Dynamic Spatial General Equilibrium

Benny Kleinman Princeton University Ernest Liu Princeton University Stephen J. Redding Princeton University, NBER and CEPR

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
 - This response can be gradual because of migration frictions for mobile factors and the accumulation of immobile factors (capital structures)

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
 - This response can be gradual because of migration frictions for mobile factors and the accumulation of immobile factors (capital structures)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Investment and migration decisions in each location depend on *one another* and these decisions in *all locations* in *all future periods*

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
 - This response can be gradual because of migration frictions for mobile factors and the accumulation of immobile factors (capital structures)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Investment and migration decisions in each location depend on *one another* and these decisions in *all locations* in *all future periods*
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
 - This response can be gradual because of migration frictions for mobile factors and the accumulation of immobile factors (capital structures)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Investment and migration decisions in each location depend on *one another* and these decisions in *all locations* in *all future periods*
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for counterfactuals in migration models to include capital investments

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
 - This response can be gradual because of migration frictions for mobile factors and the accumulation of immobile factors (capital structures)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Investment and migration decisions in each location depend on *one another* and these decisions in *all locations* in *all future periods*
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for counterfactuals in migration models to include capital investments
- Linearize the model to characterize analytically determinants of speed of convergence (spectral analysis of transition matrix)

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
 - This response can be gradual because of migration frictions for mobile factors and the accumulation of immobile factors (capital structures)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Investment and migration decisions in each location depend on *one another* and these decisions in *all locations* in *all future periods*
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for counterfactuals in migration models to include capital investments
- Linearize the model to characterize analytically determinants of speed of convergence (spectral analysis of transition matrix)
- Apply our framework to examine income convergence across U.S. states over time (both capital dynamics and labor mobility)

- Many locations and rich geography of trade and migration costs,
 - Analytical conditions for existence and uniqueness of steady-state

- Many locations and rich geography of trade and migration costs,
 - Analytical conditions for existence and uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for migration models to incorporate forward-looking capital investments
 - Can solve for counterfactual values of the endogenous variables without information on the level of unobserved fundamentals

- Many locations and rich geography of trade and migration costs,
 - Analytical conditions for existence and uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for migration models to incorporate forward-looking capital investments
 - Can solve for counterfactual values of the endogenous variables without information on the level of unobserved fundamentals
- Economy's transition dynamics shaped by an interaction between migration and investment dynamics
 - Adjustment: (a) slow when capital and labor are both above/below steady-state; (b) fast when one is above and the other is below

- Many locations and rich geography of trade and migration costs,
 - Analytical conditions for existence and uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for migration models to incorporate forward-looking capital investments
 - Can solve for counterfactual values of the endogenous variables without information on the level of unobserved fundamentals
- Economy's transition dynamics shaped by an interaction between migration and investment dynamics
 - Adjustment: (a) slow when capital and labor are both above/below steady-state; (b) fast when one is above and the other is below
- Linearize the model to obtain a closed-form solution for the transition path to analyze the determinants of the speed of convergence
 - Speed of convergence depends on spectral properties of transition matrix
 - Path of state variables determined by these spectral properties

- Many locations and rich geography of trade and migration costs,
 - Analytical conditions for existence and uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for migration models to incorporate forward-looking capital investments
 - Can solve for counterfactual values of the endogenous variables without information on the level of unobserved fundamentals
- Economy's transition dynamics shaped by an interaction between migration and investment dynamics
 - Adjustment: (a) slow when capital and labor are both above/below steady-state; (b) fast when one is above and the other is below
- Linearize the model to obtain a closed-form solution for the transition path to analyze the determinants of the speed of convergence
 - Speed of convergence depends on spectral properties of transition matrix
 - Path of state variables determined by these spectral properties
- Applications: US state data 1965-2015; state-industry data 1999-2015
 - Decline in rate of income convergence over time (β -convergence)
 - Slow convergence and heterogeneous impact of shocks
 - Heterogeneity explained by the interaction of capital and labor dynamics

Related Literature

- Theoretical work on economic geography
 - Krugman (1991, 1992), Helpman (1998), Fujita et al. (1999), Baldwin (2001)
- Static quantitative spatial trade models
 - Armington (1969), Eaton & Kortum (2002), Redding & Sturm (2008), Allen & Arkolakis (2014), Ramondo et al. (2016), Redding (2016), Donaldson (2018), Caliendo et al. (2018), Fajgelbaum et al. (2019), Fajgelbaum & Gaubert (2020)

• Dynamic models of capital accumulation in international trade

Anderson, Larch & Yotov 2015, Eaton, Kortum, Neiman & Romalis 2016, Alvarez 2017, Ravikumar, Santacreu & Sposi 2019, Alessandria, Choi & Ruhl 2021

• Dynamic models of trade and geography with labor mobility

 Artuç et al. (2010), Desmet & Rossi-Hansberg (2014), Desmet et al. (2018), Caliendo et al. (2019), Caliendo & Parro (2020), Peters (2019), Peters & Walsh (2019), Walsh (2019), Allen & Donaldson (2020), Greaney (2020)

• Research on sufficient statistics for welfare in static trade models

 Arkolakis et al. (2012), Adão et al. (2017), Adão et al. (2019), Baqaee & Farhi (2019), Huo et al. (2019), Barthelme et al. (2019), Kleinman et al. (2020), Bilal (2021)

Regional income convergence and persistence of local shocks

 Barro & Sala-i-Martin (1992), Blanchard & Katz (1992), Kim (1995), Mitchener & McLean (1999), Feyrer et al. (2007), Kovak (2013), Autor et al. (2013, 2020), Dix-Carneiro & Kovak (2017), Ganong & Shoag (2017), Alder et al. (2019)

Related Literature

Outline

- Dynamic Spatial Model
- Extensions
- Data
- Empirical Results
- Conclusions

Model Setup

- Multi-location, single-sector Armington model (extensions later)
- Economy consists of a set of locations $i \in \{1, ..., N\}$
- Locations differ in productivity, amenities, bilateral goods trade costs, and bilateral migration costs
- Two types of agents: workers and landlords
- Continuum of workers
 - Endowed with one unit of labor
 - Geographically mobile subject to migration costs
 - No savings-investment technology ("hand to mouth")
 - Make dynamic forward-looking migration decisions to maximize intertemporal utility
- Continuum of landlords in each location
 - Own the stock of local capital
 - Geographically immobile
 - Make dynamic forward-looking consumption-investment choices to maximize intertemporal utility

Worker Migration (CDP)

- At the beginning of period *t*, mass of workers ℓ_{it} in location *i*:
 - Produce and consume
 - Observe extreme value idiosyncratic mobility shocks $\{\epsilon_{gt}\}$
 - Choose optimal location for period t + 1 given mobility costs κ_{git}
- Expected value of living in location *i* in period *t* depends on wage (*w_{it}*), cost of living (*p_{it}*), amenities (*b_{it}*) and the expected value of optimal location choice

$$v_{it} = \ln\left(\frac{w_{it}}{p_{it}}\right) + \ln b_{it} + \rho \ln \sum_{g=1}^{N} \left(\exp\left(\beta \mathbb{E}_t v_{gt+1}\right) / \kappa_{git}\right)^{1/\rho}$$

Location choice probabilities

$$D_{igt} = \frac{\left(\exp\left(\beta\mathbb{E}_{t}v_{gt+1}\right)/\kappa_{git}\right)^{1/\rho}}{\sum_{k=1}^{N}\left(\exp\left(\beta\mathbb{E}_{t}v_{kt+1}\right)/\kappa_{kit}\right)^{1/\rho}}$$

• Population flow condition

$$\ell_{gt+1} = \sum_{i=1}^{N} D_{igt} \ell_{it}$$

Trade and Production

• Armington differentiation of goods by location of origin

$$p_{nt} = \left[\sum_{i=1}^{N} p_{nit}^{- heta}\right]^{-1/ heta}$$
, $heta = \sigma - 1$, $\sigma > 1$

- Competitive production and iceberg trade costs $\tau_{nit} \ge 1$
- Cost in location *n* of sourcing a variety from location *i* is

$$p_{nit} = rac{ au_{nit} w_{it}^{\lambda} r_{it}^{1-\lambda}}{z_{it}}, \qquad 0 < \lambda < 1$$

• Using profit maximization to substitute for equilibrium labor input, landlord income is linear in capital

$$\Pi_{it} = \lambda \left(p_{it} z_{it} \right)^{\frac{1}{\lambda}} \left(\frac{1-\lambda}{w_{it}} \right)^{\frac{1-\lambda}{\lambda}} k_{it}$$

Landlord Investment

• Landlords optimal intertemporal consumption-investment decision

$$v_{it}^{k} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{t+s} \frac{\left(c_{it+s}^{k}\right)^{1-1/\psi}}{1-1/\psi}$$

- Landlords in a location can produce one unit of capital in that location using one unit of the local consumption index
- Local capital is geographically immobile once installed (buildings and structures) and depreciates at constant rate δ
- Intertemporal budget constraint

$$r_{it}k_{it} = p_{it}c_{it}^{k} + p_{it}\left(k_{it+1} - (1 - \delta)k_{it}\right)$$

• CRRA preferences and linear income in capital imply linear saving rate (as Angeletos 2007 and Moll 2014) • more • rtrans • grav

$$k_{it+1} = (1 - \zeta_{it}) R_{it} k_{it}, \qquad R_{it} \equiv 1 - \delta + r_{it} / p_{it}$$
$$\zeta_{it}^{-1} = 1 + \beta^{\psi} \left(\mathbb{E}_t \left[R_{it+1}^{\frac{\psi-1}{\psi}} \zeta_{t+1}^{-\frac{1}{\psi}} \right] \right)^{\psi}$$

General Equilibrium

Value function

$$v_{it} = \ln\left(\frac{w_{it}}{p_{it}}\right) + \ln b_{it} + \rho \ln \sum_{g=1}^{N} \left(\exp\left(\beta \mathbb{E}_{t} v_{gt+1}\right) / \kappa_{git}\right)^{1/\rho}$$
$$p_{nt} = \left[\sum_{i=1}^{N} \left(w_{it} \left(\frac{1-\lambda}{\lambda}\right)^{1-\lambda} \left(\ell_{it}/k_{it}\right)^{1-\lambda} \tau_{nit}/z_{it}\right)^{-\theta}\right]^{-1/\theta}$$

Goods market clearing

$$w_{it}\ell_{it} = \sum_{n=1}^{N} S_{nit} w_{nt}\ell_{nt}, \quad S_{nit} \equiv \frac{\left(w_{it} \left(\ell_{it}/k_{it}\right)^{1-\lambda} \tau_{nit}/z_{it}\right)^{-\theta}}{\sum_{m} \left(w_{mt} \left(\ell_{mt}/k_{mt}\right)^{1-\lambda} \tau_{nmt}/z_{mt}\right)^{-\theta}}, \quad T_{int} \equiv \frac{S_{nit} w_{nt}\ell_{nt}}{w_{it}\ell_{it}}$$

Labor market clearing

$$\ell_{gt+1} = \sum_{i=1}^{N} \frac{\mathsf{D}_{igt}}{\mathsf{D}_{igt}} \ell_{it}, \qquad \frac{\mathsf{D}_{igt}}{\sum_{m=1}^{N} \left(\exp\left(\beta \mathbb{E}_{t} v_{gt+1}\right) / \kappa_{git}\right)^{1/\rho}}{\sum_{m=1}^{N} \left(\exp\left(\beta \mathbb{E}_{t} v_{mt+1}\right) / \kappa_{mit}\right)^{1/\rho}}, \qquad E_{git} \equiv \frac{\ell_{it} \mathcal{D}_{igt}}{\ell_{gt+1}}$$

Capital market clearing and accumulation

$$\frac{r_{it}}{p_{it}} = \frac{1-\lambda}{\lambda} \frac{w_{it}}{p_{it}} \frac{\ell_{it}}{k_{it}}, \qquad k_{it+1} = (1-\zeta_{it}) R_{it} k_{it}, \qquad \zeta_{it}^{-1} = 1 + \beta^{\psi} \left(\mathbb{E}_t \left[R_{it+1}^{\frac{\psi-1}{\psi}} \zeta_{t+1}^{-\frac{1}{\psi}} \right] \right)_{11/62}^{\psi}$$

Existence and Uniqueness

• Dynamic spatial model with many locations, rich geography of trade and migration costs, and two sources of dynamics

Proposition

A sufficient condition for the existence of a unique steady-state spatial distribution of economic activity $\{\ell_i^*, k_i^*, w_i^*, R_i^*, v_i^*\}$ (up to a choice of units) given time-invariant locational fundamentals $\{z_i^*, b_i^*, \tau_{ni}^*, \kappa_{ni}^*\}$ is that the spectral radius of a coefficient matrix (**A**) of model parameters $\{\psi, \theta, \beta, \rho, \mu, \delta\}$ is less than or equal to one. \bullet proof

- When we introduce agglomeration forces
 - Analogous condition for the existence of unique equilibrium

Dynamic Exact Hat Algebra

Proposition

Given an initial observed allocation of the economy,

 $\left(\left\{ l_{i0} \right\}_{i=1}^{N}, \left\{ k_{i0} \right\}_{i=1}^{N}, \left\{ k_{i1} \right\}_{i=1}^{N}, \left\{ S_{ni0} \right\}_{n,i=1}^{N}, \left\{ D_{ni,-1} \right\}_{n,i=1}^{N} \right), and an expected sequence of changes in fundamentals,$ $<math display="block"> \left\{ \left\{ \hat{z}_{it} \right\}_{i=1}^{N}, \left\{ \hat{b}_{it} \right\}_{i=1}^{N}, \left\{ \hat{\tau}_{ijt} \right\}_{i,j=1}^{N}, \left\{ \hat{\kappa}_{ijt} \right\}_{i,j=1}^{N} \right\}_{t=1}^{\infty}, the solution for the sequence of changes in the model's endogenous variables does not require information on the level of fundamentals,$ $<math display="block"> \left\{ \left\{ z_{it} \right\}_{i=1}^{N}, \left\{ b_{it} \right\}_{i=1}^{N}, \left\{ \tau_{ijt} \right\}_{i,j=1}^{N}, \left\{ \kappa_{ijt} \right\}_{i,j=1}^{N} \right\}_{t=0}^{\infty}.$

- Generalizes existing results for dynamic migration decisions to incorporate dynamic investment decisions more
- Can undertake counterfactuals in the model without having to solve for the initial level of fundamentals
- Can invert the non-linear model to recover the unobserved shocks $\left\{ \{\hat{z}_{it}\}_{i=1}^{N}, \{\hat{b}_{it}\}_{i=1}^{N}, \{\hat{\tau}_{ijt}\}_{i,j=1}^{N}, \{\hat{\kappa}_{ijt}\}_{i,j=1}^{N} \right\}_{t=1}^{\infty}$

Linearization

- Linearize the model to characterize transition dynamics analytically
- Suppose that the economy at time *t* = 0 is on a convergence path towards an initial steady-state with constant fundamentals (*z*, *b*, *κ*, *τ*)
- At time t = 0, agents learn about one-time, permanent shocks to fundamentals ($\tilde{f} = \begin{bmatrix} \tilde{z} \\ \tilde{b} \end{bmatrix}$) from time t = 1 onwards that are revealed under perfect foresight
- At time t = 0, agents learn about a convergent sequence of shocks to fundamentals $\{\widetilde{f}_s\}_{s\geq 1} = \left\{ \begin{bmatrix} \widetilde{z}_s \\ \widetilde{b}_s \end{bmatrix} \right\}_{s\geq 1}$ from time t = 1 onwards that are revealed under perfect foreeight.

that are revealed under perfect foresight

- **3** Given the initial value state variables at time t = 0 (x_0), suppose that productivity and amenities evolve stochastically according to an AR(1) process, and agents have rational expectations
- Transition path: 2nd-order difference equation in state variables ($\tilde{\ell}_t$, \tilde{k}_t) that solve with method of undetermined coefficients (Uhlig 1999)

Closed-form Transition Path

Proposition

Suppose that the economy at time t = 0 is on a convergence path towards an initial steady-state with constant fundamentals (z, b, κ, τ) . At time t = 0, agents learn about one-time, permanent shocks to productivity and amenities $(\tilde{f} = \begin{bmatrix} \tilde{z} \\ \tilde{b} \end{bmatrix})$ from time t = 1 onwards. There exists a 2N × 2N transition matrix (**P**) and a 2N × 2N impact matrix (**R**) such that the second-order difference equation system has a closed-form solution of the form:

$$\widetilde{m{x}}_{t+1} = m{P}\widetilde{m{x}}_t + m{R}\widetilde{m{f}} \quad \textit{for } t \geq 1.$$

where $\tilde{\mathbf{x}}_{t} \equiv \begin{bmatrix} \tilde{\boldsymbol{\ell}}_{t} \\ \tilde{\boldsymbol{k}}_{t} \end{bmatrix}$ and a tilde denotes a log deviation from the initial steady-state: $\tilde{\boldsymbol{\ell}}_{t} \equiv \ln \boldsymbol{\ell}_{t} - \ln \boldsymbol{\ell}_{initial}^{*}$ and $\{\boldsymbol{P}, \boldsymbol{R}\}$ can be recovered from the observed data $\{\boldsymbol{S}, \boldsymbol{T}, \boldsymbol{D}, \boldsymbol{E}\}$ and the structural parameters of the model $\{\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{\rho}, \lambda, \boldsymbol{\psi}, \boldsymbol{\delta}\}$

Convergence Versus Fundamental Shocks

• Exact additive decomposition of the dynamics of the spatial distribution of economic activity: • more

$$\ln \mathbf{x}_t - \ln \mathbf{x}_{-1} = \sum_{\substack{s=0\\ \text{convergence given}\\ \text{initial fundamentals}}}^t \frac{P^s(\ln \mathbf{x}_0 - \ln \mathbf{x}_{-1})}{\sum_{s=0}^{t-1} P^s R \widetilde{f}} \text{ for all } t \ge 1,$$

• With no shocks to productivity and amenities ($\tilde{f} = 0$), we have:

$$\ln \mathbf{x}^*_{ ext{initial}} = \lim_{t o \infty} \ln \mathbf{x}_t = \ln \mathbf{x}_{-1} + (\mathbf{I} - \mathbf{P})^{-1} (\ln \mathbf{x}_0 - \ln \mathbf{x}_{-1})$$
 ,

- Using only initial state variables (for t = 0 and t = -1) and trade and migration matrices (and hence P and R), we can compute implied steady-states with unchanged fundamentals
- Given counterfactual shocks to fundamentals (*f̃*), we can compute changes in steady-states, even without observing initial state variables

Spectral Analysis

- Use our linearization to characterize the economy's transition path in terms of lower-dimensional components
- Undertake an eigendecomposition of the transition matrix

$$P \equiv U\Lambda V$$
,

- where Λ is a diagonal matrix of eigenvalues arranged in decreasing order by absolute values, and $V = U^{-1}$
- For each eigenvalue λ_k , the left-eigenvectors $(\boldsymbol{u_k})$ and right-eigenvectors $(\boldsymbol{v'_k})$ satisfy

$$\lambda_k oldsymbol{u}_k = oldsymbol{P} oldsymbol{u}_k, \qquad \lambda_k oldsymbol{v}_k' = oldsymbol{v}_k' oldsymbol{P}$$

Define an eigen-shock as a shock to productivity and amenities (*f_k*) for which the initial impact of these shocks on the state variables (*Rf_k*) coincides with a real eigenvector of the transition matrix (*u_k*)

$$\widetilde{\boldsymbol{f}}_k = \boldsymbol{R}^{-1} \boldsymbol{u}_k$$

• Can recover these eigen-shocks from {*S*, *T*, *D*, *E*} and { θ , β , ρ , λ , ψ , δ }

Speed of Convergence

Proposition

Consider an economy that is initially in steady-state at t = 0 when agents learn about one-time, permanent shocks to productivity and amenities $(\tilde{f} = \begin{bmatrix} \tilde{z} \\ \tilde{b} \end{bmatrix})$ from t = 1 onwards. Suppose the initial impact of the shock to fundamentals on the state variables at t = 1 coincides with an eigenvector $(\tilde{Rf} = u_k)$ of the transition matrix (P) (eigen-shock). The transition path of the state variables $(\tilde{x}_t \equiv \begin{bmatrix} \tilde{\ell}_t \\ \tilde{k}_t \end{bmatrix})$ reduces to:

$$\widetilde{oldsymbol{x}}_t = rac{1-\lambda_k^t}{1-\lambda_k}oldsymbol{u}_k$$

and the half-life is given by:

$$t_{i}^{(1/2)}\left(\widetilde{f}
ight)=-\left\lceilrac{\ln2}{\ln\lambda_{k}}
ight
ceil$$

for all state variables $i = 1, \dots, 2N$, where $\lceil \cdot \rceil$ is the ceiling function.

Outline

- Dynamic Spatial Model
- Extensions
 - Trade deficits
 - Shocks to trade and migration costs
 - Agglomeration and dispersion forces
 - Housing capital
 - Multi-sector
 - Multi-sector and input-output linkages
- Data
- Empirical Results
- Conclusions

Outline

- Dynamic Spatial Model
- Extensions
- Data
- Empirical Results
- Conclusions

Data

- Two empirical implementations
 - State-time data from 1965-2015 (decline Rust Belt and rise Sun Belt)
 - State-industry-time data from 1999-2015
- U.S. State GDP, population and capital stock
 - Bureau of Economic Analysis (BEA) 1965-2015
- Bilateral value of shipments between U.S. states
 - Commodity Flow Survey (CFS)
 - Commodity Transportation Survey (CTS)
- Bilateral migration flows between U.S. states
 - Population census and American Community Survey (ACS) 1960-2010
 - Five-year migration matrices
- Foreign imports and exports of U.S. states
 - Foreign exports by origin of movement (OM) state 1999-2015
 - Foreign imports by state of destination (SD) 1999-2015

Outline

- Dynamic Spatial Model
- Extensions
- Data
- Empirical Results
- Conclusions

Income Convergence 1963-80

Note: Slope coefficient: -0.0236; standard error: 0.0038; R-squared: 0.4758.

Income Convergence 1980-2000

Note: Slope coefficient: -0.0135; standard error: 0.0039; R-squared: 0.2092.

Income Convergence 2000-2017

Note: Slope coefficient: 0.0095; standard error: 0.0061; R-squared: 0.0712.

Importance of Initial Conditions

• Much of the decline in the speed of convergence in income per capita can be explained by initial conditions

Capital Versus Labor Dynamics

- Capital adjustment important for dynamics of income per capita
- Migration important for dynamics of population

Spectral Analysis

Half-lifes

Note: Half-life Corresponds to the time in years for the state variables to converge half of the way towards steady-state for a shock to productivity and amenities for which its initial impact on the state variables ($R\overline{I}$) corresponds to an eigenvector (u_k) of the transition matrix (P); figure shows mean and maximum half-life across eigenvectors of the transition matrix in each year from 1965-2015.

Heterogeneity in Half Lives (SS gap)

Eigen-shock: shock to productivity and amenities (*f*_k) for which the initial impact of these shocks on the state variables coincides with a real eigenvector of the transition matrix: *u_k* = *Rf*_k

Correlation Steady-State Gaps Over Time

Heterogeneity in Half Lives (Shocks)

Eigen-shock: shock to productivity and amenities (\$\tilde{f}_k\$) for which the initial impact of these shocks on the state variables coincides with a real eigenvector of the transition matrix: \$\tilde{f}_k = \mathbf{R}^{-1}\mathbf{u}_k\$

Correlation Shocks Over Time (Shocks)

Parameters and Speed of Convergence

Non-Linear Solution and Linearization

- Invert non-linear model (prod., amenities, trade & migration costs)
- Start from steady-state implied by these 1990 fundamentals
- Shock by vector of productivity shocks 1990-2000
- Compare transition paths in our linearization and non-linear model

----- Non-linear solution Linear approximation - initial SS matrices

• How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Interaction investment and migration in all locations and time periods

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Interaction investment and migration in all locations and time periods
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Interaction investment and migration in all locations and time periods
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for counterfactuals in migration models to include capital investments

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Interaction investment and migration in all locations and time periods
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state
- ② Generalize existing dynamic exact-hat algebra results for counterfactuals in migration models to include capital investments
- Linearize the model to characterize analytically determinants of speed of convergence (spectral analysis of transition matrix)

- How does the spatial distribution of economic activity respond to local shocks? (e.g. productivity, transport infrastructure, trade)
- A key challenge is modelling forward-looking capital investments in quantitative spatial models with population mobility
 - Interaction investment and migration in all locations and time periods
- We make four main contributions:
- Develop a dynamic spatial model with forward-looking investment and migration and characterize existence/uniqueness of steady-state
- Generalize existing dynamic exact-hat algebra results for counterfactuals in migration models to include capital investments
- Linearize the model to characterize analytically determinants of speed of convergence (spectral analysis of transition matrix)
- Applications: US state data 1965-2015; state-industry data 1999-2015
 - Decline in rate of income convergence over time (β -convergence)
 - Slow convergence and heterogeneous impact of shocks
 - Heterogeneity explained by the interaction of capital and labor dynamics

Thank You

Population Gap from Steady-State

Rust Belt: Illinois, Indiana, Michigan, New York, Ohio, Pennsylvania, West Virginia and Wisconsin. Sun Belt: Arizona, California, Florida, New Mexico and Nevada. North and South definitions based on Federal and Confederacy states

Predictive Power Initial Steady-State

 Robust to controlling for initial log population and capital stock and initial log population growth • more

Non-linear Model Inversion

- Parameters: $\beta = 0.95, \theta = 5, \rho = 3\beta, \lambda = 0.65, (1 \delta) = 0.95$
- Recover unobserved fundamentals from the non-linear model
 - Economy can be anywhere on transition path / in steady-state
 - Assume perfect foresight but allow any expected path fundamentals

$$\begin{split} \frac{S_{nit}S_{int}}{S_{nnt}S_{iit}} &= \left(\frac{\tau_{nit}\tau_{int}}{\tau_{nnt}\tau_{iit}}\right)^{-\theta} = (\tau_{nit})^{-2\theta}, \qquad \frac{D_{igt}D_{git}}{D_{ggt}D_{iit}} = \left(\frac{\kappa_{git}\kappa_{igt}}{\kappa_{ggt}\kappa_{iit}}\right)^{-1/\rho} = (\kappa_{git})^{-2/\rho} \\ w_{it}\ell_{it} &= \sum_{n=1}^{N} \frac{\left(w_{it} \left(\ell_{it}/k_{it}\right)^{1-\lambda} \tau_{nit}/z_{it}\right)^{-\theta}}{\sum_{m=1}^{N} \left(w_{mt} \left(\ell_{mt}/k_{mt}\right)^{1-\lambda} \tau_{nmt}/z_{mt}\right)^{-\theta}} w_{nt}\ell_{nt} \\ \ell_{gt+1} &= \sum_{i=1}^{N} \frac{\left(\exp\left(\beta v_{gt+1}\right)/\kappa_{git}\right)^{1/\rho}}{\sum_{m=1}^{N} \left(\exp\left(\beta v_{mt+1}\right)/\kappa_{mit}\right)^{1/\rho}} \ell_{it} \\ \ln b_{it} &= (v_{it} - v_{it+1}) + (1-\beta) v_{it+1} - \ln \frac{S_{iit}^{-\frac{1}{\theta}}}{\left(D_{iit}\right)^{\rho}} - \ln z_{it} \end{split}$$

Intuition: migration flows capture expectations

 backdynex

Steady-state Comparative Statics

- To begin with, start at steady-state (relax later): $\{w_i^*, v_i^*, \ell_i^*, k_i^*\}$
- Consider $d \ln z \neq 0$, $d \ln b \neq 0$, and $d \ln \tau = d \ln \kappa = d \ln \ell = 0$

$$d \ln \mathbf{k}^{*} = \underbrace{d \ln \ell^{*}}_{\text{change in population}} + \underbrace{d \ln \mathbf{w}^{*}}_{\text{change in wages}} - \underbrace{d \ln p^{*}}_{\text{change in the price index}}$$
$$d \ln p^{*} = S \underbrace{\left[d \ln \mathbf{w}^{*} - (1 - \lambda) \left(d \ln \mathbf{k}^{*} - d \ln \ell^{*} \right) - d \ln z \right]}_{\text{change in the production cost in each region}}$$
$$d \ln \mathbf{w}^{*} + d \ln \ell^{*} = \underbrace{T \left(d \ln \mathbf{w}^{*} + d \ln \ell^{*} \right)}_{\text{market size}} + \underbrace{\theta \left(TS - I \right) \left[d \ln \mathbf{w}^{*} - (1 - \lambda) \left(d \ln \mathbf{k}^{*} - d \ln \ell^{*} \right) - d \ln z \right]}_{\text{cross-substitution}}}$$
$$d \ln \ell^{*} = \underbrace{E d \ln \ell^{*}}_{\text{labor supply}} + \underbrace{\frac{\beta}{\rho} \left(I - ED \right) d\mathbf{v}^{*}}_{\text{migration shares}}$$
$$d \mathbf{v}^{*} = \underbrace{d \ln \mathbf{b} + d \ln \mathbf{w}^{*} - d \ln p^{*}}_{\text{flow utility}} + \underbrace{\beta D d \mathbf{v}^{*}}_{\text{continuation value}}$$

Steady-state Comparative Statics

• Totally differentiating the general equilibrium conditions of the model and stacking them in matrix form

Proposition

The steady-state response of the endogenous variables to productivity and amenity shocks satisfies the linear system:

$$\begin{bmatrix} \operatorname{d} \ln \ell^* \\ \operatorname{d} \ln \mathbf{k}^* \\ \operatorname{d} \ln \mathbf{w}^* \\ \operatorname{d} \ln \mathbf{v}^* \end{bmatrix} = \begin{bmatrix} \mathbf{L}^{z*} \\ \mathbf{K}^{z*} \\ \mathbf{W}^{z*} \\ \mathbf{V}^{z*} \end{bmatrix} \operatorname{d} \ln \mathbf{z} + \begin{bmatrix} \mathbf{L}^{b*} \\ \mathbf{K}^{b*} \\ \mathbf{W}^{b*} \\ \mathbf{V}^{b*} \end{bmatrix} \operatorname{d} \ln \mathbf{b}$$

where the $N \times N$ matrices $\{L^{z*}, K^{z*}, W^{z*}, V^{z*}, L^{b*}, K^{b*}, W^{b*}, V^{b*}\}$ are functions of the four observed matrices of expenditure shares (**S**), income shares (**T**), outmigration shares (**D**) and inmigration shares (**E**) and the structural parameters of the model $\{\beta, \theta, \rho, \lambda, \delta\}$.

- Element $[L^{z*}]_{in} = d \ln \ell_i^* / d \ln z_n$
 - Elasticity of steady-state population in location $i(\ell_i^*)$ with respect to an increase in productivity in location $n(z_n)$

Approximation Quality (Steady-State)

- Start from steady-state implied by 1990 fundamentals
- Shock by vector of productivity shocks 1990-2000
- Compare steady-state changes in our linearization & non-linear model

Approximation Quality (Transition)

- Start from steady-state implied by 1990 fundamentals
- Shock by vector of productivity shocks 1990-2000
- Compare transition paths in our linearization and non-linear model

CRRA Utility

• Landlords' intertemporal utility

$$\mathbf{v}_{it}^{k} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{t+s} \frac{\left(c_{it+s}^{k}\right)^{1-1/\psi}}{1-1/\psi}$$

Budget constraint

$$r_{it}k_{it} = p_{it}\left(c_{it}^{k} + k_{it+1} - (1-\delta)k_{it}\right)$$

- Gross return on capital: $R_{it} \equiv 1 \delta + r_{it}/p_{it}$
- Optimal savings rate

$$k_{it+1} = (1 - \zeta_{it}) R_{it} k_{it}$$
$$\zeta_{it}^{-1} = 1 + \beta^{\psi} \left(\mathbb{E}_t \left[R_{it+1}^{\frac{\psi-1}{\psi}} \zeta_{t+1}^{-\frac{1}{\psi}} \right] \right)^{\psi}$$

• (compare with log utility, where $k_{it+1} = \beta R_{it} k_{it}$) \triangleright back

Intertemporal Consumption-Investment

• Intertemporal optimization problem

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} \ln c_{it}^{k} - \mu_{t} \left[p_{it} c_{it}^{k} + p_{it} \left(k_{it+1} - (1-\delta) k_{it} \right) - r_{it} k_{it} \right]$$

Euler equation

$$\frac{c_{it+1}^{k}}{c_{it}^{k}} = \beta \left(r_{it+1}/p_{it+1} + (1-\delta) \right)$$

• Conjecture policy functions

$$p_{it}c_{it}^{k} = (1 - \beta) \left(r_{it} + p_{it} \left(1 - \delta \right) \right) k_{it}$$
$$k_{it+1} = \beta \left(r_{it} / p_{it} + (1 - \delta) \right) k_{it}$$

Confirm that this conjecture satisfies the Euler equation

 back

Constant Perceived Return to Capital

Profit maximization and zero profits

$$w_{it} = (1 - \lambda) p_{it} z_{it} \left(rac{k_{it}}{\ell_{it}}
ight)^{\lambda}$$
 $r_{it} = \lambda p_{it} z_{it} \left(rac{k_{it}}{\ell_{it}}
ight)^{\lambda - 1}$

Landlord income

$$\Pi_{it} = r_{it}k_{it} = p_{it}z_{it}k_{it}^{\lambda}\ell_{it}^{1-\lambda} - w_{it}\ell_{it}$$

• Using profit maximization and zero profits, landlord income is

$$\Pi_{it} = \lambda \left(p_{it} z_{it} \right)^{\frac{1}{\lambda}} \left(\frac{1-\lambda}{w_{it}} \right)^{\frac{1-\lambda}{\lambda}} k_{it}$$

Rental Rate Transition

---- Non-linear solution ------ Linear approximation - initial SS matrices

Investment Other Locations

 Realized rate of return to a landlord in location *n* from allocating one unit of capital to location *i* is:

$$v_{nit} = rac{lpha_{nit}r_{it}}{\phi_{nit}}$$

• Marginal efficiency of capital in *i* drawn from Fréchet distribution

$$F_{nit}\left(lpha
ight) = e^{-\left(lpha / a_{it}
ight)^{-\epsilon}}, \qquad a_{it} > 0, \qquad \epsilon > 1$$

• Capital from *n* allocated to *i*

$$b_{nit} = \frac{k_{nit}}{k_{nt}} = \frac{\left(a_{it}r_{it}/\phi_{nit}\right)^{\epsilon}}{\sum_{h=1}^{N}\left(a_{ht}r_{ht}/\phi_{nht}\right)^{\epsilon}}$$

• Realized rate of return on capital owned by source location *n* at time *t* is the same across all host locations *i* and given by

$$v_{nit} = v_{nt} = \Gamma\left(\frac{\epsilon-1}{\epsilon}\right) \left[\sum_{h=1}^{N} \left(\frac{a_{ht}r_{ht}}{\phi_{nht}}\right)^{\epsilon}\right]^{\frac{1}{\epsilon}}$$

Sequential Equilibrium

Definition

Given the state variables { ℓ_{i0} , k_{i0} } in each location in an initial period t = 0, a *sequential equilibrium* of the economy is a set of wages, expected values, mass of workers and stock of capital in each location in all subsequent time periods { w_{it} , v_{it} , ℓ_{it} , k_{it} }^{∞}_{t=0} that solves the value function, the labor market clearing condition, the goods market clearing condition, and the capital market clearing and accumulation condition.

Definition

A *steady-state* of the economy is an equilibrium in which all location-specific variables (wages, expected values, mass of workers and stock of capital in each location) are time invariant: $\{w_i^*, v_i^*, \ell_i^*, k_i^*\}$.

Existence and Uniqueness

• The steady-state equilibrium $\{p_i^*, w_i^*, \ell_i^*, \phi_i^*\}$ solves: • back

$$(p_i^*)^{-\theta} = \sum_{n=1}^N \psi \widetilde{\tau}_{in} (p_n^*)^{-\theta(1-\lambda)} (w_n^*)^{-\theta\lambda},$$

$$(p_i^*)^{\theta(1-\lambda)} (w_i^*)^{1+\theta\lambda} \ell_i^* = \sum_{n=1}^N \psi \widetilde{\tau}_{ni} (p_n^*)^{\theta} w_n^* \ell_n^*,$$

$$(p_i^*)^{\beta/
ho} (w_i^*)^{-\beta/
ho} \ell_i^* (\phi_i^*)^{-\beta} = \sum_{n=1}^N \widetilde{\kappa}_{in} \ell_n^* (\phi_n^*)^{-1}$$
 ,

$$\phi_{i}^{*}=\sum_{n=1}^{N}\widetilde{\kappa}_{ni}\left(p_{n}^{*}
ight)^{-eta/
ho}\left(w_{n}^{*}
ight)^{eta/
ho}\left(\phi_{n}^{*}
ight)^{eta}$$
 ,

where
$$\psi \equiv \left(\frac{1-\beta(1-\delta)}{\beta}\right)^{-\theta(1-\lambda)}$$
, $\widetilde{\tau}_{ni} \equiv (\tau_{ni}/z_i)^{-\theta}$,

$$\phi_i^* \equiv \sum_{n=1}^N \widetilde{\kappa}_{ni} \exp\left(\frac{\beta}{\rho} v_n^{w*}\right), \qquad \widetilde{\kappa}_{in} \equiv \left(\kappa_{in}/b_n^{\beta}\right)^{-1/\rho}.$$

Existence and Uniqueness

•

• This system of equations falls with the class for which Theorem 1 of Allen, Arkolakis and Li (2020) applies:

$$\mathbf{\Lambda} = \begin{bmatrix} -\theta & 0 & 0 & 0 \\ \theta (1-\lambda) & (1+\theta\lambda) & 1 & 0 \\ \beta/\rho & -\beta/\rho & 1 & -\beta \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{\Gamma} = \begin{bmatrix} -\theta (1-\lambda) & -\theta\lambda & 0 & 0 \\ \theta & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ -\beta/\rho & \beta/\rho & 0 & \beta \end{bmatrix}.$$

Dynamic Exact Hat Algebra

• Given an observed initial allocation $(\{l_{i0}\}_{i=1}^{N}, \{k_{i0}\}_{i=1}^{N}, \{k_{i1}\}_{i=1}^{N}, \{S_{ni0}\}_{n,i=1}^{N}, \{D_{ni,-1}\}_{n,i=1}^{N})$

$$\hat{D}_{igt+1} = \frac{D_{igt} \left(\hat{u}_{gt+2} / \hat{\kappa}_{git+1} \right)^{1/\rho}}{\sum_{m=1}^{N} D_{imt} \left(\hat{u}_{mt+2} / \hat{\kappa}_{mit+1} \right)^{1/\rho}}$$

$$\hat{u}_{it+1} = \left(\hat{b}_{it+1}\frac{\hat{w}_{it+1}}{\hat{p}_{it+1}}\right)^{\beta} \left(\sum_{g=1}^{N} \left(\hat{u}_{gt+2}/\hat{\kappa}_{git+1}\right)^{1/\rho}\right)^{\beta\rho}$$

$$\hat{p}_{it+1} = \left(\sum_{m=1}^{N} S_{imt} \left(\hat{\tau}_{imt+1} \hat{w}_{mt+1} \left(\hat{l}_{mt+1} / \hat{k}_{mt+1}\right)^{1-\mu} / \hat{z}_{mt+1}\right)^{-\theta}\right)^{-1/\theta}$$

$$\ell_{gt+1} = \sum_{i=1}^{N} D_{igt} \ell_{it}$$

• where $u_{it} = \exp(v_{it})$ and $\hat{u}_{it+1} = u_{it+1}/u_{it}$

Dynamic Exact Hat Algebra

$$\hat{w}_{it+1}\hat{\ell}_{it+1} = \sum_{n=1}^{N} \frac{S_{nit+1}w_{nt}\ell_{nt}}{\sum_{k=1}^{N} S_{kit}w_{kt}\ell_{kt}} \hat{w}_{nt+1}\hat{\ell}_{nt+1}$$

$$\hat{S}_{nit+1} \equiv \frac{S_{nit+1} \left(\hat{\tau}_{nit+1}\hat{w}_{it+1} \left(\hat{l}_{it+1}/\hat{k}_{it+1}\right)^{1-\mu}/\hat{z}_{it+1}\right)^{-\theta}}{\sum_{k=1}^{N} S_{nkt+1} \left(\hat{\tau}_{nkt+1}\hat{w}_{kt+1} \left(\hat{l}_{kt+1}/\hat{k}_{kt+1}\right)^{1-\mu}/\hat{z}_{kt+1}\right)^{-\theta}}{\zeta_{it+1}} = \beta R_{it+1}^{\psi-1} \frac{\zeta_{it}}{1-\zeta_{it}}}{k_{it+1} = (1-\zeta_{it}) R_{it}k_{it}}$$

$$(R_{it} - (1-\delta)) = \frac{\hat{p}_{it+1}\hat{k}_{it+1}}{\hat{w}_{it+1}\hat{l}_{it+1}} \left(R_{it+1} - (1-\delta)\right)$$

▶ back

Transition Dynamics Decomposition

• Transition dynamics decomposition

$$\begin{aligned} \widetilde{x}_t &= \boldsymbol{P} \widetilde{x}_{t-1} + \boldsymbol{R} \widetilde{f} \\ \widetilde{x}_{t-1} &= \boldsymbol{P} \widetilde{x}_{t-2} + \boldsymbol{R} \widetilde{f} \\ \vdots &\vdots \\ \widetilde{x}_1 &= \boldsymbol{P} \widetilde{x}_0 + \boldsymbol{R} \widetilde{f} \\ \widetilde{x}_0 &= \boldsymbol{P} \widetilde{x}_{-1} \end{aligned}$$

• Taking the difference between time t and t - 1

$$\ln x_t - \ln x_{t-1} = P (\ln x_{t-1} - \ln x_{t-2})
\vdots \\
= P^{t-1} (\ln x_1 - \ln x_0)
= P^t (\ln x_0 - \ln x_{-1}) + P^{t-1} R \tilde{f}$$

Transition Dynamics Decomposition

• We thus obtain:

$$\begin{split} \ln x_t - \ln x_{-1} &= [\ln x_t - \ln x_{t-1}] + [\ln x_{t-1} - \ln x_{t-2}] + \dots + [\ln x_1 - \ln x_0] + [\ln x_0 - \ln x_{-1}] \\ &= \left[P^t \left(\ln x_0 - \ln x_{-1} \right) + P^{t-1} R \widetilde{f} \right] + \left[P^{t-1} \left(\ln x_0 - \ln x_{-1} \right) + P^{t-2} R \widetilde{f} \right] \\ &+ \dots + \left[P \left(\ln x_0 - \ln x_{-1} \right) + R \widetilde{f} \right] + [\ln x_0 - \ln x_{-1}] \\ &= \sum_{s=0}^t P^s \left(\ln x_0 - \ln x_{-1} \right) + \sum_{s=0}^{t-1} P^s R \widetilde{f} \end{split}$$

▶ back

Any Convergent Sequence

Proposition

Consider an economy that is initially in steady-state at time t = 0 when agents learn about a convergent sequence of future shocks to productivity and amenities

 $\left\{ \tilde{\boldsymbol{f}}_{\boldsymbol{s}} \right\}_{\boldsymbol{s} \geq 1} = \left\{ \left[\begin{array}{c} \tilde{\boldsymbol{z}}_{\boldsymbol{s}} \\ \tilde{\boldsymbol{b}}_{\boldsymbol{s}} \end{array} \right] \right\}_{\boldsymbol{s} \geq 1} \text{ that is revealed under perfect foresight from time } t = 1 \text{ onwards.}$

There exists a $2N \times 2N$ transition matrix (**P**) and a $2N \times 2N$ impact matrix (**R**) such that the dynamic path of state variables relative to the initial steady-state follows:

$$\widetilde{\boldsymbol{x}}_t = \sum_{s=t+1}^{\infty} \left(\boldsymbol{\Psi}^{-1} \boldsymbol{\Gamma} - \boldsymbol{P} \right)^{-(s-t)} \boldsymbol{R} \left(\widetilde{\boldsymbol{f}}_s - \widetilde{\boldsymbol{f}}_{s-1} \right) + \boldsymbol{R} \widetilde{\boldsymbol{f}}_t + \boldsymbol{P} \widetilde{\boldsymbol{x}}_{t-1} \quad \text{for all } t \ge 1,$$

with initial condition $\tilde{\mathbf{x}}_0 = \mathbf{0}$ and where Ψ, Γ are matrices from our solution to the second-order difference equation

Stochastic Fundamentals

• Productivity and amenities evolve stochastically over time according to the following AR(1) structure:

$$\begin{split} &\ln z_{it+1} - \ln z_{it} = \rho^z \left(\ln z_{it} - \ln z_{it-1} \right) + \varpi_{it}^z, & |\rho^z| < 1, \\ &\ln b_{it-1} - \ln b_{it} = \rho^b \left(\ln b_{it} - \ln b_{it-1} \right) + \varpi_{it}^b, & |\rho^b| < 1, \end{split}$$

• Agents expect future shocks to fundamentals to decay to zero:

$$\mathbb{E}_{t}\left[\widetilde{z}_{it+s} - \widetilde{z}_{it+s-1}\right] = \left(\rho^{z}\right)^{s}\left(\widetilde{z}_{it} - \widetilde{z}_{it-1}\right),\\ \mathbb{E}_{t}\left[\widetilde{b}_{it+s} - \widetilde{b}_{it+s-1}\right] = \left(\rho^{b}\right)^{s}\left(\widetilde{b}_{it} - \widetilde{b}_{it-1}\right),$$

• Closed-form solution for the economy's transition path

$$\mathbb{E}_{1}\left[\widetilde{\boldsymbol{x}}_{t}\right] = \sum_{s=t+1}^{\infty} \left(\boldsymbol{\Psi}^{-1}\boldsymbol{\Gamma} - \boldsymbol{P}\right)^{-(s-t)} \boldsymbol{R}\left(\mathbb{E}_{1}\left[\widetilde{\boldsymbol{f}}_{s} - \widetilde{\boldsymbol{f}}_{s-1}\right]\right) + \boldsymbol{R}\mathbb{E}_{1}\left[\widetilde{\boldsymbol{f}}_{t}\right] + \boldsymbol{P}\mathbb{E}_{1}\left[\widetilde{\boldsymbol{x}}_{t-1}\right]$$

Eigendecomposition

• Eigendecomposition of transition dynamics

$$P = U\Lambda V$$
, and hence $P^s = \sum_{k=1}^{2N} \lambda_k^s u_k v'_k$

$$\begin{array}{ll} \widetilde{x}_t &= \sum_{s=0}^{t-1} P^s R \widetilde{f} \\ &= \sum_{s=0}^{t-1} \left(\sum_{k=1}^{2N} \lambda_k^s u_k v_k' \right) R \widetilde{f} \\ &= \sum_{k=1}^{2N} \left(\sum_{s=0}^{t-1} \lambda_k^s \right) u_k v_k' R \widetilde{f} \\ &= \sum_{k=1}^{2N} \left(\frac{1-\lambda_k^t}{1-\lambda_k} \right) u_k v_k' R \widetilde{f} \end{array}$$

Eigendecomposition

• Eigendecomposition of transition dynamics

$$P = U\Lambda V$$
, and hence $P^s = \sum_{k=1}^{2N} \lambda_k^s u_k v'_k$

$$\begin{split} \widetilde{x}_t &= \sum_{s=0}^{t-1} P^s R \widetilde{f} \\ &= \sum_{s=0}^{s-1} \left(\sum_{k=1}^{2N} \lambda_k^s u_k \nu_k' \right) R \widetilde{f} \\ &= \sum_{k=1}^{2N} \left(\sum_{s=0}^{t-1} \lambda_k^s \right) u_k \nu_k' R \widetilde{f} \\ &= \sum_{k=1}^{2N} \left(\frac{1-\lambda_k^t}{1-\lambda_k} \right) u_k \nu_k' R \widetilde{f} \end{split}$$

$$v'_k R\widetilde{f} = v'_k \sum_{i=1}^{2N} a_i R\widetilde{f}_i = \sum_{i=1}^{2N} a_i v'_k u_i = a_k$$

$$a = VR\widetilde{f} = U^{-1}R\widetilde{f} = (R^{-1}U)^{-1}\widetilde{f}$$
$$= (R^{-1}U)^{-1} ((R^{-1}U)^{T})^{-1} ((R^{-1}U)^{T})\widetilde{f}$$
$$= ((R^{-1}U)^{T} (R^{-1}U))^{-1} (R^{-1}U)^{T}\widetilde{f}$$

Speed of Convergence

• Suppose that $R\widetilde{f}$ coincides with a real eigenvector: $R\widetilde{f} = u_k$

$$\widetilde{\boldsymbol{x}}_t = \sum_{j=1}^{2N} \left(\frac{1-\lambda_j^t}{1-\lambda_j} \right) \boldsymbol{u}_j \boldsymbol{v}_j' R \widetilde{\boldsymbol{f}} = \sum_{j=1}^{2N} \frac{1-\lambda_j^t}{1-\lambda_j} \boldsymbol{u}_j \boldsymbol{v}_j' \boldsymbol{u}_k = \frac{1-\lambda_k^t}{1-\lambda_k} \boldsymbol{u}_k$$

- where we have used $UV' = UU^{-1} = I$
- Taking differences between periods *t* + 1 and *t*, we have:

$$\widetilde{\boldsymbol{x}}_{t+1} - \widetilde{\boldsymbol{x}}_t = rac{1 - \lambda_k^{t+1}}{1 - \lambda_k} \boldsymbol{u}_k - rac{1 - \lambda_k^t}{1 - \lambda_k} \boldsymbol{u}_k$$

which simplifies to:

$$(1 - \lambda_k) (\widetilde{\boldsymbol{x}}_{t+1} - \widetilde{\boldsymbol{x}}_t) = (1 - \lambda_k) \lambda_k^t \boldsymbol{u}_k$$

and hence:

$$(\widetilde{\boldsymbol{x}}_{t+1} - \widetilde{\boldsymbol{x}}_t) = \lambda_k^t \boldsymbol{u}_k$$

Speed of Convergence

• Noting that $\widetilde{\mathbf{x}}_t = \ln \mathbf{x}_t - \ln \mathbf{x}^*_{\text{initial}}$, we have:

$$\ln oldsymbol{x}_{t+1} - \ln oldsymbol{x}_t = \lambda_k^t oldsymbol{u}_k$$

• which implies exponential convergence to steady-state, such that for each location *i*:

$$\frac{x_{it+1}}{x_{it}} = \exp\left(\lambda_k^t u_{ik}\right)$$

• We can solve for the half-life as:

$$\frac{\frac{1-\lambda_k^t}{1-\lambda_k}u_k}{\frac{1}{1-\lambda_k}u_k} = \frac{1}{2}$$

• which simplifies to:

$$\lambda_k^t = \frac{1}{2}$$

and hence:

$$\ln \frac{1}{2} = t \ln \lambda_k, t = -\frac{\ln 2}{\ln \lambda_k}$$

Predictive Power Initial Steady-State

		()	()	
Outcome: 1965-2015 Pop. Log Growth	(1)	(2)	(3)	(4)
1965-2015 Pop. Predicted Log Growth	0.871***	0.959***	0.934***	0.903***
	(0.108)	(0.0780)	(0.0674)	(0.0846)
Log 1965 Population		-0.130***	-0.124***	-0.126***
		(0.0326)	(0.0357)	(0.0381)
Log 1965 K-L Ratio			0.139	0.130
			(0.175)	(0.185)
1965-1966 Growth Rate				2.417
				(4.122)
N	49	49	49	49
R ²	0.503	0.605	0.616	0.617

