑
m=1

Snmt d ln pnmt. (S.4.283)

Migration Shares Totally di�erentiating the outmigration share in equation (S.4.254), we get:

d lnDigt =
1

ρ

[
(βEt dvgt+1 − d lnκgit)−

N∑
h=1

Diht (βEt dvht+1 − d lnκhit)

]
. (S.4.284)

Real Income Totally di�erentiating real income we have:

d ln

(
wit
pit

)
= d lnwit − d ln pit,

d ln

(
wit
pit

)
= d lnwit −

N∑
m=1

Snmt d ln pnmt,

d ln

(
wit
pit

)
= d lnwit −

N∑
m=1

Snmt [ d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt] . (S.4.285)

Goods Market Clearing Totally di�erentiating the goods market clearing condition (S.4.275),

we have:

dwit
wit

+
d`it
`it

=
N∑
n=1

Snitwnt`nt
wit`it

(
dwnt
wnt

+
d`nt
`nt

+
dSnit
Snit

)
.

Using our result for the derivative of expenditure shares in equation (S.4.282) above, we can

rewrite this as:

dwit
wit

+
d`it
`it

=
N∑
n=1

Tint

(
dwnt
wnt

+
d`nt
`nt

+ θ

(∑
h∈N

Snht
dpnht
pnht

− dpnit
pnit

))
,

Tint ≡
Snitwnt`nt
wit`it

,

d lnwit + d ln `it =

 ∑N
n=1 Tint ( d lnwnt + d ln `nt)

+θ
∑N
n=1

∑N
m=1 TintSnmt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

−θ
∑N
n=1 Tint ( d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit)

 . (S.4.286)

Population Flow. Totally di�erentiating the population �ow condition (S.4.279) we have:

`gt+1 =
N∑
i=1

Digt`it,

d ln `gt+1 =

N∑
i=1

Egit

[
d ln `it +

1

ρ

(
βEt dvgt+1 − d lnκgi −

N∑
m=1

Dimt (βEt dvmt+1 − d lnκmit)

)]
. (S.4.287)
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Value Function. Note that the value function can be re-written using the following results:

vit = ln
wit[∑N

m=1 p
−θ
imt

]−1/θ
+ ln bit + ρ ln

N∑
g=1

(exp (βEtvgt+1) /κgit)
1/ρ ,

[
N∑
m=1

p−θimt

]−1/θ

=

(
p−θiit
Siit

)−1/θ

, τiit = 1,

N∑
g=1

(exp (βEtvgt+1) /κgit)
1/ρ =

(exp (βEtvit+1) /κiit)
1/ρ

Diit

, κiit = 1,

vit = −1

θ
lnSiit + lnwit − ln piit + ln bit + βEtvit+1 − ρ lnDiit. (S.4.288)

Totally di�erentiating this value function (S.4.288) we have:

dvit = −1

θ
d lnSiit + d lnwit − d ln piit + d ln bit + βEt dvit+1 − ρ d lnDiit,

d lnSiit = −θ d ln piit + θ

[
N∑
m=1

Simt d ln pimt

]
,

d lnDiit =
1

ρ

[
βEt dvit+1 − d lnκiit −

N∑
m=1

Dimt (βEtvmt+1 − d lnκmit)

]
.

Using these results in the derivative of the value function, we have:

dvit =

[
d lnwit −

∑N
m=1 Simt d ln pimt

+ d ln bit +
∑N

m=1Dimt (βEt dvmt+1 − d lnκmit)

]
,

where we have used d lnκiit = 0. Using the total derivative of the pricing rule (S.4.281), we can

re-write this derivative of the value function as follows:

dvit =

[
d lnwit −

∑N
m=1 Simt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

+ d ln bit +
∑N
m=1Dimt (βEt dvmt+1 − d lnκmit)

]
. (S.4.289)

S.4.7.8 Steady-State Su�cient Statistics

Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kit+1 = kit = k∗i , `it+1 = `it = `∗i , w
∗
it+1 = w∗it = w∗i and v∗it+1 = v∗it = v∗i ,

where we use an asterisk to denote a steady-state value, and drop the time subscript for the re-

mainder of this subsection, since we are concerned with steady-states. We consider small shocks

to productivity ( d lnz) and amenities ( d ln b) in each location, holding constant the economy’s

aggregate labor endowment ( d ln ` = 0), trade costs ( d ln τ ) and commuting costs ( d lnκ).
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Capital Accumulation. From the capital accumulation equation (S.4.277), the steady-state

stock of capital solves:

k∗i = β

[
ri
pi

+ (1− δ)
]
k∗i .

(1− β (1− δ)) k∗i = β
ri
pi
k∗i .

From the relationship between labor and capital payments, we have:

rit
pit
kit =

(
1− α
α

+
1− µ
αµ

)
wit`it
pit

,

Using this result in the expression for the steady-state capital stock above, we have:

(1− β (1− δ)) k∗i = β

(
1− α
α

+
1− µ
αµ

)
w∗i `

∗
i

p∗i
.

Totally di�erentiating, we have:

d lnχ∗i = d ln

(
w∗i
p∗i

)
.

From the total derivative of real income (S.4.285) above, this becomes:

d lnχ∗i = d lnw∗i −
N∑
m=1

Sim [ d lnw∗m − (1− µ) d lnχ∗m − d ln zm] ,

where we have used d ln τim = 0. This relationship has the following matrix representation:

d lnχ∗ = d lnw∗ − S d lnw∗ + (1− µ)S d lnχ∗ + S d lnz,

(I − (1− µ)S) d lnχ∗ = (I − S) d lnw∗ + S d lnz,

which can be written as:

d lnχ∗ = (I − (1− µ)S)−1 [(I − S) d lnw∗ + S d lnz] . (S.4.290)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.286)

has the following matrix representation:

d lnwt + d ln `t = T ( d lnwt + d ln `t) + θ (TS − I) ( d lnwt − (1− µ) d lnχt − d lnz) ,

where we have used d ln τ = 0. We can re-write this relationship in steady-state as:

d lnw∗ = [I − T + θ (I − TS)]
−1

[− (I − T ) d ln `∗ + θ (I − TS) ( d lnz + (1− µ) d lnχ∗)] . (S.4.291)
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Population Flow. The total derivative of the population �ow condition (S.4.287) has the fol-

lowing matrix representation:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1,

which can be written in steady-state as:

d ln `∗ =
β

ρ
(I −E)−1 (I −ED) dv∗. (S.4.292)

Value function. The total derivative of the value function (S.4.289) has the following matrix

representation:

dvt = (I − S) d lnwt + S ( d ln z + (1− µ) d lnχt) + d ln b+ βDEt dvt+1,

where we have used d ln τ = d lnκ = 0. We can re-write this relationship in steady-state as:

dv∗ = (I − βD)−1 [(I − S) d lnw∗ + S ( d ln z + (1− µ) d lnχ∗) + d ln b] . (S.4.293)

System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = (I − (1− µ)S)
−1

[(I − S) d lnw + S d lnz] . (S.4.294)

d lnw∗ = [I − T + θ (I − TS)]
−1

[− (I − T ) d ln `∗ + θ (I − TS) ( d lnz + (1− µ) d lnχ∗)] . (S.4.295)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (S.4.296)

dv∗ = (I − βD)
−1

[(I − S) d lnw∗ + S ( d ln z + (1− µ) d lnχ∗) + d ln b] . (S.4.297)

S.4.7.9 Su�cient Statistics for Transition Dynamics

Suppose that the economy starts from an initial steady-state. Consider a small shock to produc-

tivity ( d lnz) and amenities ( d ln b) in each location, holding constant the economy’s aggregate

labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and commuting costs ( d lnκ = 0).

We use a tilde above a variable to denote a log-deviation from the initial steady-state, such that˜̀
it = ln `it − ln `∗i , for all variables except for the worker value function vit; with a slight abuse

of notation we use ṽit ≡ vit − v∗i to denote the deviation in levels for the worker value function.

Capital Accumulation. From the capital accumulation equation (S.4.277), we have:

kit+1 = β
rit
pit
kit + β (1− δ) kit.

From the relationship between labor and capital payments, we have:

rit
pit
kit =

(
1− α
α

+
1− µ
αµ

)
wit`it
pit

,
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kit+1 = β (1− δ) kit + β

(
1− α
α

+
1− µ
αµ

)
wit
pit
`it,

kit+1

`it+1

`it+1

`it
= β (1− δ) kit

`it
+ β

(
1− α
α

+
1− µ
αµ

)
wit
pit
,

χit+1
`it+1

`it
= β (1− δ)χit + β

(
1− α
α

+
1− µ
αµ

)
wit
pit
, (S.4.298)

while in steady-state we have:

k∗i
`∗i

= β (1− δ) k
∗
i

`∗i
+ β

(
1− α
α

+
1− µ
αµ

)
w∗i
p∗i
,

χ∗i = β (1− δ)χ∗i + β

(
1− α
α

+
1− µ
αµ

)
w∗i
p∗i
.

χ∗i =
β

(1− β (1− δ))

(
1− α
α

+
1− µ
αµ

)
w∗i
p∗i
. (S.4.299)

Dividing both sides of equation (S.4.298) by χ∗i , we have:

χit+1

χ∗i

`it+1

`it
= β (1− δ) χit

χ∗i
+

β

χ∗i

(
1− α
α

+
1− µ
αµ

)
wit
pit
,

which using (S.4.299) can be re-written as:

χit+1

χ∗i

`it+1

`it
= β (1− δ) χit

χ∗i
+ (1− β (1− δ)) wit/w

∗
i

pit/p∗i
,

which can be further re-written as:

χit+1

χ∗i

`it+1

`it
− 1 = β (1− δ) χit

χ∗i
+ (1− β (1− δ)) wit/w

∗
i

pit/p∗i
− 1,

χit+1

χ∗i

`it+1

`it
− 1 = β (1− δ)

(
χit
χ∗i
− 1

)
+ (1− β (1− δ))

(
wit/w

∗
i

pit/p∗i
− 1

)
.

Noting that:

xit
x∗i
− 1 ' ln

(
xit
x∗i

)
,

χit+1

χ∗i

`it+1

`it
− 1 ' ln

(
χit+1

χ∗i

`it+1

`it

)
,

we have:

ln

(
χit+1

χ∗i

)
+ ln

(
`it+1

`it

)
= β (1− δ) ln

(
χit
χ∗i

)
+ (1− β (1− δ)) ln

(
wit/w

∗
i

pit/p∗i

)
,

ln

(
χit+1

χ∗i

)
+ ln

(
`it+1/`

∗
i

`it/`∗i

)
= β (1− δ) ln

(
χit
χ∗i

)
+ (1− β (1− δ)) ln

(
wit/w

∗
i

pit/p∗i

)
,
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which can be re-written as follows:

χ̃it+1 = β (1− δ) χ̃it + (1− β (1− δ)) (w̃it − p̃it)− ˜̀it+1 + ˜̀it,
We can rewrite this relationship in matrix form as:

χ̃t+1 = β (1− δ) χ̃t + (1− β (1− δ)) (w̃t − p̃t)− ˜̀t+1 + ˜̀
t.

Now note that:

w̃it − p̃it = w̃it −
N∑
m=1

Snmt [w̃mt − (1− µ) χ̃mt − z̃m] ,

which can be written in matrix form as:

w̃t − p̃t = (I − S) w̃t + S [(1− µ) χ̃t + z̃] .

Using this result in our expression for the dynamics of the capital-labor ratio above, we have:

χ̃t+1 = β (1− δ) χ̃t + (1− β (1− δ)) ((I − S) w̃t + S [(1− µ) χ̃t + z̃])− ˜̀t+1 + ˜̀
t,

χ̃t+1 =

[
[β (1− δ) I + (1− β (1− δ)) (1− µ)S] χ̃t + (1− β (1− δ))Sz̃

+ (1− β (1− δ)) (I − S) w̃t − ˜̀t+1 + ˜̀
t

]
. (S.4.300)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.4.286)

relative to the initial steady-state has the following matrix representation:

w̃t + ˜̀
t = T

(
w̃t + ˜̀

t

)
+ θ (TS − I) (w̃t − (1− µ) χ̃t − z̃) ,

which can be re-written as:

[I − T + θ (I − TS)] w̃t = − (I − T ) ˜̀t + θ (I − TS) [(1− µ) χ̃t + z̃] ,

w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) [(1− µ) χ̃t + z̃]

]
. (S.4.301)

Population Flow. The total derivative of the population �ow condition (S.4.287) relative to the

initial steady-state has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.4.302)

Value function. The total derivative of the value function (S.4.289) relative to the initial steady-

state has the following matrix representation:

ṽt = (I − S) w̃t + S [(1− µ) χ̃t + z̃] + b̃+ βDEtṽt+1. (S.4.303)
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System of Equations for Transition Dynamics. Collecting together the system of equations

for the transition dynamics, we have:

χ̃t+1 =

[
[β (1− δ) I + (1− β (1− δ)) (1− µ)S] χ̃t + (1− β (1− δ))Sz̃

+ (1− β (1− δ)) (I − S) w̃t − ˜̀t+1 + ˜̀
t

]
. (S.4.304)

w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) [(1− µ) χ̃t + z̃]

]
. (S.4.305)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.4.306)

ṽt = (I − S) w̃t + S [(1− µ) χ̃t + z̃] + b̃+ βDEtṽt+1. (S.4.307)

S.4.8 Landlord Investment in Other Locations
In this section of the Online Supplement, we consider an extension of our baseline model in Sec-

tion 2 of the paper to allow landlords to invest in other locations in addition to their own location.

We consider an economy that consists of many locations indexed by i ∈ {1, . . . , N}. Time is dis-

crete and is indexed by t. The economy consists of two types of in�nitely-lived agents: workers

and landlords. Both workers and landlords have the same �ow preferences, which are modeled as

in the standard Armington model of international trade. The continuous measure of workers are

each endowed with one unit of labor that is supplied inelasticity and are geographically mobile

across locations subject to bilateral migration costs. Workers do not have access to an investment

technology and live hand to mouth as in Kaplan and Violante (2014). The continuous measure

of landlords in each location are geographically immobile and own a stock of capital that can

be allocated to any location. Landlords make a forward-looking decision over consumption and

investment in this stock of capital, which depreciates gradually at a constant rate δ.

S.4.8.1 Capital Allocation

At the beginning of period t, the landlords in location n inherit an existing stock of capital knt, and

decide where to allocate this existing capital and how much to invest in accumulating additional

capital. Once these decisions have been made, production and consumption occur. At the end of

period t, new capital is created from the investment decisions made at the beginning of the period,

and the depreciation of existing capital occurs. In the remainder of this subsection, we charac-

terize landlords’ decisions at the beginning of period t of where to allocate the existing stock

of capital. In the next subsection, we characterize landlords’ optimal consumption-investment

decision.

The stock of existing capital owned by landlords in source location n can be employed in

each host location i. The productivity of each unit of capital owned in location n is subject

to an idiosyncratic productivity shock for each of the possible locations i to which it can be

allocated αnit. This productivity shock determines the number of e�ective units of capital, and

has an interpretation as a Keynesian marginal e�ciency of capital draw, which captures all the

idiosyncratic factors that a�ect the productivity of capital invested in a location. Landlords face

�nancial frictions or management costs in allocating capital to other locations, which are assumed

to take the iceberg form, such that φnit ≥ 1 units of capital from location n must be allocated to

location i in order for one unit to be available for production, where φnnt = 1 and φnit > 1 for
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n 6= i. The realized rate of return to a landlord in location n from allocating one unit of capital

to location i is:

Rnit =
αnitrit
φnit

, (S.4.308)

where the idiosyncratic productivity shock (αnit) corresponds to the number of e�ective units of

capital before �nancial frictions or management costs (φnit) are incurred; and rit corresponds to

the rate of return per e�ective unit of capital.

We assume that these idiosyncratic shocks to the productivity of capital are drawn indepen-

dently across source and host locations and units of capital from the following Fréchet distribu-

tion:

Fnit (α) = e−(α/ait)
−ε
, ait > 0, ε > 1, (S.4.309)

where the Fréchet scale parameter (ait) controls the average productivity of capital allocated to

host location i. The Fréchet shape parameter ε controls the dispersion of idiosyncratic shocks

to the productivity of capital, and regulates the sensitivity of the capital allocation to economic

variables such as the rate of return per e�ective unit of capital.

Using the properties of this Fréchet distribution, the share of capital from location n that is

employed in location i satis�es a gravity equation:

ζnit =
knit
knt

=
(aitrit/φnit)

ε∑N
h=1 (ahtrht/φnht)

ε
, (S.4.310)

which provides a natural explanation for �ndings of home bias in capital investments, because

�nancial frictions or management costs abroad are greater than those at home (φnit > φnnt for

n 6= i).
Using the properties of this Fréchet distribution, the realized rate of return on capital owned

by location n at time t is the same across all host locations i and given by:

Rnit = Rnt = Γ

(
ε− 1

ε

)[ N∑
h=1

(ahtrht/φnht)
ε

] 1
ε

, (S.4.311)

where Γ (·) is the Gamma function.

Using the properties of the Fréchet distributions for productivity (anit) and the realized rate

of return (Rnt), the average productivity of capital from source country n in host country i con-

ditional on capital being allocated to that host country is given by:

anit = Γ

(
ε− 1

ε

)(
aεit
ζnit

) 1
ε

. (S.4.312)

S.4.8.2 Capital Accumulation Across Periods

Landlords in each location choose their consumption and investment to maximize their intertem-

poral utility subject to their budget constraint. Landlords’ intertemporal utility equals the ex-

pected present discounted value of their �ow utility:

vknt = Et
∞∑
s=0

βt+s
(
cknt+s

)1−1/ψ

1− 1/ψ
, (S.4.313)
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where we use the superscript k to denote landlords; cknt is the consumption index; β is the discount

rate; ψ is the elasticity of intertemporal substitution. Since landlords are geographically immobile,

we omit the term in amenities from their �ow utility, because this does not a�ect the equilibrium

in any way, and hence is without loss of generality.

We assume that the investment technology in each location uses the varieties from all lo-

cations with the same functional form as consumption. Therefore, landlords in each location

can produce one unit of capital using one unit of the consumption index in that location, where

this unit of capital can be allocated to any location, as characterized in the previous subsec-

tion. We interpret capital as buildings and structures, which depreciate at the constant rate

δ, and we allow for the possibility of negative investment. The intertemporal budget con-

straint for landlords in each location requires that total income from the existing stock of capital

(Rntknt) equals the total value of their consumption (pntc
k
nt) plus the total value of net investment

(pnt (knt+1 − (1− δ) knt)):

Rntknt = pnt
(
cknt + knt+1 − (1− δ) knt

)
, (S.4.314)

where we have used the property established in the previous subsection that the realized rate

of return is the same across all host locations for a given source location (Rnit = Rnt). We use

Rnt ≡ 1− δ +Rnt/pnt to denote the gross realized return on capital. Following the same line of

argument as in Section 2 of the paper, the optimal consumption of landlords in location n satis�es

cnt = ςntRntknt, where ςnt is de�ned recursively as:

ς−1
nt = 1 + βψ

(
Et
[
R

ψ−1
ψ

nt+1ς
− 1
ψ

t+1

])ψ
. (S.4.315)

Landlords’ corresponding optimal saving and investment decisions satisfy knt+1 =
(1− ςnt)Rntknt. Therefore, the landlords in each location have a linear saving rate (1− ςnt)
out of current period wealth Rntknt, as in Angeletos (2007) and our baseline speci�cation in the

paper. The remainder of our quantitative analysis goes through as in our baseline speci�cation in

Section 2 of the paper, modifying the capital market clearing condition to take into account that

capital from each location is allocated to all locations, as characterized in the previous subsection.

S.4.9 Labor Participation Decision
In this section of the Online Supplement, we discuss an extension of the model to incorporate a

labor participation decision. Following Caliendo et al. (2019), we model this labor participation

decision in terms of home production.

At the beginning of period t, the economy inherits a mass of workers (`jnt) in each location n
and sector j, where sector j = 1 corresponds to market production (employed) and sector j = 0
corresponds to home production (non-employed). An employed worker supplies a unit of labor

inelastically and receives a competitive wage (wjnt). She allocates her income over consumption

of goods in the same way as in our baseline speci�cation in Section 2 of the paper. In contrast, a

non-employed worker obtains consumption from home production (hn > 0).

Under these assumptions, worker preferences take a similar form as in equation (3) in the

paper. The �ow utility function of a worker in location n in period t depends on amenities (bnt)
and a consumption index (cj,wnt ):

uj,wnt = bntc
j,w
nt . (S.4.316)
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The consumption index now depends on whether the worker is employed or non-employed:

cj,wnt =


[∑N

i=1

(
cj,wni
) θ
θ+1

] θ+1
θ

if j = 1

hn if j = 0

∣∣∣∣∣∣ , θ = σ − 1, σ > 1. (S.4.317)

Under these assumptions, all of our analysis goes through as in our baseline speci�cation in

the paper, except that we now need to keep track of an additional state in each location (non-

employment), where �ow utility in this state depends on home production.

S.5 Tradable and Non-tradable Sector
We consider an economy with many locations indexed by i ∈ {1, . . . , N}. Time is discrete

and is denoted by t. There are two sectors: tradable and non-tradable. There are two types of

in�nitely-lived agents: workers and landlords. Workers are endowed with one unit of labor that

is supplied inelasticity and are geographically mobile subject to migration costs. Workers do not

have access to an investment technology and hence live hand to mouth, as in Kaplan and Violante

(2014). Landlords are geographically immobile and own the capital stock in their location. They

make a forward-looking decision over consumption and investment in this local stock of capital.

We assume that capital is geographically immobile once installed, but depreciates gradually at a

constant rate δ.

S.5.1 Worker Migration Decisions
Worker migration decisions are modeled in exactly the same way as in our baseline Armington

model with a single sector. We assume that workers have idiosyncratic preferences across loca-

tions and face bilateral migration costs in moving between locations. We assume perfect labor

mobility across sectors within each location, such that there is a common wage across sectors

within each location.

S.5.2 Worker Consumption
Worker preferences are de�ned over both traded and non-traded goods. The traded sector is

modeled as in the standard Armington model of trade with constant elasticity of substitution

(CES) preferences. The non-traded sector consists of a single local non-traded good. The indirect

utility function each period depends on worker’s wage (wnt), the cost of living (pit) and amenities

(bnt):
lnuwnt = ln bnt + lnwnt − ln pnt, (S.5.1)

where amenities (bnt) capture characteristics of a location that make it a more attractive place

to live regardless of goods consumption (e.g., climate and scenic views). In this section of the

Online Supplement, we assume that amenities are exogenous. The cost of living (pnt) in location

n depends on the price index for traded goods (pTit) and the price of the non-traded good (pNTit ):

pit =
(
pTit
)γ (

pNTit
)1−γ

. (S.5.2)
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The price index for traded goods depends on the price of the variety sourced from each location

i (pnit):

pTit =

[
N∑
m=1

p−θimt

]−1/θ

, (S.5.3)

where σ > 1 is the constant elasticity of substitution and θ = σ − 1 > 0 is the constant trade

elasticity.

Using the properties of these CES preferences, the share of expenditure in importer n on the

goods supplied by exporter i in the traded sector takes the standard form:

Snit =
(pnit)

−θ∑N
m=1 (pnmt)

−θ . (S.5.4)

S.5.3 Production
Production in each sector uses labor and capital. Production is assumed to occur under conditions

of perfect competition and using a constant returns to scale Cobb-Douglas production technology.

For simplicity, we assume the same factor intensity and productivity in the traded and non-traded

sectors. Pro�t maximization and zero pro�ts implies the following equilibrium prices in the two

sectors:

pnit =
τnitw

µ
itr

1−µ
it

zit
, (S.5.5)

pNTit =
wµitr

1−µ
it

zit
, (S.5.6)

where zit denotes productivity in location i at time t. In this section of the Online Supplement,

we assume that productivity is exogenous.

S.5.4 Landlord Consumption
Landlords in each location choose their consumption and investment in capital to maximize their

intertemporal utility subject to their intertemporal budget constraint. Landlords’ intertemporal

utility equals the present discounted value of their �ow utility, which we assume for simplicity

takes the same logarithmic form as for workers:

vkit =
∞∑
t=0

βt ln ckit, (S.5.7)

where ckit =
(
cT,kit

)γ (
cNT,kit

)1−γ
is the overall consumption for landlords, which depends on the

consumption index for tradables (cT,kit ) and the consumption index for non-tradables (cNT,kit ).

Landlords in a given location can produce one unit of capital in that location using one unit

of the overall consumption index in that location. We assume that capital is geographically

immobile once installed and depreciates at a constant rate δ. The intertemporal budget con-

straint for landlords in each location requires that total income from the existing stock of capital
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(ritkit) equals the total value of their consumption (pitc
k
it) plus the total value of net investment

(pit (kit+1 − (1− δ) kit)):

ritkit = pit
(
ckit + kit+1 − (1− δ) kit

)
. (S.5.8)

Combining the landlords’ intertemporal utility (S.5.7) and budget constraint (S.5.8), the land-

lords’ intertemporal optimization problem is:

max
{ckt ,kt+1}

∞∑
t=0

βt ln ckit, (S.5.9)

subject to pitc
k
it + pit (kit+1 − (1− δ) kit) = ritkit.

We can write this problem as the following Lagrangian:

L =
∞∑
t=0

βt ln ckit − ξt
[
pitc

k
it + pit (kit+1 − (1− δ) kit)− ritkit

]
. (S.5.10)

The �rst-order conditions are: {
ckit
} βt

ckit
− pitξt = 0,

{kit+1} (rit+1 + pit+1 (1− δ)) ξt+1 − pitξt = 0.

Together these �rst-order conditions imply the familiar Euler equation linking the marginal util-

ity of consumption between any two time periods:

ckit+1

ckit
= β

pitµt
pit+1µt+1

= β (rit+1/pit+1 + (1− δ)) , (S.5.11)

where the transversality condition implies:

lim
t→∞

βt
kit+1

ckit
= 0.

Our assumption of logarithmic �ow utility and the property that the intertemporal budget

constraint is linear in the stock of capital together imply that landlords optimal consumption-

saving decision involves a constant saving rate, as in Moll (2014). We conjecture the following

policy functions:

pitc
k
it = (1− β) (rit + pit (1− δ)) kit, (S.5.12)

kit+1 = β (rit/pit + (1− δ)) kit. (S.5.13)

Substituting the consumption policy function (S.5.12) into the Euler equation (S.5.11), we con�rm

that these conjectured policy functions are indeed the optimal consumption-savings choice:

cj,kit+1

cj,kit
=

(
rjit+1/pit+1 + (1− δj)

)
kjit+1(

rjit/pit + (1− δj)
)
kjit

,

= β
(
rjit+1/pit+1 +

(
1− δj

))
.
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S.5.5 Market Clearing
Income equals expenditure implies that the sum of the income of workers and landlords in each

location is equal to expenditure on the goods produced by that location:[ (
wit`

T
it + ritk

T
it

)
+
(
wit`

NT
it + ritk

NT
it

) ] =

[
γ
∑N

n=1 Snit (wnt`nt + rntknt)
+ (1− γ) (wit`it + ritkit)

]
. (S.5.14)

Non-traded goods market clearing implies that income in the non-traded sector is equal to local

expenditure on non-traded goods:(
wit`

NT
it + ritk

NT
it

)
= (1− γ) [(wit`it + ritkit)] . (S.5.15)

Using this non-traded goods market clearing condition (S.5.15), our equality between income and

expenditure in equation (S.5.14) simpli�es to:

(
wit`

T
it + ritk

T
it

)
= γ

N∑
n=1

Snit (wnt`nt + rntknt) . (S.5.16)

Now note that factor market clearing implies:(
wit`

T
it + ritk

T
it

)
+
(
wit`

NT
it + ritk

NT
it

)
= (wit`it + ritkit) . (S.5.17)

Combining this factor market clearing condition (S.5.17) with non-traded goods market clearing

(S.5.15), total payments for factors of production in the traded sector are also a constant share of

total factor payments: (
wit`

T
it + ritk

T
it

)
= γ (wnt`nt + rntknt) (S.5.18)

Using this result, the goods market clearing condition (S.5.16) can be re-written as:

(wit`it + ritkit) =
N∑
n=1

Snit (wnt`nt + rntknt) . (S.5.19)

Additionally, from pro�t maximization and zero-pro�ts, capital payments are the same constant

multiple of labor payments in each sector:

ritk
T
it =

1− µ
µ

wit`
T
it, (S.5.20)

ritk
NT
it =

1− µ
µ

wit`
NT
it . (S.5.21)

Combining these results with factor market clearing, we obtain:

ritkit =
1− µ
µ

wit`it. (S.5.22)

Using this property that capital payments are a constant multiple of labor payments, the goods

market clearing condition (S.5.19) simpli�es to:

wit`it =
N∑
n=1

Snitwnt`nt. (S.5.23)
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Finally, combining the relationships between capital and labor payments in each sector in equa-

tions (S.5.20) and (S.5.21), with our earlier results in equations (S.5.15) and (S.5.18) that total factor

payments in each sector are a constant multiple of total factor payments, we �nd that a constant

share of each location’s labor and capital is allocated to the traded and non-traded sectors:

`Tit = γ`it, `NTit = (1− γ) `it, (S.5.24)

kTit = γkit, kNTit = (1− γ) kit. (S.5.25)

S.5.6 General Equilibrium
Given the state variables {`i0, ki0}, the general equilibrium of the economy is the path of allo-

cations and prices such that �rms in each location choose inputs to maximize pro�ts, workers

make consumption and migration decisions to maximize utility, landlords make consumption

and saving decisions to maximize utility, and prices clear all markets. For expositional clarity, we

collect the equilibrium conditions and express them in terms of a sequence of four endogenous

variables {`it, kit, wit, vit}∞t=0. All other endogenous variables of the model can be recovered as a

function of these variables. In particular, we immediately recover the sectoral allocation of labor

and capital from equations (S.5.24) and (S.5.25).

Capital Accumulation: Using capital market clearing (S.5.22), the price index (S.5.2), the price

index for traded goods (S.5.3), and the equilibrium pricing rules (S.5.5) and (S.5.6), the capital

accumulation equation (S.5.13) becomes:

kit+1 = β
1− µ
µ

wit
pit
`it + β (1− δ) kit, (S.5.26)

pit =
(
pTit
)γ (

pNTit
)1−γ

, (S.5.27)

pTnt =

 N∑
i=1

(
wit

(
1− µ
µ

)1−µ

(`it/kit)
1−µ τni/zi

)−θ−1/θ

, (S.5.28)

pNTnt = wnt

(
1− µ
µ

)1−µ

(`nt/knt)
1−µ /znt. (S.5.29)

GoodsMarket Clearing: Using the equilibrium pricing rule in the traded sector (S.5.5), the ex-

penditure share (S.5.4) and capital market clearing condition (S.5.22) in the goods market clearing

condition (S.5.23), we obtain:

wit`it =
N∑
n=1

Snitwnt`nt, (S.5.30)

Snit =

(
wit (`it/kit)

1−µ τni/zi
)−θ∑N

m=1

(
wmt (`mt/kmt)

1−µ τnm/zm
)−θ , Tint ≡

Snitwnt`nt
wit`it

, (S.5.31)

where Snit is the expenditure share of importer n on exporter i at time t; we have de�ned Tint as

the corresponding income share of exporter i from importer n at time t; and note that the order of

subscripts switches between the expenditure share (Snit) and the income share (Tint), because the

�rst and second subscripts will correspond below to rows and columns of a matrix, respectively.
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Population Flow: Using the analogous derivations for migration decisions as in our baseline

Armington model, the population �ow condition for the evolution of the population distribution

over time is given by:

`gt+1 =
N∑
i=1

Digt`it, (S.5.32)

Digt =

(
exp

(
βEtvwgt+1

)
/κgit

)1/ρ∑N
m=1

(
exp

(
βEtvwmt+1

)
/κmit

)1/ρ
, Egit ≡

`itDigt

`gt+1

, (S.5.33)

where Digt is the outmigration probability from location i to location g between time t and t+ 1;

we have de�ned Egit as the corresponding inmigration probability to location g from location i
between time t and t + 1; and again note that the order of subscripts switches between the out-

migration probability (Digt) and the inmigration probability (Egit), because the �rst and second

subscripts will correspond below to rows and columns of a matrix, respectively.

Worker Value Function: Using the analogous derivations for migration decisions as in our

baseline Armington model, the expected value from living in location n at time t can be written

as:

vwnt = ln bnt + ln

(
wnt
pnt

)
+ ρ ln

N∑
g=1

(
exp

(
βEtvwgt+1

)
/κgnt

)1/ρ
. (S.5.34)

S.5.7 Comparative Statics
We now totally di�erentiate the conditions for general equilibrium to obtain comparative static

expressions that we use in our su�cient statistics for changes in steady-state and the entire transi-

tion path. In the interests of brevity, we focus on di�erences from the speci�cation in our baseline

single-sector Armington model.

Prices Totally di�erentiating the pricing rules in the traded and non-traded sectors, we have:

d ln pnit = d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit. (S.5.35)

d ln pNTnt = d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit (S.5.36)

Price Indices Totally di�erentiating the consumption goods price index in equation (S.5.2), we

have:

d ln pnt = γ d ln pTnt + (1− γ) d ln pNTnt . (S.5.37)

d ln pTnt =
N∑
m=1

Snmt d ln pTnmt.
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Real Income. Totally di�erentiating real income we have:

d ln

(
wit
pit

)
= d lnwit − d ln pit,

d ln

(
wit
pit

)
= d lnwit − γ

N∑
m=1

Simt d ln pimt − (1− γ) d ln pNTit ,

d ln

(
wit
pit

)
=

[
d lnwit − γ

∑N
m=1 Simt [ d ln τimt + d lnwmt − (1− µ) d lnχmt − d ln zmt]
− (1− γ) [ d lnwit − (1− µ) d lnχit − d ln zit]

]
. (S.5.38)

Goods Market Clearing Totally di�erentiating the goods market clearing condition (S.5.30),

we obtain the same expression as in our baseline single-sector Armington model:

[
d lnwit

+ d ln `it

]
=

 ∑N
n=1 Tint ( d lnwnt + d ln `nt)

+θ
∑N
n=1

∑N
m=1 TintSnmt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)

−θ
∑N
n=1 Tint ( d ln τnit + d lnwit − (1− µ) d lnχit − d ln zit)

 . (S.5.39)

Value Function. Note that the value function (S.5.34) can be re-written using the following

results:

vit = ln

[
wit

(pTit)
γ

(pNTit )
1−γ

]
+ ln bit + ρ ln

N∑
g=1

(exp (βEtvgt+1) /κgit)
1/ρ ,

pTit =

[
N∑
m=1

p−θimt

]−1/θ

=

(
p−θiit
Siit

)−1/θ

, τiit = 1,

N∑
g=1

(exp (βEtvgt+1) /κgit)
1/ρ =

(exp (βEtvit+1) /κiit)
1/ρ

Diit

, κiit = 1,

vit = lnwit −
γ

θ
lnSiit − γ ln piit − (1− γ) ln pNTit + ln bit + βEtvit+1 − ρ lnDiit.

Totally di�erentiating this expression for the value function, we have:

dvit = d lnwit −
γ

θ
d lnSiit − γ d ln piit − (1− γ) d ln pNTit + d ln bit + β dvit+1 − ρ d lnDiit,

where

d lnSiit = −θ d ln piit + θ

[
N∑
m=1

Simt d ln pimt

]
,

d lnDiit =
1

ρ

[
βEt dvit+1 − d lnκiit −

N∑
m=1

Dimt (βEtvmt+1 − d lnκmit)

]
.

Using these results for d lnSiit and d lnDiit in the expression for dvit above, we have:

dvit =

[
d lnwit − γ

∑N
m=1 Simt d ln pimt − (1− γ) d ln pNTit

+ d ln bit +
∑N

m=1Dimt (βEt dvmt+1 − d lnκmit)

]
,
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where we have used d lnκiit = 0. Using the total derivative of the pricing rules (S.5.35) and

(S.5.36), we can re-write this derivative of the value function as follows:

dvit =

 d lnwit − γ
∑N
m=1 Simt ( d ln τnmt + d lnwmt − (1− µ) d lnχmt − d ln zmt)
(1− γ) ( d lnwmt − (1− µ) d lnχmt − d ln zmt)

+ d ln bit +
∑N
m=1Dimt (βEt dvmt+1 − d lnκmit)

 . (S.5.40)

S.5.8 Steady-State Su�cient Statistics
Suppose that the economy starts from an initial steady-state with constant values of the endoge-

nous variables: kit+1 = kit = k∗i , `it+1 = `it = `∗i , w
∗
it+1 = w∗it = w∗i and v∗it+1 = v∗it = v∗i , where

we use an asterisk to denote a steady-state value, and drop the time subscript for the remainder of

this subsection, since we are concerned with steady-states. We consider small shocks to produc-

tivity ( d lnz) and amenities ( d ln b) in each location, holding constant the economy’s aggregate

labor endowment ( d ln ` = 0), trade costs ( d ln τ = 0) and commuting costs ( d lnκ = 0).

Capital Accumulation. From the capital accumulation equation (S.5.26), the steady-state

stock of capital solves:

(1− β (1− δ))χ∗i = (1− β (1− δ)) k
∗
i

`∗i
= β

1− µ
µ

w∗i
p∗i
.

Totally di�erentiating, we have:

d lnχ∗i = d ln

(
w∗i
p∗i

)
.

Using the total derivative of real income (S.5.38) above, this becomes:

d lnχ∗i =

[
d lnw∗i − γ

∑N
m=1 S

∗
im [ d lnw∗m − (1− µ) d lnχ∗m − d ln zm]

− (1− γ) [ d lnw∗m − (1− µ) d lnχ∗m − d ln zm]

]
,

where we have used and d ln τnm = 0. This relationship has the matrix representation:

d lnχ∗ =

[
d lnw∗ − [γS + (1− γ) I] d lnw∗

+ (1− µ) [γS + (1− γ) I] d lnχ∗ + [γS + (1− γ) I] d ln z

]
,

(I − (1− µ) [γS + (1− γ) I]) d lnχ∗ =

[
(I − [γS + (1− γ) I]) d lnw∗

+ [γS + (1− γ) I] d ln z

]
. (S.5.41)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.5.39)

has the following matrix representation:

d lnwt + d ln `t = T ( d lnwt + d ln `t) + θ (TS − I) ( d lnwt − (1− µ) d lnχt − d lnz) ,

where we have used d ln τ = 0. We can re-write this relationship as:

[I − T + θ (I − TS)] d lnwt = − (I − T ) d ln `t + θ (I − TS) ( d lnz + (1− µ) d lnχt) .

In steady-state we have:

[I − T + θ (I − TS)] d lnw∗ = [− (I − T ) d ln `∗ + θ (I − TS) ( d lnz + (1− µ) d lnχ∗)] . (S.5.42)
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Population Flow. The total derivative of the population �ow condition has the same matrix

representation as in our baseline single-sector Armington model:

d ln `t+1 = E d ln `t +
β

ρ
(I −ED)Et dvt+1.

In steady-state, we have:

d ln `∗ = E d ln `∗ +
β

ρ
(I −ED) dv∗. (S.5.43)

Value function. The total derivative of the value function (S.5.40) has the following matrix

representation:

dvt = (I − [γS + (1− γ) I]) d lnwt + [γS + (1− γ) I] ( d ln z + (1− µ) d lnχt) + d ln b+ βDEt dvt+1,

where we have used d ln τ = d lnκ = 0. In steady-state, we have:

dv∗ = (I − [γS + (1− γ) I]) d lnw∗+[γS + (1− γ) I] ( d ln z + (1− µ) d lnχ∗)+ d ln b+βD dv∗. (S.5.44)

System of Steady-State Equations. Collecting together the system of steady-state equations,

we have:

d lnχ∗ = [I − (1− µ) [γS + (1− γ) I]]
−1
[

(I − [γS + (1− γ) I]) d lnw∗

+ [γS + (1− γ) I] d lnz

]
. (S.5.45)

d lnw∗ = [I − T + θ (I − TS)]
−1

[− (I − T ) d ln `∗ + (I − TS) θ ( d ln z + (1− µ) d lnχ∗)] . (S.5.46)

d ln `∗ =
β

ρ
(I −E)

−1
(I −ED) dv∗. (S.5.47)

dv∗ = (I − βD)
−1
[

d lnw∗ + d ln b
− [γS + (1− γ) I] ( d lnw∗ − d lnz − (1− µ) d lnχ∗)

]
. (S.5.48)

As the expenditure shares (S) and income shares (T ) are homogeneous of degree zero in factor

prices, we require a numeraire in order for solve for changes in wages. We choose the total income

of all locations as our numeraire (

∑N
i=1w

∗
i `
∗
i =

∑N
i=1 q

∗
i = q = 1), which implies that the log

changes in incomes satisfy q∗ d ln q∗ =
∑N

i=1 q
∗
i d ln q∗i =

∑N
i=1 q

∗
i

dq∗i
q∗i

=
∑N

i=1 dq∗i = 0, where

q∗ is a row vector of the steady-state income of each location. Similarly, the outmigration shares

(D) and inmigration shares (E) are homogeneous of degree zero in the total population of all

locations, which requires a choice of units to solve for population levels. We solve for population

shares, imposing the requirement that the population shares sum to one:

∑N
i=1 `i = ` = 1, which

implies `∗ d ln `∗ =
∑N

i=1 `
∗
i d ln `∗i =

∑N
i=1 `

∗
i

d`∗i
`∗i

=
∑N

i=1 d`∗i = 0, where `∗ is a row vector of

the steady-state population of each location.
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S.5.9 Su�cient Statistics for Transition Dynamics
We suppose that the economy starts from an initial steady-state distribution of economic activ-

ity {k∗i , `∗i , w
∗
i , v

∗
i }. We consider small shocks to productivity ( d lnz) and amenities ( d ln b) in

each location, holding constant the economy’s aggregate labor endowment ( d ln `), trade costs

( d ln τ = 0) and commuting costs ( d lnκ = 0). We use a tilde above a variable to denote a log

deviation from the initial steady-state, such that χ̃it = lnχit − lnχ∗i , for all variables except for

the worker value function vit; with a slight abuse of notation we use ṽit ≡ vit − v∗i to denote the

deviation in levels for the worker value function.

Capital Accumulation. Following the same line of argument in our baseline single-sector

Armington model, the log deviation of the capital-labor ratio from steady-state can be written as:

ln

(
χit+1

χ∗i

)
+ ln

(
`it+1/`

∗
i

`it/`∗i

)
= β (1− δ) ln

(
χit
χ∗i

)
+ (1− β (1− δ)) ln

(
wit/w

∗
i

pit/p∗i

)
,

which can be re-written as:

χ̃it+1 = β (1− δ) χ̃it + (1− β (1− δ)) (w̃it − p̃it)− ˜̀it+1 + ˜̀it.
We can re-write this relationship in matrix form as:

χ̃t+1 = β (1− δ) χ̃t + (1− β (1− δ)) (w̃t − p̃t)− ˜̀t+1 + ˜̀
t. (S.5.49)

Taking the total derivative of real income relative to the initial steady-state, we have:

w̃it − p̃it =

[
w̃it − γ

∑N
m=1 Simt [w̃mt − (1− µ) χ̃mt − z̃m]

− (1− γ) [w̃it − (1− µ) χ̃it − z̃i]

]
,

where we have used d ln τnm = 0. We can re-write this relationship in matrix form as:

w̃t − p̃t = (I − [γS + (1− γ) I]) w̃t + (1− µ) [γS + (1− γ) I] χ̃t + Sz̃.

Using this result in our expression for the dynamics of the capital-labor ratio above, we have:

χ̃t+1 =

 [β (1− δ) I + (1− β (1− δ)) (1− µ) [γS + (1− γ) I]] χ̃t

+ (1− β (1− δ)) (I − [γS + (1− γ) I]) w̃t

+ (1− β (1− δ))Sz̃ − ˜̀t+1 + ˜̀
t

 . (S.5.50)

Goods Market Clearing. The total derivative of the goods market clearing condition (S.5.39)

relative to the initial steady-state has the following matrix representation:

w̃t + ˜̀
t = T

(
w̃t + ˜̀

t

)
+ θ (TS − I) (w̃t − (1− µ) χ̃t − z̃) ,

where we have used d ln τ = 0. We can re-write this relationship as:

w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) (z̃ + (1− µ) χ̃t)

]
. (S.5.51)
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Population Flow. Following the same line of argument in our baseline single-sector Arming-

ton model, the total derivative of the population �ow condition relative to the initial steady-state

has the following matrix representation:

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.5.52)

Value Function. The total derivative of the value function (S.5.40) relative to the initial steady-

state has the following matrix representation:

ṽt =

[
(I − [γS + (1− γ) I]) w̃t + [γS + (1− γ) I] z̃

+ (1− µ) [γS + (1− γ) I] χ̃t + b̃+ βDEtṽt+1

]
, (S.5.53)

where we have used d ln τ = d lnκ = 0.

System of Equations for Transition Dynamics Relative to the Initial Steady-State. Col-

lecting together the capital accumulation equation (S.5.50), the goods market clearing condition

(S.5.51), the population �ow condition (S.5.52), and the value function (S.5.53), the system of equa-

tions for the transition dynamics relative to the initial steady-state takes the following form:

χ̃t+1 =

 [β (1− δ) I + (1− β (1− δ)) (1− µ) [γS + (1− γ) I]] χ̃t

+ (1− β (1− δ)) (I − [γS + (1− γ) I]) w̃t

+ (1− β (1− δ)) [γS + (1− γ) I] z̃ − ˜̀t+1 + ˜̀
t

 . (S.5.54)

w̃t = [I − T + θ (I − TS)]−1
[
− (I − T ) ˜̀t + θ (I − TS) (z̃ + (1− µ) χ̃t)

]
. (S.5.55)

˜̀
t+1 = E ˜̀t +

β

ρ
(I −ED)Etṽt+1. (S.5.56)

ṽt =

[
(I − [γS + (1− γ) I]) w̃t + [γS + (1− γ) I] z̃

+ (1− µ) [γS + (1− γ) I] χ̃t + b̃+ βDEtṽt+1

]
. (S.5.57)

S.6 Additional Empirical Results
In this section of the Online Supplement, we report additional empirical results that are discussed

in the paper. Subsection S.6.1 shows that individual U.S. states di�er substantially in terms of the

dynamics of their capital-labor ratios, highlighting the empirical relevance of capital accumu-

lation for income convergence. Subsection S.6.2 provides evidence of substantial net migration

between U.S. states, highlighting the empirical salience of migration for the population dynamics

of U.S. states. Subsection S.6.3 show that the model’s gravity equation predictions provide a good

approximation to the observed data on trade and migration �ows.

Subsection S.6.4 examines the evolution of the real interest rate in terms of the local con-

sumption price index along the transition path to steady-state. Subsection S.6.5 reports additional

evidence on the predictive power of convergence to the initial steady-state for the observed pop-

ulation growth of U.S. states. Subsection S.6.6 reports additional empirical results for our spectral

analysis in Section 5.4 of the paper. Subsection S.6.7 provides further information about the

implied fundamentals from inverting the non-linear model. Subsection S.6.8 reports additional

empirical results for our multi-sector extension that is discussed in Section 5.5 of the paper.
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S.6.1 Capital Dynamics
We introduce forward-looking capital accumulation into the dynamic discrete choice model of

migration of Caliendo et al. (2019). In this section of the Online Supplement, we show that U.S.

states di�er substantially in terms of the dynamics of their capital-labor ratios over our sample

period, highlighting the empirical relevance of capital accumulation for income convergence.

In Figure S.6.1, we show the capital-labor over time for each U.S. state using the solid gray

lines. We also show the population-share weighted average of these capital-labor ratios for our

four geographical groupings using the black dashed lines. The capital-labor ratio is measured as

the ratio of the real capital stock to population. While all U.S. states experience an increase in

the capital-labor ratio, the rate of increase di�ers substantially across states, implying that capital

accumulation plays an important role in regional income convergence. We �nd substantial het-

erogeneity in the trends in the capital-labor ratio across states within all four of our geographical

groupings, with this heterogeneity greatest for the Other Northern and Other Southern states.

Figure S.6.1: Capital-Labor Ratios for U.S. States over Time
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Note: Gray lines show capital-labor ratios for each U.S. state and year; black dashed lines show the

population-weighted average of these steady-state gaps for the four geographical regions of the Rust Belt, Sun Belt,

Other Northern States and Other Southern States, as de�ned in the main text; capital-labor ratios measured as the

ratio of the real capital stock to population.

S.6.2 Migration Flows
In this section of the Online Supplement, we provide evidence on the role of internal migration

as a source of population changes for the four groups of states. Internal migration is measured as

movements of people between states within the United States and excludes international migra-

tion. We focus for brevity on in-migrants, measured as in�ows of internal migrants (in thousands)

into each state, separated out by origin state.

In Figure S.6.2, we show in-migration �ows for our four geographical groupings of states.

Three features are noteworthy. First, geographical proximity matters for migration �ows, such
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that other Rust Belt states are one of the leading sources of in-migrants for the Rust Belt (top-

left panel), consistent with our model’s gravity equation predictions. Second, all groups of states

receive non-negligible in-migration �ows, such that gross migration �ows are larger than net mi-

gration �ows, in line with the idiosyncratic mobility shocks in our model. Third, despite the role

for geography, the Rust Belt and Other Northern states are the two largest sources of in-migrants

for the Sun Belt, consistent with internal migration contributing to the observed reorientation of

population shares.

Finally, although not shown in these �gures, we �nd a modest decline in rates of internal

migration between states in the later years of our sample, which is in line the �ndings of a number

of studies, including Kaplan and Schulhofer-Wohl (2017) and Molloy et al. (2011). Consistent with

the comparison of several di�erent sources of administrative data in Hyatt et al. (2018), we �nd

that this decline in rates of internal migration between states is smaller in the population census

data than in Current Population Survey (CPS) data.

Figure S.6.2: Internal In-migration to Each Destination Region by Source Region from 1960-2000
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Rust Belt: Illinois, Indiana, Michigan, New York, Ohio, Pennsylvania, West Virginia and Wisconsin. Sun Belt: Arizona, California, Florida,
New Mexico and Nevada. Other Southern all other former members of the Confederacy. Other Northern all other Union states during the Civil War

Rust Belt Sun Belt Other North Other South

Notes: Internal in-migration to each destination region by source region from 1960-2000; internal migration includes

all movements of people between states within the United States and excludes international migration.

S.6.3 Gravity in Trade and Migration
In this section of the Online Supplement, we show that bilateral �ows of goods and migrants

between U.S. states both exhibit strong gravity equations, as predicted by our theoretical frame-

work.

We begin with the gravity equation for the bilateral value of trade in goods, where we model

bilateral trade costs as a constant elasticity function of bilateral geographical distance, measured

as the Great Circle distance between the population centers of states. First, we regress the log

bilateral value of trade on origin and destination �xed e�ects, and generate the residuals. Second,
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we regress log bilateral geographical distance on origin and destination �xed e�ects, and generate

the residuals. Third, we display the two sets of residuals against one another and the linear

regression relationship between them, using the Frisch-Waugh-Lovell theorem. As shown in

Figure S.6.3, we �nd a strong, negative and statistically signi�cant and approximately log linear

conditional correlation between the bilateral value of trade and bilateral geographical distance,

consistent with our model’s gravity equation predictions for goods trade.

Figure S.6.3: Gravity Equation for the Bilateral Value of Goods Trade in 2017
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Note: Slope coefficient: -1.2478; standard error: 0.0210; R-squared: 0.6891.

Notes: Conditional correlation between the log bilateral value of goods trade between U.S. states and the log of

bilateral distance between the population centers of U.S. states; residual log trade value and residual log distance

from conditioning on origin and destination �xed e�ects.

We next turn to the gravity equation for bilateral migration �ows, where we again model

bilateral migration costs as a constant elasticity function of bilateral geographical distance. First,

we regress log bilateral migration on origin and destination �xed e�ects, and generate the residu-

als. Second, we regress log bilateral geographical distance on origin and destination �xed e�ects,

and generate the residuals. Third, we display the two sets of residuals against one another and

the linear regression relationship between them, using the Frisch-Waugh-Lovell theorem. As

shown in Figure S.6.4, we �nd a strong, negative and statistically signi�cant and approximately

log linear conditional correlation between bilateral migration and bilateral geographical distance,

consistent with our model’s gravity equation predictions for migration �ows.
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Figure S.6.4: Gravity Equation for Bilateral Migration in 2000
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Note: Slope coefficient: -1.2543; standard error: 0.0186; R-squared: 0.7847.

Notes: Conditional correlation between log bilateral migration �ows between U.S. states and the log of bilateral dis-

tance between the population centers of U.S. states; residual log migrants and residual log distance from conditioning

on origin and destination �xed e�ects.

Taken together, these results con�rm that the gravity equation is a strong empirical feature

of both bilateral goods trade and bilateral migration �ows between U.S. states, as predicted by

our theoretical framework.

S.6.4 Real Interest Rate
Our baseline speci�cation develops a tractable theoretical framework for incorporating forward-

looking investment into a dynamic discrete choice migration model that overcomes the challenge

of a high-dimensional state space. We assume that capital is geographically immobile once in-

stalled, and that landlords can only invest in their own location, which generates gradual ad-

justment in local capital because of consumption smoothing. While adjustment costs provide

an alternative potential explanation for gradual adjustment in local capital, our approach is an-

alytically tractable, and we show in this section that for standard values of model parameters it

implies only small di�erences across locations in the real rental rate in terms of the consumption

good along the transition path to steady-state.

We �rst use our inversion of the non-linear model from our generalization of dynamic exact-

hat algebra in Proposition 2 in the paper to recover the implied empirical distribution of produc-

tivities, amenities, trade costs and migration costs, as discussed in Online Supplement S.2.1. We

next solve for the steady-state of the non-linear model implied by the 1990 values of these funda-

mentals {zi, bi, τni, κni}. Starting from this steady-state, we then undertake counterfactuals for the

economy’s transition path in response to the empirical distribution of productivity shocks from

1990-2000, which includes substantial changes in relative productivity ranging from around -30

to 30 percent. We solve for this transition path in both the non-linear model using Proposition 2

in the paper and the linearized model using Proposition 3 in the paper.
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Figure S.6.5: Real Rental Rate along the Transition Path to Steady-State

Note: We solve for the steady-state of the non-linear model implied by the 1990 values of these fundamentals {zi,
bi, τni, κni}. Starting from this steady-state, we then undertake counterfactuals for the economy’s transition path

in response to the empirical distribution of productivity shocks from 1990-2000, which includes substantial changes

in relative productivity ranging from around -30 to 30 percent. We solve for this transition path in both the non-

linear model using Proposition 2 in the paper and the linearized model using Proposition 3 in the paper. The �gure

shows the real rental rate in terms of the consumption index (rit/pit) in each U.S. state along the transition path to

steady-state.

In Figure S.6.5, we show the real rental rate in terms of the consumption index (rit/pit) in each

U.S. state along the transition path to steady-state, where the solid blue line shows the non-linear

model solution and the dashed red line shows the linearized solution. Despite the substantial

changes in relative productivity for these decadal shocks from 1990-2000, we �nd relatively small

di�erences in the real rental rate (rit/pit) across locations along the transition path.

In steady-state, there is common real rental rate in terms of the consumption good across

all locations: r∗i /p
∗
i = r∗/p∗ = (1− β (1− δ)) /β. In Online Supplement S.4.8, we develop an

extension of this baseline speci�cation, in which we allow landlords to invest in other locations

subject to �nancial frictions, and bilateral investment �ows satisfy a gravity equation.

S.6.5 Convergence to Steady-state
In Sections 5.2-5.3 of the paper, we provide evidence on the decline in the rate of income conver-

gence across U.S. states over time. In this section of the Online Supplement, we provide additional

evidence on patterns of income convergence over time. In Subsection S.6.5.1, we present evidence

on the evolution of steady-state population gaps for each state over time. In Subsection S.6.5.2,

we provide further evidence on the relationship between predicted population growth based on
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initial conditions and actual population growth.

S.6.5.1 Steady-State Gaps in Population Shares

We compute steady-state gaps in population shares using the following two steps. First, we

compute the implied steady-state population share for each U.S. state and year, by using our gen-

eralization of exact-hat algebra in Proposition 2 in the paper to solve for the economy’s transition

path in the absence of further changes in fundamentals, given the observed values of the labor

and capital state variables in each year. Second, we calculate the implied steady-state gap in pop-

ulation shares for each year separately, measured as the log-ratio of the actual population share

to the steady-state population share.

In Figure S.6.6, we display the evolution of these steady-state gaps for each U.S. state using

the solid gray lines. We also show the population-share weighted average of these steady-state

gaps using the black dashed lines for our four broad geographical regions: The Rust Belt; the

Sun Belt; Other Northern States; and Other Southern States. Three main features are apparent.

First, the population shares of the Rust Belt states were substantially above steady-state, and

the population shares of the Sun Belt states were substantially below steady-state, even at the

beginning of our sample period. Second, Rust Belt states move substantially further away from

steady-state from the mid-1960s until around 1980, which in the model is driven by shocks to

fundamentals, such as productivity and amenities. Third, both individual states and these four

geographical regions remain persistently away from steady-state for decades, consistent with

slow convergence towards steady-state.

We �nd that these deviations from steady-state for both Rust and Sun Belt states are substan-

tial. For example, in 1975, the population-weighted average of the gaps of population shares from

steady-state for the Rust Belt and Sun Belt groups of states are 99 and -41 percent, respectively.

By 2015, the corresponding population-weighted averages of the gaps of population shares from

steady-state are 41 and -18 percent, respectively.
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Figure S.6.6: Steady-State Gaps of Population Shares for U.S. States over Time
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Note: Gray lines show gaps of population shares from steady-state for each U.S. state and year; black dashed lines

show the population-weighted average of these steady-state gaps for the four geographical regions of the Rust Belt,

Sun Belt, Other Northern States and Other Southern States, as de�ned in the main text; we compute the

steady-state population share for each U.S. state and year by using our generalization of exact-hat algebra in

Proposition 2 in the paper to solve for the economy’s transition path in the absence of further changes in

fundamentals, given the observed values of the labor and capital state variables in each year; gap from steady-state

is measured as the log-ratio of actual population share to steady-state population share.

S.6.5.2 Predicted Population Growth Based on Initial Conditions

In Section 5.3 of the paper, we provide evidence that much of the observed decline in the rate

of income convergence is explained by initial conditions at the beginning of our sample period

rather than by any subsequent fundamental shocks. In this section of the Online Supplement,

we provide further evidence on the role of initial conditions in explaining subsequent growth,

by regressing actual population growth on predicted population growth based on convergence

towards an initial steady-state with unchanged fundamentals. Importantly, predicted population

growth is calculated using only the initial values of the labor and capital state variables and the

initial trade and migration share matrices, and uses no information about subsequent population

growth.

In Figure S.6.7a, we display actual population growth from 1965-2015 against predicted pop-

ulation growth based on convergence to an initial steady-state with 1965 fundamentals. The

predictions based on convergence to an initial steady-state with unchanged fundamentals use

only the 1964 and 1965 values of the state variables (population and the capital stock in each

location) and the 1965 values of the trade and migration share matrices. Each circle in the �gure

corresponds to a di�erent US state and the sizes of the circles are proportional to the initial pop-

ulation size of each state. The red line shows the linear �t between the two variables. We �nd a

strong positive and statistically signi�cant relationship between actual and predicted population

growth, with a regression slope (standard error) of 0.64 (0.18) and R-squared of 0.19.

As discussed above, we �nd the largest contribution from shocks to fundamentals to the evo-

lution of state population shares over time at the beginning of our sample period. From 1975 on-
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wards, we �nd that predicted population growth based on convergence to an initial steady-state

with unchanged fundamentals has even greater predictive power for actual population growth.

In Figure S.6.7b, we display actual population growth from 1975-2015 against predicted popu-

lation growth based on convergence to an initial steady-state with 1975 fundamentals. We �nd

an even stronger positive and statistically signi�cant relationship between actual and predicted

population growth, with a regression slope (standard error) of of 0.99 (0.095) and R-squared of

0.82. We �nd a similar pattern of results for later periods, such as 1985-2015 and 1995-2015.

Figure S.6.7: Actual Growth in Population Shares Versus Predicted Growth in Population Shares

Based on Convergence to an Initial Steady-State with Unchanged Fundamentals
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Note: Slope coefficient: 0.6362; standard error: 0.1773; R-squared: 0.1916.

(b) 1975-2015
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Note: Slope coefficient: 0.9896; standard error: 0.0951; R-squared: 0.8165.

Note: Vertical axis is actual log population growth; horizontal axis is predicted log population growth based on

convergence to the implied initial steady-state assuming no further changes in fundamentals; left-panel shows

results for 1965-2015; right-panel shows results for 1975-2015; size of circles for each US state is proportional to

initial population size.

In Table S.6.1 below, we show that these results are robust to controlling for the initial level

and growth of economic activity. In Column (1), we augment the regression between actual

and predicted population growth from 1965-2015 in Figure S.6.7a with the initial log population

in 1965, initial log capital stock in 1965 and the initial growth in population from 1965-6. We

continue to �nd a positive and statistically signi�cant relationship between actual and predicted

population growth, with the inclusion of these additional control variables having relatively little

impact on the estimated coe�cient and regression R-squared. In Columns (2)-(4), we show that

we �nd the same pattern of results for 1975-2015, 1985-2015 and 1995-2015, with somewhat larger

slope coe�cients and R-squared, which re�ects the smaller residual contributions from shocks to

fundamentals for these later time periods. Therefore, the predictive power of initial convergence

towards steady-state does not simply re�ect mean reversion, because we �nd substantial inde-

pendent information in this variable, even after controlling for initial levels of population and the

capital stock and initial population growth.
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Table S.6.1: Predictive Power of Convergence Towards Initial Steady-State with Unchanged Fun-

damentals for Population Growth

(1) (2) (3) (4)

Outcome: Base-year - 2015 pop. log growth 1965 1975 1985 1995

Base-year - 2015 predicted pop. growth 0.521** 0.892*** 1.179*** 0.735**

(0.258) (0.163) (0.224) (0.346)

Log base-year population -0.113** 0.0235 -0.0180 0.00155

(0.0556) (0.0204) (0.0197) (0.00818)

Log base-year K-L ratio 0.194 -0.108 -0.119** 0.0590**

(0.165) (0.0800) (0.0584) (0.0281)

Base-year pop. growth rate 10.77 5.573 1.952 4.396

(6.649) (5.505) (3.025) (3.613)

N 49 49 49 49

R
2

0.341 0.783 0.722 0.826

Note: Dependent variable is actual log population growth between each base year and 2015; base years include

1965, 1975, 1985 and 1995 (columns 1-4, respectively); predicted log population growth is predicted based on

convergence to the implied initial steady-state at the beginning of each base year using equation (25) in the paper;

log base-year population is log population at each base-year; log base-year K-L ratio is the log capital-labor ratio at

each base-year; pop. growth rate is the rate of population growth between each base-year and the subsequent year.

S.6.6 Spectral Analysis
In Section 5.4 of the paper, we use our spectral analysis to provide evidence on the role of cap-

ital accumulation and migration dynamics in shaping income convergence and the persistent

and heterogeneous impact of local shocks. In this section of the Online Supplement, we report

additional empirical results for this spectral analysis.

In Subsection S.6.6.1, we compare half lives of convergence to steady-state computed using

transition matrices (P ) based on steady-state versus observed trade and migration share matrices

(S, T , D, E). In Subsection S.6.6.2, we report additional empirical results on the relationship

between the speed of convergence to steady-state and the correlation across locations between

the steady-state gaps of the labor and capital state variables.

In Subsection S.6.6.3, we present further empirical results on the relationship between the

speed of convergence to steady-state and the correlation across locations between productivity

and amenity shocks. In Subsection S.6.6.4, we give additional results for the impulse response of

the labor and capital state variables for empirical shocks to the relative productivity of Michigan

(as a Rust Belt state) and the relative amenities of Arizona (as a Sun Belt state).

S.6.6.1 Steady-State Versus Observed Transition Matrices

In Section 5.4 of the paper, we use Propositions 3-5 to compute half lives of convergence to steady-

state, as determined by eigenvalues of the transition matrix. In Figure 3 in the paper, we show

these half lives for the entire spectrum of 2N eigenvalues, sorted in terms of increasing half life.
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Each eigencomponent with a non-zero eigenvalue corresponds to an eigen-shock for which the

initial impact of the shock on the state variables is equal to an eigenvector of the transition matrix

(uh = Rf̃(h)).

In Figure 3 in the paper, we display results based on the transition matrix (P ) computed

using the 1975 steady-state trade and migration share matrices (S, T ,D, E). We compute these

steady-state matrices using using our dynamic exact-hat algebra results from Proposition 2 in the

paper. In Figure S.6.8 below, we reproduce these half-lives of convergence to steady-state based

on the 1975 steady-state transition matrix, as shown by the red dashed line. As a robustness

check, Figure S.6.8 also displays results based on the transition matrix (P ) computed using the

1975 observed trade and migration share matrices (S, T , D, E), as shown by the black solid

line. We �nd half lives of convergence to steady-state that are barely distinguishable from one

another using these two approaches, which re�ects the fact that the steady-state and observed

trade and migration share matrices (S, T , D, E) are strongly correlated with one another. We

focus on 1975, because U.S. states are on average furthest from steady-state in this year, but we

�nd a similar pattern of results for other years.

Therefore, we �nd that our results for the half life of convergence to steady-state are not

sensitive to whether we use the steady-state or observed transition matrices, or to the precise

year for which we compute these transition matrices.

Figure S.6.8: Half Lives of Convergence to Steady-State using Actual Versus Steady-State Trade

and Migration Share Matrices

Note: half lives of convergence to steady-state for the full spectrum of eigen-shocks, computed using transition

matrices (P ) based on either the 1975 steady-state trade and migration share matrices (red dashed line), or the 1975

observed trade and migration share matrices (black solid line); half lives of convergence computed using Proposition

5 in the paper.
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S.6.6.2 Speed of Convergence and Steady-State Gaps

In Figure 3 in the paper, we show half lives of convergence to steady-state for the entire spectrum

of 2N eigenvalues, sorted in terms of increasing half life. Each eigencomponent with a non-zero

eigenvalue corresponds to an eigen-shock for which the initial impact of the shock on the state

variables is equal to an eigenvector of the transition matrix (uh = Rf̃(h)). As in our simple

example of two symmetric regions in Section 3.3 in the paper, we �nd that eigencomponents for

which the gaps of the labor and capital state variables from steady-state are positively correlated

across locations have slower speeds of convergence to steady-state than eigencomponents for

which these steady-state gaps are negatively correlated across locations.

In Figure S.6.9 below, we provide further evidence on this close relationship between the speed

of convergence and the correlation between the gaps of the labor and capital state variables from

steady-state. On the vertical axis, we display the half-life of convergence to steady-state for

each eigen-shock with a non-zero eigenvalue, as determined by this eigenvalue (λh). On the

horizontal axis, we show the slope coe�cients from regressions across locations of the labor

gap from steady-state (
˜̀
h) on the capital gap from steady-state (k̃h) for each eigen-shock, as

re�ected in the eigenvector summarizing the initial impact of the shock on the state variables

(uh = Rf̃(h)). We display results for the year 2000, but �nd the same pattern for each year of

our sample period. Consistent with the results in Figure 3 in the paper, we �nd a strong positive

relationship between the half-life of convergence to steady-state and the correlation between the

gaps from steady-state for the two state variables. We observe low half-lives (fast convergence)

for negative correlations and high half-lives (slow convergence) for positive correlations.

Figure S.6.9: Half-lives of Convergence to Steady-State and the Regression Slope Coe�cient Be-

tween the Labor and Capital Gaps from Steady-State
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Note: Half-life on the vertical axis corresponds to the time in years for the state variables to converge half of the

way towards steady-state for an eigen-shock in 2000, for which the initial impact of the shock to productivity and

amenities on the state variables (Rf̃(h)) corresponds to an eigenvector (uh) of the transition matrix (P ), as

determined by the corresponding eigenvalue (λh); the horizontal axis shows slope coe�cients from regressions

across locations of the labor gap (
˜̀
h) from steady-state on the capital gap (k̃h) from steady-state for each

eigen-shock in 2000 (uh = Rf̃(h)); each dot corresponds to a di�erent eigencomponent in 2000.

128



S.6.6.3 Speed of Convergence and Fundamental Shocks

In Figure S.6.9 in the previous subsection, we examined the relationship between the speed of

convergence and the initial impact of the eigen-shock on the state variables (as captured by the

eigenvector uh = Rf̃(h)). In contrast, we now turn to consider the corresponding relationship

between the speed of convergence and the pattern of productivity and amenity shocks captured

by each eigen-shock (using f̃(h) = R−1uh).

In the left panel of Figure S.6.10, we again use the vertical axis to display the half-life of conver-

gence to steady-state for each eigen-shock, as determined by the associated eigenvalue (λh). On

the horizontal axis, we show the slope coe�cients from regressions across locations of the pro-

ductivity shocks (z̃(h)) on the amenity shocks (b̃(h)) for each eigen-shock (using f̃(h) = R−1uh).

Again we display results for the year 2000, but �nd the same pattern of results for each year of

our sample period. We �nd a strong, positive relationship between the half-life of convergence to

steady-state and the correlation between the productivity and amenity shocks, with low half-lives

(fast convergence) for negative correlations, and high half-lives (slow convergence) for positive

correlations.

This pattern of results again highlights the interaction between the capital and labor adjust-

ment margins in the model. On the one hand, a positive productivity shock directly raises the

marginal productivity of both capital and labor in the production technology, which raises the

new steady-state values of labor and capital relative to their initial values. On the other hand, a

positive amenity shock directly raises the expected value of living in a location, which increases

the new steady-state value of labor relative to its initial value. Therefore, a positive correlation

between these two fundamental shocks induces a positive correlation between the labor and cap-

ital steady-state gaps, which in turn implies slow convergence to steady-state. In contrast, a

strong negative correlation between these shocks is required in order to induce a negative cor-

relation between the labor and capital steady-state gaps, and hence generate fast convergence to

steady-state.

S.6.6.4 Impulse Responses

In Section 5.4 of the paper, we provide evidence on the persistent and heterogeneous impact of lo-

cal shocks by considering individual empirical shocks to productivity and amenities in individual

locations. We examine impulse response functions for the labor and capital state variables in each

U.S. state following a local shock, starting from the steady-state implied by 1975 fundamentals.

Motivated by the observed reallocation of economic activity from the Rust Belt to the Sun Belt,

we report results for the empirical shock to relative productivity in Michigan from 1975-2015 (a

15 percent decline) and the empirical shock to relative amenities in Arizona over this same period

(a 34 percent rise).

In Figure 6 in Section 5.4 of the paper, we report the impulse response of the population share

of each U.S. state for the empirical decline in Michigan’s relative productivity from 1975-2015.

In Section S.6.6.5 below, we provide the corresponding impulse response of the capital stocks in

each U.S. state for this same empirical shock to Michigan’s relative productivity. In Section S.6.6.6

below, we report analogous impulse responses of the population share and capital stock in each

U.S. state for the empirical increase in Arizona’s relative amenities from 1975-2015.
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Figure S.6.10: Half-lives of Convergence to Steady-State and the Regression Slope Coe�cient

Between the Productivity and Amenity Shocks
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Note: Half-life on the vertical axis corresponds to the time in years for the state variables to converge half of the

way towards steady-state for an eigen-shock in 2000 with a non-zero eigenvalue, for which the initial impact of the

shock to productivity and amenities on the state variables (Rf̃(h)) corresponds to an eigenvector (uh) of the

transition matrix (P ), as determined by the corresponding eigenvalue (λh); the horizontal axis shows slope

coe�cients from regressions across locations of the productivity shocks (z̃(h)) on the amenity shocks (b̃(h)) for

each eigen-shock in 2000 (f̃(h)); each dot corresponds to a di�erent eigencomponent in 2000.

S.6.6.5 Michigan Productivity Shock

In this section of the Online Supplement, we examine the dynamic response of the capital state

variables in response to the empirical relative decline in Michigan’s productivity from 1975-2015.

Figure S.6.11 is analogous to Figure 6 in the paper, but shows the impulse responses of the capital

stocks (instead of the population shares) of each U.S. state in response to this empirical shock to

Michigan’s relative productivity.

We �nd a similar pattern of results for capital stocks as for population shares in the paper. In

the top-left panel, we show the log deviation of Michigan’s capital stock from the initial steady-

state along the transition path to the new steady-state. We �nd that the decline in Michigan’s

relative productivity leads to the decumulation of capital, which occurs gradually over time, be-

cause of migration frictions and gradual adjustment to capital.

In the top-right panel, we show the corresponding log deviations of capital stocks from the

initial steady-state for all other states. We indicate Michigan’s neighbors using the blue lines

with circle markers and all other states using the gray lines. As for population shares in the

paper, we �nd that the model can generate rich non-monotonic dynamics in capital stocks for

individual states. Initially, the decline in Michigan’s productivity raises the capital stocks of its

neighbors, since workers face lower migration costs in moving to nearby states, and the resulting

increase in population induces the accumulation of capital. However, as the economy gradually

adjusts towards the new steady-state, the capital stocks in Michigan’s neighbors begins to decline,
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and can even fall below their values in the initial steady-state. Intuitively, workers gradually

experience favorable idiosyncratic mobility shocks for states further away from Michigan, which

decreases population and reduces the accumulation of capital in neighboring states. Additionally,

the decline in Michigan’s productivity reduces the size of its market for neighboring locations,

which can make those neighboring locations less attractive for workers and reduce the capital

stock in the new steady-state. The capital stocks in all other states increase in the new steady-

state relative to the initial steady-state.

In the middle panel, we show the log deviations from steady-state for the component of capital

stocks attributed to bottom-88 eigencomponents with relatively fast convergence to steady-state.

In the middle-left panel, the solid black line shows the overall log deviation of Michigan’s cap-

ital stock from steady-state (the same as in the top-left left panel), while the dashed black line

indicates the component due to the bottom-88 eigencomponents. In the middle-right panel, the

solid blue line with circle markers shows the overall log deviation from steady-state of the cap-

ital stocks of Michigan’s neighbors (same as in the top-right panel); the dashed blue line with

circle markers indicates the component of these neighbors’ capital stocks due to the bottom-88

eigencomponents; the gray lines represent the capital stocks of all other states (the same as in

the top-right panel). Comparing the two sets of blue lines in the middle-right panel, these eigen-

components featuring fast convergence towards steady-state drive the initial rise in the capital

stocks of Michigan’s neighbors.

In the bottom panel, we show the log deviations from steady-state for the component of capital

stocks attributed to the top-10 eigencomponents with relatively slow convergence to steady-state.

In the bottom-left panel, the solid black line shows the overall log deviation of Michigan’s capital

stock from steady-state (the same as in the top-left panel), while the dashed black line indicates

the component due to the top-10 eigencomponents. In the bottom-right panel, the solid blue

line with circle markers shows the overall log deviation from steady-state of the capital stocks of

Michigan’s neighbors (same as in the top-right panel); the dashed blue line with circle markers

indicates the component of these neighbors’ capital stocks due to the top-10 eigencomponents;

the gray lines represent the capital stocks of all other states (the same as in the top-right panel).

Comparing the two sets of blue lines in the bottom-right panel, these eigencomponents featur-

ing slow convergence towards steady-state drive the ultimate reduction in the capital stocks of

Michigan’s neighbors. Therefore, the non-monotonic dynamics for Michigan’s neighbors in the

top-right panel re�ect the changing importance over time of the slow and fast-moving compo-

nents of the economy’s adjustment to the productivity shock in the middle-right and bottom-right

panels.

S.6.6.6 Arizona Amenities Shock

In this section of the Online Supplement, we examine the dynamic response of the population

and capital state variables in response to the empirical relative increase in Arizona’s amenities

from 1975-2015.

Population Impulse Response Figure S.6.12 is analogous to Figure 6 in the paper, but

shows the impulse responses of the population shares of each U.S. state in response to this em-

pirical shock to Arizona’s relative amenities (instead of the empirical shock to Michigan’s relative

productivity). In the top-left panel, we show the log deviation of Arizona’s population share from

the initial steady-state along the transition path to the new steady-state. We �nd that the increase
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Figure S.6.11: Impulse Response of Capital Stocks for a 15 Percent Decline in Productivity in

Michigan

(a) Impulse Response of Overall Capital Stocks.

0 25 50 75 100
Time since shock

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Lo
g.

 d
ev

ia
tio

n 
fro

m
 in

iti
al

 st
ea

dy
 st

at
e

MI capital

0 25 50 75 100
Time since shock

0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Lo
g.

 d
ev

ia
tio

n 
fro

m
 in

iti
al

 st
ea

dy
 st

at
e

MI neighbours capital
Other states capital

(b) Impulse Response of Capital Stocks for Eigencomponents 1-88...
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(c) Impulse Response of Capital Stocks for Eigencomponents 88-98..
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Note: Top-left panel shows overall log deviation of Michigan capital stock from steady-state (vertical axis) against

time in years (horizontal axis) for a 15 percent decline in Michigan’s productivity (its empirical relative decline

in productivity from 1975-2015); Top-right panel shows overall log deviation of other states’ capital stocks from

steady-state (vertical axis) against time in years (horizontal axis) for this shock to Michigan’s productivity; blue lines

show Michigan’s neighbors; gray lines show other states; Middle and bottom panels decompose this overall impulse

response into the contribution of eigencomponents 1-88 and 88-98, respectively.
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in Arizona’s relative amenities leads to a population in�ow, which occurs gradually over time,

because of migration frictions and gradual adjustment to capital.

In the top-right panel, we show the corresponding log deviations of population shares from

the initial steady-state for all other states. We indicate Arizona’s neighbors using the blue lines

with circle markers and all other states using the gray lines. Initially, the increase in Arizona’s

relative amenities leads a stronger decline in population for neighboring states than for other

states further away, because the migration frictions between Arizona and its neighboring states

are lower. However, as the economy gradually adjusts towards the new steady-state, the decline

in the population share of Arizona’s neighbors is ultimately smaller than for other states further

away. Intuitively, workers in other states further away gradually experience favorable idiosyn-

cratic mobility shocks for Arizona, which decreases the population share of these other states

further away. Additionally, the rise in Arizona’s population increases the size of its market for

neighboring locations by more than for other states further away.

In the middle panel, we show the log deviations from steady-state for the component of popu-

lation shares attributed to bottom-88 eigencomponents with relatively fast convergence to steady-

state. In the middle-left panel, the solid black line shows the overall log deviation of Arizona’s

population share from steady-state (the same as in the top-left left panel), while the dashed black

line indicates the component due to the bottom-88 eigencomponents. In the middle-right panel,

the solid blue line with circle markers shows the overall log deviation from steady-state of the

population shares of Arizona’s neighbors (same as in the top-right panel); the dashed blue line

with circle markers indicates the component of these neighbors’ population shares due to the

bottom-88 eigencomponents; the gray lines represent the population shares of all other states

(the same as in the top-right panel). Comparing the two sets of blue lines in the middle-right

panel, these eigencomponents featuring fast convergence drive the initially stronger decline in

population shares in Arizona’s neighbors than in other states further away.

In the bottom panel, we show the log deviations from steady-state for the component of

population shares attributed to the top-10 eigencomponents with relatively slow convergence

to steady-state. In the bottom-left panel, the solid black line shows the overall log deviation of

Arizona’s population share from steady-state (the same as in the top-left panel), while the dashed

black line indicates the component due to the top-10 eigencomponents. In the bottom-right panel,

the solid blue line with circle markers shows the overall log deviation from steady-state of the

population shares of Arizona’s neighbors (same as in the top-right panel); the dashed blue line

with circle markers indicates the component of these neighbors’ population shares due to the top-

10 eigencomponents; the gray lines represent the population shares of all other states (the same

as in the top-right panel). Comparing the two sets of blue lines in the bottom-right panel, these

eigencomponents featuring slow convergence towards steady-state drive the ultimately smaller

decline in population shares in Arizona’s neighbors than in other states further away.

Therefore, the rich overall dynamics in population shares in the top-right panel again re�ect

the changing importance over time of the slow and fast-moving components of the economy’s ad-

justment to this shock to relative amenities in the middle-right and bottom-right panels, although

we �nd less evidence of non-monotonic dynamics for individual states than for the empirical

shock to Michigan’s relative productivity above.
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Figure S.6.12: Impulse Response of Population Shares for a 34 Percent Increase in Amenities in

Arizona

(a) Impulse Response of Overall Population Shares
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(b) Impulse Response of Population Shares for Eigencomponents 1-88.
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(c) Impulse Response of Population Shares for Eigencomponents 88-98
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Note: Top left panel shows overall log deviation of Arizona’s population share from steady-state (vertical axis)

against time in years (horizontal axis) for a 34 percent increase in amenities in Arizona (its empirical relative increase

in amenities from 1975-2015); Top right panel shows overall log deviation of other states’ population shares from

steady-state (vertical axis) against time in years (horizontal axis) for this shock to Arizona’s amenities; blue lines

show Arizona’s neighbors; gray lines show other states; Middle panel decomposes the overall impulse response

into the contribution of eigencomponents 1-88; Bottom panel decomposes the overall impulse response into the

contribution of eigencomponents 88-98. 134



Figure S.6.13: Impulse Response of Capital Stocks for a 34 Percent Increase in Amenities in

Arizona

(a) Impulse Response of Overall Capital Stocks
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(b) Impulse Response of Capital Stocks for Eigencomponents 1-88.
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(c) Impulse Response of Capital Stocks for Eigencomponents 88-98
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Note: Top left panel shows overall log deviation of Arizona’s capital stock from steady-state (vertical axis) against

time in years (horizontal axis) for a 34 percent increase in amenities in Arizona (its empirical relative increase in

amenities from 1975-2015); Top right panel shows overall log deviation of other states’ capital stocks from steady-

state (vertical axis) against time in years (horizontal axis) for this shock to Arizona’s amenities; blue lines show

Arizona’s neighbors; gray lines show other states; Middle panel decomposes the overall impulse response into the

contribution of eigencomponents 1-88; Bottom panel decomposes the overall impulse response into the contribution

of eigencomponents 88-98. 135



Capital Stock Impulse Response Figure S.6.13 is analogous to Figure S.6.11 in this Online

Supplement, but shows the impulse responses of the capital stocks of each U.S. state in response to

this empirical shock to Arizona’s relative amenities (instead of the empirical shock to Michigan’s

relative productivity). We again �nd persistent and heterogeneous e�ects of the shock across

states. Consistent with the results for population shares above, we �nd that individual states

can experience rich dynamics, because of the changing importance over time of the slow and

fast-moving components of the economy’s adjustment to the shock.

S.6.6.7 Comparing the Linearized and Non-Linear Models

We have so far used our spectral analysis to provide an analytical characterization of the speed of

convergence to steady-state and the interaction between the capital and labor adjustment mar-

gins. While a caveat is that these analytical results are based on a linearization that is only exact

for small shocks (up to �rst-order), we now show that this linearization provides a good approx-

imation to the transition path of the non-linear model for empirically-reasonable shocks, such as

decadal changes in relative productivity.

We �rst use our inversion of the non-linear model from our generalization of dynamic exact-

hat algebra in Proposition 2 in the paper to recover the implied empirical distribution of produc-

tivities, amenities, trade costs and migration costs, as discussed in Online Supplement S.2.1. We

next solve for the steady-state of the non-linear model implied by the 1990 values of these funda-

mentals {zi, bi, τni, κni}. Starting from this steady-state, we then undertake counterfactuals for the

economy’s transition path in response to the empirical distribution of productivity shocks from

1990-2000, which includes substantial changes in relative productivity ranging from around -30

to 30 percent. We solve for this transition path in both the non-linear model using Proposition 2

in the paper and the linearized model using Proposition 3 in the paper.

In Figure S.6.14, we show the economy’s transition path for population shares (left panel)

and population relative to the initial steady-state (right panel) for each US state. In both panels,

the solid blue line denotes the non-linear model, and the red dashed-line corresponds to the

linearized model. We �nd that the two sets of predictions track one another relatively closely

along the transition path of more than one hundred years, consistent with the linearized model

providing a good approximation to the solution of the non-linear model. This approximation

is somewhat better for population shares (left panel) than for population relative to the initial

steady-state (right panel), but remains close in both cases. We �nd a similar pattern of results for

the capital stock and for the response of both state variables to amenity shocks.
6

These results are consistent with those in Baqaee and Farhi (2019, 2020). In the closed econ-

omy, the �rst-order approximation for the impact of productivity shocks is exact for a static

economy with Cobb-Douglas preferences and production technologies. An implication is that

this �rst-order approximation is also exact for the integrated world equilibrium of an economy

with Cobb-Douglas preferences and production technologies, in which both goods and factors are

perfectly mobile across countries (since the world is a closed economy). We depart from such an

economy in three main respects: (i) Although we assume a Cobb-Douglas production technology,

we assume constant elasticity of substitution (CES) preferences; (ii) We allow trade and migration

6
While omitted in the interests of brevity, we also �nd a close relationship between the predictions of our lin-

earization and the non-linear model solution for changes in steady-states, with a regression slope coe�cient of 1.003

and a coe�cient of correlation of 0.999. Following the approach of Kleinman et al. (2020) for a static trade model,

we can also derive analytical bounds for the quality of the approximation for changes in steady-state.
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frictions between locations; (iii) We incorporate capital accumulation and migration dynamics.

Nonetheless, in practice, we �nd that the �rst-order approximation for the impact of productivity

and amenity shocks provides a good approximation to the full non-linear model solution, even

for empirically relevant shocks such as decadal changes in the relative productivity of locations.

To show large second-order terms, Baqaee and Farhi (2019, 2020) consider an economy with a

nested constant elasticity of substitution (CES) network structure, with elasticities of substitu-

tion that di�er from the Cobb-Douglas case of a unitary elasticity of substitution. Therefore, our

results are consistent with the �ndings that the second-order terms can be large in such a nested

CES economy, since we assume a di�erent (Cobb-Douglas) production structure.

Figure S.6.14: Transition Path Predictions of Our Linearization and the Full Non-Linear Model

Solution for Counterfactual Changes in Productivity

(a) Transition Path for Population Shares

...

0 250 500 750 1000
Year

0.00

0.02

0.04

0.06

0.08

Po
po

lu
at

io
n

Non-linear solution
Linear approximation - initial SS matrices

(b) Transition Path for Population Relative to Initial

Steady-State Levels
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Note: We �rst our generalization of dynamic exact-hat algebra in Proposition 2 in the paper to recover the

empirical distribution of productivities, amenities, trade costs and migration costs. We next solve for the

steady-state in the full non-linear model implied by the 1990 values of these fundamentals. Starting from this

steady-state, we then undertake counterfactuals for the economy’s transition path in response to the empirical

distribution of productivity shocks from 1990-2000. We solve for the economy’s transition path in both the

non-linear model using Proposition 2 in the paper and the linearized model using Proposition 3 in the paper.

S.6.7 Implied Fundamentals
In this section of the Online Supplement, we provide further evidence on the implied location

fundamentals (zit, bit, τnit, κgit) from inverting the full non-linear model .

Empirical Distribution of Fundamental Shocks We make the conventional assumption of

perfect foresight and use our extension of existing dynamic exact-hat algebra approaches to in-

corporate forward-looking capital investments from Proposition 2 in the paper. We solve for the

unobserved changes in fundamentals from the general equilibrium conditions of the model, using

the observed data on bilateral trade and migration �ows, population, capital stock and labor in-

come per capita, as discussed in Section S.2.1 above. We recover these unobserved fundamentals,

without making assumptions about where the economy lies on the transition path or the speci�c

trajectory of future fundamentals.

In the left and right panels of Figure S.6.15, we show the recovered empirical distributions

of relative changes in productivity (ẑi = zi2000/zi1990) and amenities (̂bi = bi2000/bi1990) across
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U.S. states from 1990-2000, where both variables are normalized to have a geometric mean of

one. We �nd that relative changes in productivity and amenities are clustered around their geo-

metric mean of one, but individual states can experience substantial decadal changes in relative

productivity and amenities from around -30 to 30 percent.

Figure S.6.15: Relative Productivity and Amenity Shocks from 1990-2000 from our Model Inver-

sion

(a) Productivity Shocks (ẑi = zi2000/zi1990) (b) Amenity Shocks (̂bi = bi2000/bi1990)

Note: Histograms of the distributions of relative changes in productivity (ẑi = zi2000/zi1990) and amenities

(̂bi = bi2000/bi1990) from 1990-2000 from our model inversion, as discussed in Online Supplement S.2.1. Relative

changes in productivity (ẑi = zi2000/zi1990) and amenities (̂bi = bi2000/bi1990) are both normalized to have a

geometric mean of one.

In Figure S.6.16, we display relative productivity and amenities for our four geographical

groupings of states, where the values for each group are population-weighted averages of those

for each state within that region. We �nd substantial changes in both relative productivity and

amenities over time. From the top-left panel, the Rust Belt experiences a substantial decline in its

relative productivity in the 1960s and 1970s, consistent with the argument in Holmes (1988) and

Alder, Legakos and Ohanian (2019) that high unionization in these states during this time period

could have retarded productivity growth relative for example to “right to work” states in Other

Southern States. From the top-right panel, the rise in the population and income shares of the

Sun Belt in previous �gures is largely driven by an increase in its relative amenities. In contrast,

relative productivity in the Sun Belt falls over time. From the bottom-right panel, the Other

Southern States experience the largest increases in relative productivity over time, consistent

with technological catch-up as well as potentially with more pro-business policy environments.

Finally, from the bottom-left panel, both relative productivity and amenities are comparatively

�at in the Other Northern States.
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Figure S.6.16: Relative Productivity and Amenities over Time by Region
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Rust Belt: Illinois, Indiana, Michigan, New York, Ohio, Pennsylvania, West Virginia and Wisconsin. Sun Belt: Arizona, California, Florida,
New Mexico and Nevada. North and South definitions based on Federal and Confederacy states

 Productivity  Amenities

Notes: Productivity and amenities for each state are recovered from the inversion of the full non-linear model in

Online Supplement S.2.1; productivity and amenities are measured in relative terms and are normalized to have a

geometric mean of one across U.S. states in each year; productivity and amenities for each group of states are the

population-weighted average of their values for each state within that group.

In Figure S.6.17, we show the relationship between our solutions for bilateral trade and mi-

gration frictions and bilateral geographical distance. We �nd a strong positive, statistically sig-

ni�cant and approximately log linear relationship between these variables, consistent with the

model’s gravity equation predictions. In the interests of brevity, we show results for the year

2000, but we �nd the same pattern of results for all years of our sample period.
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Figure S.6.17: Recovered Trade and Migration Frictions

(a) Bilateral Trade Frictions Versus Distance
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Note: Slope coefficient: 0.3405; standard error: 0.0032; R-squared: 0.0759.

(b) Bilateral Migration Frictions Versus Distance

5

10

15

20

25

Lo
g.

 B
ila

te
ra

l M
ig

ra
tio

n 
Fr

ic
tio

n 
(2

00
0)

3 4 5 6 7 8
Log. Distance

Note: Slope coefficient: 2.0543; standard error: 0.0110; R-squared: 0.1908.

Note: Bilateral trade and migration frictions recovered from the inversion of the full non-linear model in Online

Supplement S.2.1; distance corresponds to the geographical (Great Circle) distance between the centroids of bilateral

pairs of US states.

S.6.8 Multi-Sector Extension
In this section of the Online Supplement, we provide further details on our multi-sector extension

that is discussed in Section 5.5 of the paper.

S.6.8.1 Data and Parameterization

For our multi-sector extension from 1999-2015, we construct data for the 48 contiguous U.S. states,

43 foreign countries and 23 economic sectors, yielding a total of 2,093 region-sector combinations,

where a region is either a U.S. state or a foreign country. We allow for trade across all region-

sectors, and for migration across all U.S. states and sectors. We obtain sector-level data on value

added, employment and the capital stock for each U.S. state from the national economic accounts

of the Bureau of Economic Analysis (BEA).

We construct migration �ows between U.S. states in each sector by combining data from

the U.S. population census, American Community Survey (ACS), and Current Population Survey

(CPS), as discussed in Online Supplement S.7. We use the value of bilateral shipments between

U.S. states in each sector from the Commodity Flow Survey (CFS), interpolating between report-

ing years. We measure foreign trade for each U.S. state and sector using the data on foreign

exports by origin of movement (OM) and foreign imports by state of destination (SD) from the

U.S. Census Bureau.
7

For each foreign country and sector, we obtain data on value added, em-

ployment and the capital stock from the World Input-Output Tables (WIOT).

7
The Census Bureau constructs these data from U.S. customs transactions, aiming to measure the origin of the

movement of each export shipment and the destination of each import shipment. Therefore, these data di�er from

measures of exports and imports constructed from port of exit/entry, and from the data on the exports of manu-

facturing enterprises (EME) from the Annual Survey of Manufactures (ASM). See https://www.census.gov/foreign-

trade/aip/elom.html and Cassey (2009).
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S.6.8.2 Quantitative Results

In a �nal empirical exercise, we implement our multi-sector extension with region-sector speci�c

capital from Section S.4.4 above, using our region-sector data from 1999-2015. We again use our

spectral analysis to provide an analytical characterization of the economy’s transition path.

We begin by using our generalization of Proposition 5 in the paper for the multi-sector model

to compute half-lives of convergence towards steady-state for shocks to productivity or amenities

for which the initial impact on the state variables (Rf̃ ) corresponds to an eigenvector (uk) of

the transition matrix (P ). In Figure S.6.18, we display the distribution of these half-lives across

eigenvectors of the transition matrix the year 2000. We �nd more rapid convergence to steady-

state in our multi-sector extension, with an average half-life of 7 years and a maximum half-

life of 35 years (compared to around 20 and 85 years in our baseline single-sector model). This

�nding is driven by the property of the region-sector migration matrices that �ows of people

between sectors within states are larger than those between states. A key implication is that

the persistence of local labor market shocks depends on whether they induce reallocation across

industries within the same location or reallocation across di�erent locations.

Figure S.6.18: Half-lives of Convergence Towards Steady-State in the Multi-Sector

(a) Histogram of Half-lives for Shocks to Productiv-

ity and Amenities that Correspond to Eigenvectors

of the Transition Matrix (P ) in 2000
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(b) Relationship Between Half-Lives of Conver-

gence Towards Steady-State and the Correlation

between the Initial Gaps of the Labor and Capital

State Variables from Steady-State in 2000

Note: Half-life corresponds to the time in years for the state variables to converge half of the way towards

steady-state for an eigen-shock, for which the initial impact of the shock to productivity and amenities on the state

variables (Rf̃ ) corresponds to an eigenvector (uh) of the transition matrix (P ) in the multi-sector model; left panel

shows the distribution of half-lives across eigencomponents of the transition matrix in 2000 in the multi-sector

model; right panel plots these half-lives of convergence to steady-state for the year 2000 in the multi-sector model

against the slope coe�cients from regressions across location-sectors of the labor gap (
˜̀
h) from steady-state on the

capital gap (k̃h) from steady-state for each nontrivial eigen-shock in 2000 (uh = Rf̃(h)).

In the right panel of Figure S.6.18, we show that capital and labor dynamics again interact

with one another to shape the speed of convergence towards steady-state in the multi-sector

model. On the vertical axis, we display the half-life of convergence to steady-state (in years) for

each eigen-shock. On the horizontal axis, we display the regression slope coe�cient between the

gaps from steady-state for labor and capital for each eigen-shock. As for the single-sector model
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above, we �nd a strong, positive and non-linear relationship between the half-life of convergence

to steady-state and the correlation between the gaps from steady-state for the two state variables.

Although for brevity we display results for the year 2000, we again �nd the same pattern of results

for each year of our sample period.
8

Therefore, we �nd a similar pattern of results for the multi-sector model as for the single-

sector model in our baseline speci�cation, with slow convergence to steady-state, and an impor-

tant interaction between capital accumulation and migration dynamics in shaping the persistent

and heterogeneous impact of local shocks.

S.7 Data Appendix
In this section of the Online Supplement, we report further details about the data sources and

de�nitions. In Section S.7.1, we discuss the data used for the quantitative analysis of our baseline

single-sector model. In Section S.7.2, we discuss the data used for the quantitative analysis of our

multi-sector extension.

S.7.1 State Data
In the single-sector version of the model, we consider the 48 contiguous U.S. states (excluding

Alaska and Hawaii) plus Washington DC.

State-to-State Migration Data. The decennial population censuses for 1960, 1970, 1980, 1990

and 2000 ask respondents their current state of residence and their state of residence �ve years

ago. From the reported responses, we obtain bilateral �ve-year migration �ows between U.S.

states for 1960, 1970, 1980, 1990 and 2000. We construct an analogous bilateral �ve-year migra-

tion �ows for 2010 using the American Community Survey (ACS) data for the years 2008-2012.

The ACS provides data only on annual migration �ows, so we take the 5th power of the annual

outmigration shares matrix. The state-to-state migration data are reported for the population

over 5 years in age. We construct own-state-to-own-state migration �ows as total population

over 5 years in age minus total inmigrants from other states. We interpolate between years to

obtain �ve-year bilateral migration �ows for each sample year from 1965-2015. We use these

bilateral migration �ows to construct our outmigration matrix (D) and our inmigration matrix

(E). To take account of international migration to each state and fertility/mortality di�erences

across states, we adjust these migration �ows by a scalar for each origin and destination state,

such that origin population in year t pre-multiplied by the migration matrix equals destination

population in year t+ 1, as required for internal consistency.

State-to-State Trade Data. The Commodity Flow Survey (CFS) reports the value of state-to-

state shipments for the years 1993, 1997, 2002, 2007, 2012 and 2017. The CFS covers business

establishments in mining, manufacturing, wholesale trade, and selected retail and services trade

industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-

scope, multi-unit, and retail companies. Industries not covered by the CFS include transportation,

8
Under our assumption of no international migration, the deviation of labor from steady-state is zero for foreign

countries in our multi-sector model. Therefore, they adjust to fundamental shocks through capital accumulation

alone, which is responsible for the mass of eigen-shocks with intermediate half-lives in both panels of Figure S.6.18.
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construction, most retail and services industries, farms, �sheries, foreign establishments, and

most government-owned establishments. The CFS collects data on shipments originating from

within-scope industries, including exports. Imports are not included until the point that they

leave the importer’s initial domestic location for shipment to another location. The survey does

not cover shipments originating from business establishments located in Puerto Rico and other

U.S. possessions and territories.

The predecessor of the CFS was the Commodity Transportation Survey (CTS), which covers

the manufacturing sector alone. The 1977 CTS reports the value of shipments from each state of

origin to each census division of destination: New England, Middle Atlantic, East North Central,

West North Central, South Atlantic, East South Central, West South Central, Mountain, and Pa-

ci�c. We allocate the value of shipments across destination states within these destination census

divisions according to their shares of the value of shipments in the CFS in 1993. We interpolate

the value of shipments between years to obtain annual data on the value of shipments for each

year of our sample from 1977-2015. We estimate the value of shipments between states for years

before 1977 by assuming the following gravity equation:

Xnis = XisXnsτnis, s ≤ t = 1977,

where Xnis is the value of bilateral shipments from exporter i to importer n in year s; Xis is

exporter gross domestic product (GDP); Xns is importer GDP; and τnis captures observed and

unobserved bilateral trade costs. Assuming that bilateral trade costs remain constant, the value

of bilateral shipments in any previous year s < t can be expressed in the following exact-hat

algebra form:

Xnis = X̂isX̂nsXnit, s ≤ t = 1977,

where a hat above a variable denotes a relative change between years s and t, such that X̂is =
Xis/Xit. We observe these relative changes in exporter and importer GDP for each year back to

the beginning of our sample period in 1965.

We thus obtain the bilateral value of shipments between states for each year of our sample

from 1965-2015. We use these bilateral shipments data to construct our expenditure share matrix

(S) and income share matrix (T ). For our baseline quantitative analysis, we abstract from direct

shipments to and from foreign countries, because of the relatively low level of U.S. trade openness,

particularly towards the beginning of our sample period.

Gross Domestic Product, Population and Capital Stock. The Regional Economic Accounts

of the Bureau of Economic Analysis (BEA) report population and state gross domestic product

(GDP) for each state and year of our sample from 1965-2015. Estimates of real GDP at the state

level are available starting from 1977. For the years 1965-1977, we de�ate nominal GDP by splicing

the national GDP de�ator from the years 1965-1977 to the state-level de�ator from 1977 onwards.

To obtain state-level real capital stocks, we �rst compute state-industry level nominal gross op-

erating surplus by subtracting labor compensation from GDP. We then de�ate each observation

by a corresponding estimate of the national capital income de�ator, taken from the USA World

KLEMS Database. Finally, we sum across industries to obtain a state-level measure of the real

capital stock.

Geographical Groupings We consider four main geographical groupings of states. Following

Alder, Legakos and Ohanian (2019), we de�ne the Rust Belt as the states of Illinois, Indiana,
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Michigan, New York, Ohio, Pennsylvania, West Virginia and Wisconsin, and the Sun Belt as

the states of Arizona, California, Florida, New Mexico and Nevada. We group the remaining

states into two categories that capture longstanding di�erences between the North and South:

Other Southern States, which includes all former members of the Confederacy, except those in

the Sun Belt; and Other Northern States, which comprises all the Union states from the U.S. Civil

War, except those in the Rust Belt or Sun Belt. Therefore, “Other Southern” includes Alabama,

Arkansas, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas,

and Virginia. “Other Northern” includes Colorado, Connecticut, Delaware, District of Columbia,

Idaho, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Minnesota, Missouri, Montana,

Nebraska, New Hampshire, New Jersey, North Dakota, Oklahoma, Oregon, Rhode Island, South

Dakota, Utah, Vermont, Washington and Wyoming.

S.7.2 Region-Sector Data
In the multi-sector, multi-country version of the model, we consider the 48 contiguous US states,

43 other countries and 23 economic sectors, yielding a total of 2,093 region-sector combinations,

where a region is either a US state or a foreign country. We allow for trade across all region-

sectors, and for migration across all states and sectors within the US.

State-Sector Migration Data. To implement our multi-sector application, we require a state-

sector to state-sector migration matrix for the year 2000. To this end, we �rst recover state to

state worker �ows from the 2001 American Community Survey, which includes questions on

current state of residence and the state of residence one year ago. We then use data from the

Current Population Survey (CPS) Annual Social and Economic Supplement (ASEC), which in-

cludes questions on current and past industry of employment, to divide these �ows across origin

and destination sectors, pooling together data from 1998-2002 to enlarge the sample size. Speci�-

cally, we �rst compute sector to sector transition rates for each state separately, and then assume

that these transition probabilities are constant across destination states conditional on the state

of origin. We multiply these sectoral transition probabilities by the state to state transition rates

to get our matrix of state-sector to state-sector transition rates. Note that due to the small sample

size of the CPS, we cannot use it to directly compute transition probabilities across all state-sector

combinations, amounting to close to 1,000,000 cells in the migration matrix.

Region-Sector Production, Employment and Capital Stock. For each country-sector com-

bination, we take employment data and nominal value-added, gross-output and capital stocks

from the Socio-Economic Accounts of the World Input-Output Tables (WIOT) 2016 release. To

obtain real capital stocks, we take country-level estimates from the International Monetary Fund

(IMF) Investment and Capital Stock Dataset, which provides private capital stocks in 2005 in-

ternational dollars for most countries in the WIOT data over the period 1960-2013. We allocate

national real capital stocks across sectors according to country-level shares of nominal capital

stocks from WIOT. We allocate US aggregates across individual states using states shares in na-

tional GDP, gross output and capital using the BEA’s Regional Accounts.

State-Sector Foreign Imports and Exports. We use data on exports by state of the origin of

movement (OM) and imports by state of destination (SD) from the Foreign Trade Division of the

U.S. Census Bureau. The origin of movement (OM) export data are based on the state from which
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the shipment starts its journey to the port of export. Therefore, the data re�ect the transportation

origin of an export shipment, which need not correspond to the state in which the good was

produced. The state of destination (SD) import data are based on the U.S. state, U.S. territory or

U.S. possession where the merchandise is destined, as known at the time of customs �ling at the

port of entry. If the contents of the shipment are destined to more than one state, territory, or

possession, or if the entry summary represents a consolidated shipment, the state of destination

is reported as the state with the greatest aggregate value. If in either case, this information is

unknown, the state of the ultimate consignee, or the state where the customs entry is �led are

reported, in that order. However, before either of those alternatives is used, a good faith e�ort

is required of the customs �ler to ascertain the state where the imported merchandise will be

delivered.

Therefore, these export origin of movement (OM) and import state of destination (SD) data

di�er from measures of exports and imports by port of exit and entry. The export data also di�er

from the exports of manufacturing enterprises (EME) data from the Annual Survey of Manu-

factures (ASM), which are restricted to manufacturing and based on the state of production. In

contrast, our export and import data cover all traded sectors, and are collected by origin of move-

ment (for exports) and destination of shipment (for imports).
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