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A.1 Introduction

This Online Appendix contains additional theoretical derivations and supplementary empirical results for

the main paper. In Section A.2, we report additional derivations for our theoretical framework from Section

2 of the paper. In Section A.3, we provide further detail on our structural estimation approach from Section

3 of the paper. In Section A.4, we report further information on the data sources and de�nitions for our

U.S. and Chilean data from Section 4 of the paper.

In Section A.5, we report additional empirical results using our U.S. data that supplement those from

Section 5 of the paper. In Section A.6, we replicate all of our empirical results from Section 5 of the paper,

but using Chilean data instead of U.S. data. In Section A.7, we show that our theoretical approach allows

for unobserved di�erences in product composition within observed product categories.
∗We are grateful to the editor, two anonymous referees, Rob Feenstra, Keith Head, Pete Klenow, Kalina Manova, Thierry

Mayer, Marc Melitz, Gianmarco Ottaviano and Daniel Xu for helpful comments. We would also like to thank colleagues and
seminar participants at Bank of England, Carnegie-Mellon, Chicago, Columbia, Duke, NBER, Princeton, Stanford, UC Davis
and UC Berkeley for helpful comments. Thanks to Patrick Farrell, Mark Greenan, Ildiko Magyari, Charly Porcher and Dyanne
Vaught for outstanding research assistance. Redding and Weinstein thank Princeton and Columbia respectively for research
support. Weinstein would also like to thank the NSF (Award 1127493) for generous �nancial support. Any opinions, �ndings,
and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily re�ect the views
of the U.S. Census Bureau or any organization to which the authors are a�liated. Results have been screened to insure that no
con�dential data are revealed.
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A.2 Theoretical Framework Derivations

This section of the Online Appendix reports additional derivations for Section 2 of the paper. Each sub-

section has the same name as the corresponding subsection in Section 2 of the paper.

A.2.1 Demand

No further derivations required for Section 2.1 of the paper.

A.2.2 Non-traded Sectors

No further derivations required for Section 2.2 of the paper.

A.2.3 Domestic Versus Foreign Varieties Within Tradable Sectors

No further derivations required for Section 2.3 of the paper.

A.2.4 Exporter Price Indexes

No further derivations required for Section 2.4 of the paper.

A.2.5 Expenditure Shares

This section of the Online Appendix reports additional derivations for Section 2.5 of the paper. Corre-

sponding to the �rm expenditure share (SU
ut in equation (12) in the paper), we can de�ne the share of an

individual foreign �rm in expenditure on foreign imports within a sector (SF
f t) as:

SF
f t =

(
PF

f t/ϕF
f t

)1−σF
g

∑i∈ΩE
jgt

∑m∈ΩF
jigt

(
PF

mt/ϕF
mt
)1−σF

g
, (A.2.1)

where we use “blackboard” font SF
f t for the �rm expenditure share to emphasize that this variable is de�ned

as a share of expenditure on foreign �rms (since ΩE
jgt ≡

{
ΩI

jgt : i 6= j
}

in the denominator of equation

(A.2.1)). Similarly, we can de�ne the share of an individual tradable sector in all expenditure on tradable

sectors (ST
jgt)

ST
jgt =

(
PG

jgt/ϕG
jgt

)1−σG

∑k∈ΩT

(
PG

jkt/ϕG
jkt

)1−σG , (A.2.2)

where we use the blackboard font ST
jgt and superscript T for the sector expenditure share to signal that

this variable is de�ned across tradable sectors (since ΩT ⊆ ΩG in the denominator of equation (A.2.2)).
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A.2.6 Model Inversion

In this section of the Online Appendix, we report additional derivations for Section 2.6 of the paper. In

particular, given the observed data on prices and expenditures for each product {PU
ut, XU

ut} and the substi-

tution parameters {σU
g , σF

g , σG}, the model is invertible, such that unique values of appeal can be recovered

from the observed data (up to a normalization or choice of units). We start with the solution for product

appeal in equation (13) in the paper, reproduced below:

ϕU
ut

MU∗
f t

[
ϕU

ut
] = PU

ut

MU∗
f t

[
PU

ut
] ( SU

ut

MU∗
f t

[
SU

ut
]) 1

σU
g −1

, (A.2.3)

where we choose units in which to measure product appeal such that its geometric mean across common

products within each �rm is equal to one:

MU∗
f t

[
ϕU

ut

]
≡

 ∏
u∈ΩU

f t,t−1

ϕU
ut

 1
NU

t,t−1

= 1. (A.2.4)

Having solved for product appeal (ϕU
ut) using equations (A.2.3) and (A.2.4), we use equation (3) in the paper

to compute the �rm price index, as reproduced below:

PF
f t =

 ∑
u∈ΩU

f t

(
PU

ut/ϕU
ut

)1−σU
g

 1
1−σU

g

. (A.2.5)

Using this solution for the �rm price index (PF
f t) from equation (A.2.5), we divide the share of a foreign

�rm in sectoral imports in equation (A.2.1) by its geometric mean across common foreign �rms within

that sector to obtain the following solution for appeal for each foreign �rm:

ϕF
f t

MF∗
jgt

[
ϕF

f t

] =
PF

f t

MF∗
jgt

[
PF

f t

]
 SF

f t

MF∗
jgt

[
SF

f t

]
 1

σF
g −1

, (A.2.6)

where we choose units in which to measure �rm appeal such that its geometric mean across common

foreign �rms within each sector is equal to one:

MF∗
jgt

[
ϕF

f t

]
≡

 ∏
i∈ΩE

jgt,t−1

∏
f∈ΩF

jigt,t−1

ϕF
f t

 1
NF

jgt,t−1

= 1. (A.2.7)

Having solved for �rm appeal (ϕF
f t) for each foreign �rm using equations (A.2.6) and (A.2.7), we use equa-

tions (7) and (9) in the paper to compute the sector price index, as reproduced below:

PG
jgt =

(
µG

jgt

) 1
σF

g −1

 ∑
i∈ΩE

jgt

∑
f∈ΩF

jigt

(
PF

f t/ϕF
f t

)1−σF
g

 1
1−σF

g

, (A.2.8)
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where recall that µG
jgt is the observed share of expenditure on foreign varieties within each sector.

Using this solution for the sector price index (PG
jgt) from equation (A.2.8), we divide the share of an

individual tradable sector in all expenditure on tradable sectors in equation (A.2.2) by its geometric mean

across these tradable sectors to obtain the following solution for sector appeal for each tradable sector:

ϕG
jgt

MT
jt

[
ϕG

jgt

] =
PG

jgt

MT
jt

[
PG

jgt

]
 ST

jgt

MT
jt

[
ST

jgt

]
 1

σG−1

, (A.2.9)

where we choose units in which to measure sector appeal such that its geometric mean across tradable

sectors is equal to one:

MT
jt

[
ϕG

jgt

]
≡

 ∏
g∈ΩT

ϕG
jgt

 1
NT

= 1. (A.2.10)

Recall that there is no asterisk in the superscript of the geometric mean operator across tradable sectors,

because the set of tradable sectors is constant over time. Having solved for sector appeal (ϕG
jgt) for each

tradable sector using equations (A.2.9) and (A.2.10), we use equations (4) and (6) in the paper to compute

the aggregate price index, as reproduced below:

Pjt =
(

µT
jt

) 1
σG−1

 ∑
g∈ΩT

(
PG

jgt/ϕG
jgt

)1−σG

 1
1−σG

, (A.2.11)

where recall that µT
jt the observed share of aggregate expenditure on tradable sectors. This completes our

inversion of the model to recover the structural residuals for product, �rm and sector appeal {ϕU
ut, ϕF

f t ,

ϕG
jgt}.

A.2.7 Log-Linear CES Price Index

No further derivations required for Section 2.7 of the paper.

A.2.8 Entry, Exit and the Uni�ed Price Index

In this section of the Online Appendix, we report additional derivations for Section 2.8 of the paper. In

particular, we derive the expression for the change in the uni�ed price index over time, taking into account

entry and exit. Using the shares of expenditure on common goods in equation (19) in the paper, the change

in the �rm price index between periods t− 1 and t (PF
f t/PF

f t−1) can be re-written as:

PF
f t

PF
f t−1

=

(
λU

f t

λU
f t−1

) 1
σU

g −1

 ∑u∈ΩU
f t,t−1

(
PU

ut/ϕU
ut
)1−σU

g

∑u∈ΩU
f t,t−1

(
PU

ut−1/ϕU
ut−1

)1−σU
g


1

1−σU
g

=

(
λU

f t

λU
f t−1

) 1
σU

g −1 PF∗
f t

PF∗
f t−1

, (A.2.12)
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where the superscript asterisk indicates that a variable is de�ned for the common set of varieties. We

can also de�ne the share of expenditure on an individual common product in expenditure on all common

products within the �rm as:

SU∗
ut =

(
PU

ut/ϕU
ut
)1−σU

g

∑`∈ΩU
f t,t−1

(
PU
`t /ϕU

`t

)1−σU
g
=

(
PU

ut/ϕU
ut
)1−σU

g(
PF∗

f t

)1−σU
g

. (A.2.13)

Rearranging this common product expenditure share (A.2.13), taking logarithms, and taking means of both

sides of the equation, we obtain the following expression for the log of the common goods �rm price index

(PF∗
f t ):

ln P∗f t = EU∗
f t

[
PU

ut

]
−EU∗

f t

[
ϕU

ut

]
+

1
σU

g − 1
EU∗

f t

[
SU∗

ut

]
(A.2.14)

where EU∗
f t

[
ln PU

ut
]
≡ 1

NU∗
f t,t−1

∑u∈ΩU
f t,t−1

ln
(

PU
ut
)
; the superscript U∗ indicates that the mean is taken across

common products; and the subscripts f and t indicate that this mean varies across �rms and over time.

Taking logarithms in equation (A.2.12), and using the expression for the common goods �rm price index

in equation (A.2.14), we obtain equation (20) in the paper.

A.2.9 Exporter Price Movements

In this section of the Online Appendix, we report additional derivations for Section 2.9 of the paper. In

particular, we derive the log linear decompositions of the exporter price index (PE
jigt) for a given exporter

and sector in equations (21) and (22) in the paper. We �rst use the CES expression for the share an individual

foreign �rm f in country j’s imports from a foreign exporting country i 6= j within a sector g:

SEF
f t =

(
PF

f t/ϕF
f t

)1−σF
g

∑k∈ΩF
jigt

(
PF

kt/ϕF
kt

)1−σF
g
=

(
PF

f t/ϕF
f t

)1−σF
g

(
PE

jigt

)1−σF
g

, i 6= j, (A.2.15)

where the superscript EF is a mnemonic for exporter and �rm, and indicates that this �rm expenditure

share is computed as a share of imports from a single foreign exporting country.

Re-arranging equation (A.2.15), taking logarithms of both sides, adding and subtracting 1
σF

g−1 ln NF
jigt,

and taking means across foreign �rms from that exporter and sector, we obtain the following expression

for the log of the exporter price index:

ln PE
jigt = EF

jigt

[
ln PF

f t

]
−MF

jigt

[
ln ϕF

f t

]
− 1

σF
g − 1

ln NF
jigt +

1
σF

g − 1
EF

jigt

[
SEF

f t − ln
1

NF
jigt

]
, (A.2.16)

where EF
jigt [·] is the mean for importer j across �rms from exporter i within sector g at time t, such that

EF
jigt

[
ln PF

f t

]
≡ 1

NF
jigt

∑ f∈ΩF
jigt

ln PF
f t.

Substituting the �rm price index (PF
f t) from equation (18) in the paper into equation (A.2.16) above, we

obtain our exact log linear decomposition of the exporter price index in equation (21) in the paper, which

is reproduced below:
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ln PE
jigt = EFU

jigt

[
ln PU

ut

]
︸ ︷︷ ︸
(i) Average log

prices

−
{

EF
jigt

[
ln ϕF

f t

]
+ EFU

jigt

[
ln ϕU

ut

]}
︸ ︷︷ ︸

(ii) Average log
appeal

+

{
1

σU
g − 1

EFU
jigt

[
ln SU

ut − ln
1

NU
f t

]
+

1
σF

g − 1
EF

jigt

[
ln SEF

f t − ln
1

NF
jigt

]}
︸ ︷︷ ︸

(iii) Dispersion of appeal-adjusted prices

(A.2.17)

−
{

1
σU

g − 1
EF

jigt

[
ln NU

f t

]
+

1
σF

g − 1
ln NF

jigt

}
︸ ︷︷ ︸

(iv) Variety

,

where EFU
jigt [·] is the mean for importer j across �rms and products from exporter i within sector g at time

t, such that EFU
jigt

[
ln PU

ut
]
≡ 1

NF
jigt

∑ f∈ΩF
jigt

1
NU

f t
∑u∈ΩU

f t
ln PU

ut.

We next incorporate the entry and exit of varieties. The log change in the exact CES price index for an

importer j sourcing goods in sector g from an exporter i between periods t− 1 and t is:

PE
jigt

PE
jigt−1

=

 ∑ f∈ΩF
jigt

(
PF

f t/ϕF
f t

)1−σF
g

∑ f∈ΩF
jigt−1

(
PF

f t−1/ϕF
f t−1

)1−σF
g


1

1−σF
g

, (A.2.18)

where the entry and exit of �rms over time implies that ΩF
jigt 6= ΩF

jigt−1. We de�ne the share of expenditure

on common �rms f ∈ ΩF
jigt,t−1 within an exporter and sector in periods t and t− 1 as:

λF
jigt ≡

∑ f∈ΩF
jigt,t−1

(
PF

f t/ϕF
f t

)1−σF
g

∑ f∈ΩF
jigt

(
PF

f t/ϕF
f t

)1−σF
g

, λF
jigt−1 ≡

∑ f∈ΩF
jigt,t−1

(
PF

f t−1/ϕF
f t−1

)1−σF
g

∑ f∈ΩF
jigt−1

(
PF

f t−1/ϕF
f t−1

)1−σF
g

. (A.2.19)

Using these de�nitions from equation (A.2.19), the change in the exporter price index in equation (A.2.18)

can be re-written in the following form:

PE
jigt

PE
jigt−1

=

(
λF

jigt

λF
jigt−1

) 1
σF

g −1

 ∑ f∈ΩF
jigt,t−1

(
PF

f t/ϕF
f t

)1−σF
g

∑ f∈ΩF
jigt,t−1

(
PF

f t−1/ϕF
f t−1

)1−σF
g


1

1−σF
g

=

(
λF

jigt

λF
jigt−1

) 1
σF

g −1 PE∗
jigt

PE∗
jigt−1

, (A.2.20)

where the �rst term (
(

λF
jigt/λF

jigt−1

) 1
σF

g −1 ) corrects for the entry and exit of �rms; the second term (PE∗
jigt/PE∗

jigt−1)

is the change in the exporter price index for common �rms; and we again use the superscript asterisk to

denote a variable for common varieties. Using this notation, we can also de�ne the share of expenditure

on an individual common �rm in overall expenditure on common �rms for an exporter and sector:

SEF∗
f t =

(
PF

f t/ϕF
f t

)1−σF
g

∑m∈ΩF
jigt,t−1

(
PF

mt/ϕF
mt
)1−σF

g
=

(
PF

f t/ϕF
f t

)1−σF
g

(
PE∗

jigt

)1−σF
g

. (A.2.21)
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Rearranging equation (A.2.21) so that the exporter price index for common �rms (PE∗
jigt) is on the left-hand

side, taking logarithms, and taking means across the set of common �rms within an exporter and sector,

we obtain:

ln PE∗
jigt = EF∗

jigt

[
ln PF

f t

]
−EF∗

jigt

[
ln ϕF

f t

]
+

1
σF

g − 1
EF∗

jigt

[
ln SF

f t

]
, (A.2.22)

EF∗
jigt [·] is the mean across the common set of �rms (superscript F∗) for a given importer (subscript j),

exporter (subscript i), sector (subscript g) and time (subscript t) such that:

EF∗
jigt

[
ln PF

f t

]
=

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

ln PF
f t. (A.2.23)

Taking di�erences over time in equation (A.2.22), we obtain the following expression for the log change

in the common goods exporter price index:

ln

(
PE∗

jigt

PE∗
jigt−1

)
= EF∗

jigt

[
ln

(
PF

f t

PF
f t−1

)]
−EF∗

jigt

[
ln

(
ϕF

f t

ϕF
f t−1

)]
+

1
σF

g − 1
EF∗

jigt

[
ln

(
SEF∗

f t

SEF∗
f t−1

)]
. (A.2.24)

We now take logarithms in equation (A.2.20) and use equation (A.2.24) to substitute for PE∗
jigt/PE∗

jigt−1 and

arrive at the following expression for the log change in the overall exporter price index:

ln

(
PE

jigt

PE
jigt−1

)
=

1
σF

g − 1
ln

(
λF

jigt

λF
jigt−1

)
+ EF∗

jigt

[
ln

(
PF

f t

PF
f t−1

)]
−EF∗

jigt ln

[(
ϕF

f t

ϕF
f t−1

)]
+

1
σF

g − 1
EF∗

jigt

[
ln

(
SEF∗

f t

SEF∗
f t−1

)]
.

(A.2.25)

Substituting the expression the change in the �rm price index from equation (20) in the paper into equation

(A.2.25), we obtain equation (22) in the paper, which is reproduced below:

∆ ln PE
jigt = EFU∗

jigt

[
∆ ln PU

ut

]
︸ ︷︷ ︸
(i) Average log prices

−
{

EF∗
jigt

[
∆ ln ϕF

f t

]
+ EFU∗

jigt

[
∆ ln ϕU

ut

]}
︸ ︷︷ ︸

(ii) Average log appeal

(A.2.26)

+

{
1

σU
g − 1

EFU∗
jigt

[
∆ ln SU∗

ut

]
+

1
σF

g − 1
EF∗

jigt

[
∆ ln SEF

f t

]}
︸ ︷︷ ︸

(iii) Dispersion of appeal-adjusted prices

+

{
1

σU
g − 1

EF∗
jigt

[
∆ ln λU

f t

]
+

1
σF

g − 1
∆ ln λF

jigt

}
︸ ︷︷ ︸

(iv) Variety

,

where ∆ is the di�erence operator such that ∆ ln PE
jigt ≡ ln

(
PE

jigt/PE
jigt−1

)
; EFU∗

jigt [·] is a mean, �rst

across common products within �rms and then across common �rms (superscript FU∗), for a given im-

porter (subscript j), exporter (subscript i), sector (subscript g) and time period (subscript t) such that:

EFU∗
jigt

[
∆ ln PU

ut

]
=

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

1
NU

f t,t−1
∑

u∈ΩU
f t,t−1

∆ ln PU
ut. (A.2.27)

Recall that our normalization of product appeal in equation (A.2.4) implies EFU∗
jigt

[
∆ ln ϕU

ut
]
= 0. Therefore

the log change in the exporter price index in equation (A.2.26) simpli�es to:
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∆ ln PE
jigt = EFU∗

jigt

[
∆ ln PU

ut

]
︸ ︷︷ ︸
(i) Average log prices

−
{

EF∗
jigt

[
∆ ln ϕF

f t

]}
︸ ︷︷ ︸
(ii) Average log appeal

(A.2.28)

+

{
1

σU
g − 1

EFU∗
jigt

[
∆ ln SU∗

ut

]
+

1
σF

g − 1
EF∗

jigt

[
∆ ln SEF

f t

]}
︸ ︷︷ ︸

(iii) Dispersion of appeal-adjusted prices

+

{
1

σU
g − 1

EF∗
jigt

[
∆ ln λU

f t

]
+

1
σF

g − 1
∆ ln λF

jigt

}
︸ ︷︷ ︸

(iv) Variety

.

A.2.10 Patterns of Trade Across Sectors and Countries

A.2.10.1 Revealed Comparative Advantage

In this section of the Online Appendix, we report the derivation of the results in Section 2.10.1 of the paper.

In particular, we derive the decompositions of revealed comparative advantage (RCA) in equations (26) and

(27) in the paper. From equation (25) in the paper, log RCA is given by:

ln
(

RCAjigt
)
=
(

1− σF
g

) ln
(

PE
jigt

)
− 1

NE
jgt

∑
h∈ΩE

jgt

ln
(

PE
jhgt

)− 1
NT

jit
∑

k∈ΩT
jit

(
1− σF

k

) ln
(

PE
jikt

)
− 1

NE
jkt

∑
h∈ΩE

jkt

ln
(

PE
jhkt

) . (A.2.29)

where recall that ΩE
jgt ≡

{
ΩI

jgt : i 6= j
}

is the set of foreign exporters that supply importer j within

sector g at time t; NE
jgt =

∣∣∣ΩE
jgt

∣∣∣ is the number of elements in this set; ΩT
jit is the set of tradable sectors

that importer j sources from exporter i at time t; and NT
jit =

∣∣∣ΩT
jit

∣∣∣ is the number of elements in this set.

Using equation (21) in the paper to substitute for the log exporter price index (PE
jigt) in equation (A.2.29),

we obtain the following exact log-linear decomposition of RCA:

ln
(

RCAjigt
)
= ln

(
RCAP

jigt

)
︸ ︷︷ ︸
(i) Average log

prices

+ ln
(

RCAϕ
jigt

)
︸ ︷︷ ︸

(ii) Average log
appeal

+ ln
(

RCAS
jigt

)
︸ ︷︷ ︸

(iii) Dispersion of appeal-
adjusted prices

+ ln
(

RCAN
jigt

)
︸ ︷︷ ︸

(iv) Variety

. (A.2.30)

The �rst term in equation (A.2.30) captures average product prices:

ln
(

RCAP
jigt

)
≡


(

1− σF
g

) [
EFU

jigt
[
ln PU

ut
]
− 1

NE
jgt

∑h∈ΩE
jgt

EFU
jhgt
[
ln PU

ut
]]

− 1
NT

jit
∑k∈ΩT

jit

(
1− σF

k
) [

EFU
jikt
[
ln PU

ut
]
− 1

NE
jkt

∑h∈ΩE
jkt

EFU
jhkt
[
ln PU

ut
]]

 , (A.2.31)

where EFU
jigt [·] denotes an average, �rst across products within �rms (superscript U), and next across �rms

(superscript F) supplying importer j from exporter i within sector g at time t such that:

EFU
jigt

[
∆ ln PU

ut

]
=

1
NF

jigt
∑

f∈ΩF
jigt

1
NU

f t
∑

u∈ΩU
f t

∆ ln PU
ut. (A.2.32)

8



The second term in equation (A.2.30) incorporates average �rm and product appeal:

ln
(

RCAϕ
jigt

)
≡



(
σF

g − 1
) [

EF
jigt

[
ln ϕF

f t

]
− 1

NE
jgt

∑h∈ΩE
jgt

EF
jhgt

[
ln ϕF

f t

]]
− 1

NT
jit

∑k∈ΩT
jit

(
σF

k − 1
) [

EF
jikt

[
ln ϕF

f t

]
− 1

NE
jkt

∑h∈ΩE
jkt

EF
jhkt

[
ln ϕF

f t

]]
+
(

σF
g − 1

) [
EFU

jigt
[
ln ϕU

ut
]
− 1

NE
jgt

∑h∈ΩE
jgt

EFU
jhgt
[
ln ϕU

ut
]]

− 1
NT

jit
∑k∈ΩT

jit

(
σF

k − 1
) [

EFU
jikt
[
ln ϕU

ut
]
− 1

NE
jkt

∑h∈ΩE
jkt

EFU
jhkt
[
ln ϕU

ut
]]


, (A.2.33)

where EF
jigt [·] denotes an average across �rms (superscript F) supplying importer j from exporter i within

sector g at time t such that:

EF
jigt

[
∆ ln ϕF

f t

]
=

1
NF

jigt
∑

f∈ΩF
jigt

∆ ln ϕF
f t. (A.2.34)

The third term in equation (A.2.30) re�ects the dispersion of �rm and product appeal-adjusted prices, as

re�ected in the dispersion of �rm and product expenditure shares:

ln
(

RCAS
jigt

)
≡ −



[
EF

jigt

[
ln SEF

f t − ln 1
NF

jigt

]
− 1

NE
jgt

∑h∈ΩE
jgt

EF
jhgt

[
ln SEF

f t − ln 1
NF

jhgt

]]
− 1

NT
jit

∑k∈ΩT
jit

[
EF

jikt

[
ln SEF

f t − ln 1
NF

jikt

]
− 1

NE
jkt

∑h∈ΩE
jkt

EF
jhkt

[
ln SEF

f t − ln 1
NF

jhkt

]]
+

σF
g −1

σU
g −1

[
EFU

jigt

[
ln SU

ut − ln 1
NU

f t

]
− 1

NE
jgt

∑h∈ΩE
jgt

EFU
jhgt

[
ln SU

ut − ln 1
NU

f t

]]
− 1

NT
jit

∑k∈ΩT
jit

σF
k −1

σU
k −1

[
EFU

jikt

[
ln SU

ut − ln 1
NU

f t

]
− 1

NE
jkt

∑h∈ΩE
jkt

EFU
jhkt

[
ln SU

ut − ln 1
NU

f t

]]


, (A.2.35)

where SU
ut is de�ned in equation (12) in the paper and SEF

f t is de�ned in equation (A.2.15) of this Online

Appendix.

The fourth and �nal term in equation (A.2.30) comprises �rm and product variety:

ln
(

RCAN
jigt

)
≡



[
ln NF

jigt −
1

NE
jgt

∑h∈ΩE
jgt

ln NF
jhgt

]
− 1

NT
jit

∑k∈ΩT
jit

[
ln NF

jikt −
1

NE
jkt

∑h∈ΩE
jkt

ln NF
jhkt

]
+

σF
g−1

σU
g −1

[
EF

jigt

[
ln NU

f t

]
− 1

NE
jgt

∑h∈ΩE
jgt

EF
jhgt

[
ln NU

f t

]]
+ 1

NT
jit

∑k∈ΩT
jit

σF
k −1

σU
k −1

[
EF

jikt

[
ln NU

f t

]
− 1

NE
jkt

∑h∈ΩE
jkt

EF
jhkt

[
ln NU

f t

]]


, (A.2.36)

where NF
jigt is the number of �rms that supply importer j from exporting country i within sector g at

time t; NE
jgt is the number of exporting countries that supply importer j within sector g at time t; NT

jit is

the number of tradable sectors in which exporting country i supplies importer j at time t; and NU
f t is the

number of products supplied by �rm f at time t.

Taking logarithms and di�erencing over time in the de�nition of RCA in equation (25) in the paper, and

using the expression for the change in the log exporter price index from equation (A.2.26) of this Online

Appendix, the log change in revealed comparative advantage (RCA) over time can be written as:

∆ ln
(

RCA∗jigt

)
= ∆ ln

(
RCAP∗

jigt

)
︸ ︷︷ ︸
(i) Average log

prices

+ ∆ ln
(

RCAϕ∗
jigt

)
︸ ︷︷ ︸
(ii) Average log

appeal

+ ∆ ln
(

RCAS∗
jigt

)
︸ ︷︷ ︸

(iii) Dispersion appeal-
adjusted prices

+ ∆ ln
(

RCAλ
jigt

)
︸ ︷︷ ︸

(iv) Variety

, (A.2.37)
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where we compute these log changes for all common exporter-sector pairs with positive trade in both

periods, as indicated by the asterisks in the superscripts. The �rst term in equation (A.2.37) captures

average log changes in common product prices:

∆ ln
(

RCAP∗
jigt

)
≡


(

1− σF
g

) [
EFU∗

jigt,t−1
[
∆ ln PU

ut
]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EFU∗
jhgt,t−1

[
∆ ln PU

ut
]]

− 1
NT

jit,t−1
∑k∈ΩT

jit,t−1

(
1− σF

k
) [

EFU∗
jikt,t−1

[
∆ ln PU

ut
]
− 1

NE
jkt

∑h∈ΩE
jkt,t−1

EFU∗
jhkt,t−1

[
∆ ln PU

ut
]]
 , (A.2.38)

where ΩE
jgt,t−1 is the set of common foreign exporters that supply importer j within sector g in both

periods t − 1 and t; NE
jgt,t−1 =

∣∣∣ΩE
jgt,t−1

∣∣∣ is the number of elements in this set; ΩT
jit,t−1 is the set of

tradable sectors that importer j sources from exporter i in both periods t− 1 and t; NT
jit =

∣∣∣ΩT
jit

∣∣∣ is the

number of elements in this set; EFU∗
jigt [·] denotes an average, �rst across common products within �rms

and next across common �rms (superscript FU∗), supplying importer j from exporter i within sector g

at time t (as de�ned in equation (A.2.27)). The second term in equation (A.2.37) incorporates average log

changes in common �rm and product appeal:

∆ ln
(

RCAϕ∗
jigt

)
≡



(
σF

g − 1
) [

EF∗
jigt,t−1

[
∆ ln ϕF

f t

]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EF∗
jhgt,t−1

[
∆ ln ϕF

f t

]]
− 1

NT
jit,t−1

∑k∈ΩT
jt,t−1

(
σF

k − 1
) [

EF∗
jikt,t−1

[
∆ ln ϕF

f t

]
− 1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

EF∗
jhkt,t−1

[
∆ ln ϕF

f t

]]
+
(

σF
g − 1

) [
EFU∗

jigt,t−1

[
∆ ln ϕU

ut
]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EFU∗
jhgt,t−1

[
∆ ln ϕU

ut
]]

− 1
NT

jit,t−1
∑k∈ΩT

jit,t−1

(
σF

k − 1
) [

EFU∗
jikt,t−1

[
∆ ln ϕU

ut
]
− 1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

EFU∗
jhkt,t−1

[
∆ ln ϕU

ut
]]


, (A.2.39)

where EF∗
jigt,t−1 [·] denotes an average across common �rms (superscript F∗) supplying importer j from

exporter i within sector g at time t (as de�ned in equation (A.2.23)). Recall that our normalization of

product appeal in equation (A.2.4) implies that EU∗
f t

[
∆ ln ϕU

ut
]
= 0, which in turn implies that this second

term simpli�es to:

∆ ln
(

RCAϕ∗
jigt

)
≡


(

σF
g − 1

) [
EF∗

jigt,t−1

[
∆ ln ϕF

f t

]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EF∗
jhgt,t−1

[
∆ ln ϕF

f t

]]
− 1

NT
jit,t−1

∑k∈ΩT
jit,t−1

(
σF

k − 1
) [

EF∗
jikt,t−1

[
∆ ln ϕF

f t

]
− 1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

EF∗
jhkt,t−1

[
∆ ln ϕF

f t

]]
 ,

(A.2.40)

where, in general, EF∗
jigt,t−1

[
∆ ln ϕF

f t

]
6= EF∗

jgt,t−1

[
∆ ln ϕF

f t

]
= 0 for an individual exporter i 6= j. The

third term in equation (A.2.37) encapsulates the dispersion in appeal-adjusted prices across common prod-

ucts and �rms:

ln
(

RCAS∗
jigt

)
≡ −



[
EF∗

jigt,t−1

[
∆ ln SEF∗

f t

]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EF∗
jhgt,t−1

[
∆ ln SEF∗

f t

]]
− 1

NT
jit,t−1

∑k∈ΩT
jit,t−1

[
EF∗

jikt,t−1

[
∆ ln SEF∗

f t

]
− 1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

EF∗
jhkt,t−1

[
∆ ln SEF∗

f t

]]
+

σF
g −1

σU
g −1

[
EFU∗

jigt,t−1

[
∆ ln SU∗

ut
]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EFU∗
jhgt,t−1

[
∆ ln SU∗

ut
]]

− 1
NT

jit,t−1
∑k∈ΩT

jit,t−1

σF
k −1

σU
k −1

[
EFU∗

jikt,t−1

[
∆ ln SU∗

ut
]
− 1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

EFU∗
jhkt,t−1

[
∆ ln SU∗

ut
]]


, (A.2.41)
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where SU∗
ut is de�ned in equation (A.2.13) and SEF∗

f t is de�ned in equation (A.2.21). The fourth and �nal
term in equation (A.2.37) corresponds to the entry and exit of products and �rms:

ln
(

RCAλ
jigt

)
≡ −



[
∆ ln λF

jigt −
1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

∆ ln λF
jhgt

]
− 1

NT
jit,t−1

∑k∈ΩT
jit,t−1

[
∆ ln λF

jikt −
1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

∆ ln λF
jhkt

]
+

σF
g −1

σU
g −1

[
EF∗

jigt

[
∆ ln λU

f t

]
− 1

NE
jgt,t−1

∑h∈ΩE
jgt,t−1

EF∗
jhgt

[
∆ ln λU

f t

]]
− 1

NT
jit,t−1

∑k∈ΩT
jit,t−1

σF
k −1

σU
k −1

[
EF∗

jikt

[
∆ ln λU

f t

]
− 1

NE
jkt,t−1

∑h∈ΩE
jkt,t−1

EF∗
jhkt

[
∆ ln λU

f t

]]


, (A.2.42)

where λU
ut is de�ned in equation (19) in the paper and λF

f t is de�ned in equation (A.2.19) of this Online

Appendix.

A.2.10.2 Aggregate Trade

In this section of the Online Appendix, we report additional derivations for Section 2.10.2 of the paper. In

particular, we derive the decomposition of countries’ shares of aggregate imports in equation (28) in the

paper. We begin by rewriting the share of an individual exporter in aggregate imports in terms of a share

of common imports (supplied in both periods t and t− 1) and entry and exit terms. We have the following

accounting identity for the share of an individual exporter in aggregate imports:

SE
jit ≡

XE
jit

XT
jt
=

XT∗
jt

XT
jt

XE
jit

XE∗
jit

XE∗
jit

XT∗
jt

, (A.2.43)

where XE
jit is country j’s imports from exporter i 6= j at time t; XT

jt is country j’s total imports from all

foreign exporters at time t; XE∗
jit is country j’s imports in common sectors pairs (supplied in both periods

t − 1 and t) from foreign exporter i 6= j; XT∗
jt is country j’s imports in common exporter-sector pairs

(supplied in both periods t− 1 and t) from all foreign exporters.

We now de�ne two terms that capture entry and exit of exporter-sector pairs over time. First, we de�ne

λE
jit to be the share of imports in common sectors from an individual foreign exporter i 6= j:

λE
jit ≡

XE∗
jit

XE
jit

=
∑g∈ΩT

jit,t−1
XE

jigt

∑g∈ΩT
jit

XE
jigt

, (A.2.44)

where ΩT
jit is the set of traded sectors in which country j imports from exporter i at time t and ΩT

jit,t−1 is

the subset of these sectors that are common (supplied in both periods t and t− 1). Second, we de�ne λT
jt

to be the share of imports from common exporter-sector pairs in imports from all foreign exporters:

λT
jt ≡

XT∗
jt

XT
jt

=
∑g∈ΩT

jt,t−1
∑i∈ΩE

jgt,t−1
XE

jigt

∑g∈ΩT
jt

∑i∈ΩE
jgt

XE
jigt

, (A.2.45)

where ΩE
jgt is the set of foreign exporters i 6= j from which country j imports in sector g at time t and

ΩE
jgt,t−1 is the subset of these foreign exporters that are common (supplied in both periods t and t− 1);

11



ΩT
jt is the set of sectors in which country j imports from foreign exporters at time t; and ΩT

jt,t−1 is the

subset of these sectors that are common (supplied in both periods t and t− 1). Third, we de�ne SE∗
jit to be

the share of an individual exporter i 6= j in imports from common exporter-sector pairs:

SE∗
jit ≡

XE∗
jit

XT∗
jt

=
∑g∈ΩT

jit,t−1
XE

jigt

∑g∈ΩT
jt,t−1

∑m∈ΩE
jgt,t−1

XE
jmgt

. (A.2.46)

Using equations (A.2.44), (A.2.45) and (A.2.46), we can rewrite the share of an individual foreign exporter

i 6= j in country j imports from equation (A.2.43) in terms of its share of common imports (SE∗
jit ), an entry

and exit term for that exporter (λE
jit) and an entry and exit term for imports from all foreign exporters (λT

jt):

SE
jit =

λT
jt

λE
jit

SE∗
jit . (A.2.47)

Using equation (A.2.46) to substitute for SE∗
jit in equation (A.2.47), we obtain:

SE
jit =

λT
jt

λE
jit

∑g∈ΩT
jit,t−1

XE
jigt

∑g∈ΩT
jt,t−1

∑m∈ΩE
jgt,t−1

XE
jmgt

, (A.2.48)

which using CES demand can be further re-written as:

SE
jit =

λT
jt

λE
jit

∑g∈ΩT
jt,t−1

(
PE

jigt

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1

∑g∈ΩT
jt,t−1

∑m∈ΩE
jgt,t−1

(
PE

jmgt

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1

, (A.2.49)

where PE
jigt is country j’s price index for exporter i 6= j in sector g at time t; XG

jgt is country j’s total

expenditure on imports from foreign countries in sector g at time t; and PG
jgt is country j’s import price

index for sector g at time t.

To re-write this expression for an exporter’s share of imports in a log-linear form, we now de�ne two

terms for the importance of imports in a given sector from a given exporter, one as a share of common

imports across all sectors from that exporter, and the other as a share of common imports across all sectors

from all foreign exporters. First, we de�ne importer j’s expenditure on exporter i 6= j in sector g at time t

as a share of expenditure on that exporter across all common sectors as:

ZE∗
jigt ≡

XE
jigt

∑k∈ΩT
jit,t−1

XE
jikt

=

(
PE

jigt

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1

∑k∈ΩT
jit,t−1

(
PE

jikt

)1−σF
k

XG
jkt

(
PG

jkt

)σF
k −1

, (A.2.50)

which can be re-arranged to express the denominator from the right-hand side as follows:

∑
k∈ΩT

jit,t−1

(
PE

jikt

)1−σF
k

XG
jkt

(
PG

jkt

)σF
k −1

=

(
PE

jigt

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1

ZE∗
jigt

. (A.2.51)
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Taking geometric means across common sectors g ∈ ΩG
jit,t−1, this becomes:

∑
k∈ΩT

jit,t−1

(
PE

jikt

)1−σF
k

XG
jkt

(
PG

jkt

)σF
k −1

=

(
MT∗

jit

[(
PE

jigt

)1−σF
g
])

MT∗
jit

[
XG

jgt

] (
MT∗

jit

[(
PG

jgt

)σF
g−1
])

MT∗
jit

[
ZE∗

jigt

] , (A.2.52)

where MT∗
jit

[
PE

jigt

]
≡
(

∏g∈ΩT
jit,t−1

PE
jigt

)1/NT
jit,t−1 and NT

jit,t−1 is the number of common sectors that ex-

porter i supplies to importer j between periods t− 1 and t. Second, we de�ne importer j’s expenditure on

exporter i 6= j in sector g at time t as a share of expenditure on common sectors from all foreign exporters

as:

YE∗
jigt ≡

XE
jigt

∑k∈ΩT
jt,t−1

∑m∈ΩE
jkt,t−1

XE
jmkt

=

(
PE

jigt

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g −1

∑k∈ΩT
jt,t−1

∑m∈ΩE
jkt,t−1

(
PE

jmkt

)1−σF
k

XG
jkt

(
PG

jkt

)σF
k −1

, (A.2.53)

which can be re-arranged to express the denominator from the right-hand side as follows:

∑
k∈ΩT

jt,t−1

∑
m∈ΩE

jgt,t−1

(
PE

jmkt

)1−σF
k

XG
jkt

(
PG

jkt

)σF
k −1

=

(
PE

jigt

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1

YE∗
jigt

. (A.2.54)

Taking geometric means across common exporters within each sector and across common sectors, this
becomes:

∑
k∈ΩT

jt,t−1

∑
m∈ΩE

jgt,t−1

(
PE

jmkt

)1−σF
k

XG
jkt

(
PG

jkt

)σF
k −1

=

(
MTE∗

jt

[(
PE

jigt

)1−σF
g
])

MTE∗
jt

[
XG

jgt

] (
MTE∗

jt

[(
PG

jgt

)σF
g−1
])

MTE∗
jt

[
YE∗

jigt

] ,

(A.2.55)

where MTE∗
jt

[
PE

jigt

]
≡
(

∏g∈ΩT
jt,t−1

∏i∈ΩE
jgt,t−1

PE
jigt

)1/NE
jt,t−1 and NE

jt,t−1 is the number of common exporter-

sectors for importer j between periods t− 1 and t.

Using these two measures of the importance of country imports from an individual exporter in a given

sector from equations (A.2.52) and (A.2.55), we can re-write the country import share in equation (A.2.49)

in the following log-linear form:

SE
jit =

λT
jt

λE
jit

MT∗
jit

[(
PE

jigt

)1−σF
g
]

MTE∗
jt

[(
PE

jigt

)1−σF
g
] MT∗

jit

[
XG

jgt

] (
MT∗

jit

[(
PG

jgt

)σF
g−1
])

/MT∗
jit

[
ZE∗

jigt

]
MTE∗

jt

[
XG

jgt

] (
MTE∗

jt

[(
PG

jgt

)σF
g−1
])

/MTE∗
jt

[
YE∗

jigt

] . (A.2.56)

Taking logarithms, di�erencing, and re-arranging terms, we obtain the following log-linear decomposition

of a country’s share of aggregate imports:

∆ ln SE
jit = ∆ ln

(
λT

jt

λE
jit

)
+ ET∗

jit

[(
1− σF

g

) [
∆ ln PE

jigt

]]
−ETE∗

jt

[(
1− σF

g

) [
∆ ln PE

jigt

]]
+ ∆ ln KT

jit + ∆ ln JT
jit, (A.2.57)

where ETE∗
jt

[
PE

jigt

]
≡ 1

NE
jt,t−1

∑g∈ΩT
jt,t−1

∑i∈ΩE
jgt,t−1

PE
jigt. The penultimate term (∆ ln KT

jit) captures changes

in exporter-sector scale, as measured by the change in the extent to which country j sources imports from
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exporter i in large sectors (sectors with high sectoral import expenditures XG
jgt and low sectoral import

price indexes PG
jgt) relative to its overall imports from all exporters:

∆ ln KT
jit ≡ ∆ ln

 MT∗
jit

[
XG

jgt

] (
MT∗

jit

[(
PG

jgt

)σF
g−1
])

MTE∗
jt

[
XG

jgt

] (
MTE∗

jt

[(
PG

jgt

)σF
g−1
])
 . (A.2.58)

The �nal term (∆ ln JT
jit) captures changes in the sectoral concentration of imports, as measured by changes

in the importance of country j’s imports from exporter i in sector g as a share of common imports from

exporter i (ZE∗
jigt) relative to its share of aggregate common imports (YE∗

jigt):

∆ ln JT
jit ≡ ∆ ln

MTE∗
jt

[
YE∗

jigt

]
MT∗

jit

[
ZE∗

jigt

]
 . (A.2.59)

This �nal term corresponds to an exact Jensen’s Inequality correction term that allows us to preserve log

linearity in our decompositions of both sectoral and aggregate trade. Using equation (A.2.26) to substitute

for the exporter price index (PE
jigt) in equation (A.2.57), we obtain the exact log-linear decomposition of

changes in country import shares in equation (28) in the paper, as reproduced below:

∆ ln SE
jit = −

{
ETFU∗

jit

[(
σF

g − 1
)

∆ ln PU
ut

]
−ETEFU∗

jt

[(
σF

g − 1
)

∆ ln PU
ut

]}
︸ ︷︷ ︸

(i) Average log prices

(A.2.60)

+
{

ETFU∗
jit

[(
σF

g − 1
)

∆ ln ϕU
ut

]
−ETEFU∗

jt

[(
σF

g − 1
)

∆ ln ϕU
ut

]}
︸ ︷︷ ︸

(ii) Average log product appeal

+
{

ETF∗
jit

[(
σF

g − 1
)

∆ ln ϕF
f t

]
−ETEF∗

jt

[(
σF

g − 1
)

∆ ln ϕF
f t

]}
︸ ︷︷ ︸

(iii) Average log �rm appeal

−
{

ETFU∗
jit

[
σF

g − 1

σU
g − 1

∆ ln SU∗
ut

]
−ETEFU∗

jt

[
σF

g − 1

σU
g − 1

∆ ln SU∗
ut

]}
︸ ︷︷ ︸

(iv) Dispersion product appeal-adjusted prces

−
{

ETF∗
jit

[
∆ ln SEF∗

f t

]
−ETEF∗

jt

[
∆ ln SEF∗

f t

]}
︸ ︷︷ ︸

(v) Disperion �rm appeal-adjusted prices

−
{

ETF∗
jit

[
σF

g − 1

σU
g − 1

∆ ln λU
f t

]
−ETEF∗

jt

[
σF

g − 1

σU
g − 1

∆ ln λU
f t

]}
︸ ︷︷ ︸

(vi) Product Variety

−
{

ET
jit

[
∆ ln λF

jigt

]
−ETE∗

jt

[
∆ ln λF

jigt

]}
︸ ︷︷ ︸

(vii) Firm Variety

− ∆ ln
(

λE
jit/λT

jt

)
︸ ︷︷ ︸

(viii) Country-Sector Variety

+ ∆ ln KT
jit︸ ︷︷ ︸

(ix) Country-sector Scale

+ ∆ ln JT
jit︸ ︷︷ ︸

(x) Country-sector Concentration

,

where we have the following de�nitions:

ETFU∗
jit

[
∆ ln PU

ut

]
≡ 1

NT
jit,t−1

∑
g∈ΩT

jit,t−1

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

1
NU

f t,t−1
∑

u∈ΩU
f t,t−1

∆ ln PU
ut, (A.2.61)

ETEFU∗
jt

[
∆ ln PU

ut

]
≡ 1

NE
jt,t−1

∑
g∈ΩT

jt,t−1

∑
i∈ΩE

jgt,t−1

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

1
NU

f t,t−1
∑

u∈ΩU
f t,t−1

∆ ln PU
ut, (A.2.62)

ETF∗
jit

[
∆ ln SEF∗

f t

]
≡ 1

NT
jit,t−1

∑
g∈ΩT

jit,t−1

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

∆ ln SEF∗
f t , (A.2.63)

ETEF∗
jt

[
∆ ln SEF∗

f t

]
≡ 1

NE
jt,t−1

∑
g∈ΩT

jt,t−1

∑
i∈ΩE

jgt,t−1

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

∆ ln SEF∗
f t , (A.2.64)
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ET
jit

[
∆ ln λF

jigt

]
≡ 1

NT
jt,t−1

∑
g∈ΩT

jt,t−1

∆ ln λF
jigt, (A.2.65)

ETE∗
jt

[
∆ ln λF

jigt

]
≡ 1

NE
jt,t−1

∑
g∈ΩT

jt,t−1

∑
i∈ΩE

jgt,t−1

∆ ln λF
jigt. (A.2.66)

A.2.11 Aggregate Prices

In this section of the Online Appendix, we report additional derivations for Section 2.11 of the paper. In

particular, we derive the decompositions of the aggregate price index (Pjt) and aggregate import price

indexes (ET
jt

[
∆ ln PG

jgt

]
) in equations (29) and (30) of the paper respectively.

Aggregate Price Index From equation (4) in the paper, the log aggregate price index (Pjt) can be written

in terms of the share of expenditure on tradable sectors (µT
jt) and the tradables sector price index (PT

jt):

ln Pjt =
1

σG − 1
ln µT

jt + ln PT
jt, (A.2.67)

Now note that the share of individual tradable sector in expenditure on all tradable sectors is given by:

ST
jgt =

(
PG

jgt/ϕG
jgt

)1−σG

∑k∈ΩT

(
PG

jkt/ϕG
jkt

)1−σG =

(
PG

jgt/ϕG
jgt

)1−σG

(
PT

jt

)1−σG . (A.2.68)

Rearranging equation (A.2.68), and taking geometric means across tradable sectors, we obtain the following

expression for the tradables sector price index (PT
jt):

PT
jt =

MT
jt

[
PG

jgt

]
MT

jt

[
ϕG

jgt

] (MT
jt

[
ST

jgt

]) 1
σG−1 , (A.2.69)

where MT
jt [·] is the geometric mean across tradable sectors (superscript T) for a given importer (subscript

j) and time period (subscript t) such that:

MT
jt

[
PG

jgt

]
=

 ∏
g∈ΩT

PG
jgt

 1
NT

. (A.2.70)

Substituting this expression for the tradable sector price index from equation (A.2.69) into the aggregate

price index in equation (A.2.67), we obtain:

ln Pjt =
1

σG − 1
ln µT

jt + ET
jt

[
ln PG

jgt

]
−ET

jt

[
ln ϕG

jgt

]
+

1
σG − 1

ET
jt

[
ln ST

jgt

]
, (A.2.71)

where ET
jt [·] is the mean across tradable sectors (superscript T) for a given importer (subscript j) and time

period (subscript t) such that:

ET
jt

[
PG

jgt

]
=

1
NT ∑

g∈ΩT

ln PG
jgt. (A.2.72)
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Now using the expression for the sectoral price index from equation (7) in the paper, the aggregate price

index in equation (A.2.71) can be written in the following form:

ln Pjt =
1

σG − 1
ln µT

jt + ET
jt

[
ln PG

jgt

]
+ ET

jt

[
1

σF
g − 1

ln µG
jgt

]
−ET

jt

[
ln ϕG

jgt

]
+

1
σG − 1

ET
jt

[
ln ST

jgt

]
, (A.2.73)

where PG
jgt is the sectoral import price index and µG

jgt is the share of expenditure on foreign varieties within

each sector. Taking di�erences over time, noting that the set of tradable sectors is constant over time, we

obtain:

∆ ln Pjt︸ ︷︷ ︸
Aggregate
Price Index

=
1

σG − 1
∆ ln µT

jt︸ ︷︷ ︸
Non-Tradable

Competitiveness

+ ET
jt

[
1

σF
g − 1

∆ ln µG
jgt

]
︸ ︷︷ ︸

Domestic
Competitiveness

+ ET
jt

[
∆ ln ϕG

jgt

]
︸ ︷︷ ︸

Average
Appeal

+ ET
jt

[
1

σG − 1
∆ ln ST

jgt

]
︸ ︷︷ ︸

Dispersion appeal-
adjusted prices across sectors

+ ET
jt

[
∆ ln PG

jgt

]
︸ ︷︷ ︸

Aggregate Import
Price Indexes

,

(A.2.74)

which corresponds to equation (29) in the paper.

Aggregate Import Price Indexes We next derive the decomposition of the �nal term in equation

(A.2.74) for the average change in sectoral import price indexes (ET
jt

[
∆ ln PG

jgt

]
) that is reported in equa-

tion (30) in the paper. From equation (10) in the paper, the change in the import price index over time can

be written as:

PG
jgt

PG
jgt−1

=

 ∑i∈ΩE
jgt

(
PE

jigt

)1−σF
g

∑i∈ΩE
jgt−1

(
PE

jigt−1

)1−σF
g


1

1−σF
g

, (A.2.75)

where the entry and exit of exporters over time implies that ΩE
jgt 6= ΩE

jgt−1. We de�ne the share of

expenditure on common foreign exporters i ∈ ΩE
jgt,t−1 that supply importer j within sector g in both

periods t− 1 and t as:

λE
jgt ≡

∑i∈ΩE
jgt,t−1

(
PE

jigt

)1−σF
g

∑i∈ΩE
jgt

(
PE

jigt

)1−σF
g

, λE
jgt−1 ≡

∑i∈ΩE
jgt,t−1

(
PE

jigt−1

)1−σF
g

∑i∈ΩE
jgt−1

(
PE

jigt−1

)1−σF
g

, (A.2.76)

where ΩE
jgt,t−1 is the set of common foreign exporters for importer j within sector g and NE

jgt,t−1 =∣∣∣ΩE
jgt,t−1

∣∣∣ is the number of elements within this set. Using this de�nition from equation (A.2.76), the

change in the import price index in equation (A.2.75) can be re-written in the following form:

PG
jgt

PG
jgt−1

=

(
λE

jgt

λE
jgt−1

) 1
σF

g −1

 ∑i∈ΩE
jigt,t−1

(
PE

jigt

)1−σF
g

∑i∈ΩE
jigt,t−1

(
PE

jigt−1

)1−σF
g


1

1−σF
g

=

(
λE

jgt

λE
jgt−1

) 1
σF

g −1 PG∗
jgt

PG∗
jgt−1

, (A.2.77)
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where the �rst term (
(

λE
jgt/λE

jgt−1

) 1
σF

g −1 ) corrects for the entry and exit of exporters; the second term

(PG∗
jgt /PG∗

jgt−1) is the change in the import price index for common exporters; and we again use the super-

script asterisk to denote a variable for common varieties. We can also de�ne the share of expenditure on

an individual common exporter in overall expenditure on common exporters as:

SE∗
jigt =

(
PE

jigt

)1−σF
g

∑h∈ΩE
jgt,t−1

(
PE

jhgt

)1−σF
g
=

(
PE

jigt

)1−σF
g

(
PG∗

jgt

)1−σF
g

. (A.2.78)

Rearranging equation (A.2.78) so that the import price index for common exporters (PG∗
jgt ) is on the left-

hand side, dividing by the same expression for period t− 1, and taking geometric means across the set of

common exporters, we have:

PG∗
jgt

PG∗
jgt−1

= ME∗
jgt

[
PE

jigt

PE
jigt−1

](
ME∗

jgt

[
SE∗

jigt

SE∗
jigt−1

]) 1
σF

g −1

, (A.2.79)

where ME∗
jgt [·] is the geometric mean across the common set of foreign exporters (superscript E∗) for a

given importer (subscript j), sector (subscript g) and time period (subscript t) such that:

ME∗
jgt

[
PE

jigt

]
=

 ∏
i∈ΩE

jgt,t−1

PE
jigt

 1
NE

jgt,t−1

. (A.2.80)

Combining equations (A.2.77) and (A.2.79), the overall change in the import price index can be written as:

PG
jgt

PG
jgt−1

=

(
λE

jgt

λE
jgt−1

) 1
σF

g −1

ME∗
jgt

[
PE

jigt

PE
jigt−1

](
ME∗

jgt

[
SE∗

jigt

SE∗
jigt−1

]) 1
σF

g −1

. (A.2.81)

Taking logarithms in equation (A.2.81), we obtain:

∆ ln PG
jgt =

1
σF

g − 1
∆ ln λE

jgt + EE∗
jgt

[
∆ ln PE

jigt

]
+

1
σF

g − 1
EE∗

jgt

[
∆ ln SE

jigt

]
, (A.2.82)

where EE∗
jgt [·] is the geometric mean across common exporters (superscript E∗) for an importer j within

sector g at time t such that:

EE∗
jgt

[
∆ ln PE

jigt

]
=

1
NE

jgt,t−1
∑

i∈ΩE
jgt,t−1

∆ ln PE
jigt. (A.2.83)

We now derive an expression for the average log change in exporter price indexes (EE∗
jgt

[
∆ ln PE

jigt

]
) on

the right-hand side of equation (A.2.82). Taking the mean across common exporters in equation (A.2.26),

we obtain:
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EE∗
jgt

[
∆ ln PE

jigt

]
= EEFU∗

jgt

[
∆ ln PU

ut

]
−
{

EEF∗
jgt

[
∆ ln ϕF

f t

]
+ EEFU∗

jgt

[
∆ ln ϕU

ut

]}
(A.2.84)

+

{
1

σU
g − 1

EEFU∗
jgt

[
∆ ln SU∗

ut

]
+

1
σF

g − 1
EEF∗

jgt

[
∆ ln SEF

f t

]}

+

{
1

σU
g − 1

EEF∗
jgt

[
∆ ln λU

f t

]
+

1
σF

g − 1
EE∗

jgt

[
∆ ln λF

jigt

]}
,

where EEFU∗
jgt [·] is the mean, �rst across common products within �rms, next across common �rms within

each exporter-sector, and then across common exporting countries (superscript EFU∗), for a given im-

porter (subscript j), sector (subscript g) and time period (subscript t), such that:

EEFU∗
jgt

[
∆ ln PU

ut

]
=

1
NE

jgt,t−1
∑

i∈ΩE
jgt,t−1

1
NF

jigt,t−1
∑

f∈ΩF
jigt,t−1

1
NU

f t,t−1
∑

u∈ΩU
f t,t−1

∆ ln PU
ut; (A.2.85)

recall that EEF∗
jgt [·] is the mean, �rst across common �rms (superscript F∗), and next across common ex-

porters (superscript E) for a given importer (subscript j), sector (subscript g) and time period (subscript t),

as de�ned in equation (A.2.27). Substituting equation (A.2.84) into equation (A.2.26), we obtain the follow-

ing expression for the change in the sectoral import price index (∆ ln PG
jgt) in equation (A.2.82) above:

∆ ln PG
jgt = EEFU∗

jgt

[
∆ ln PU

ut

]
−
{

EEF∗
jgt

[
∆ ln ϕF

f t

]
+ EEFU∗

jgt

[
∆ ln ϕU

ut

]}
(A.2.86)

+

{
1

σU
g − 1

EEFU∗
jgt

[
∆ ln SU∗

ut

]
+

1
σF

g − 1
EEF∗

jgt

[
∆ ln SEF

f t

]
+

1
σF

g − 1
EE∗

jgt

[
∆ ln SE

jigt

]}

+

{
1

σU
g − 1

EEF∗
jgt

[
∆ ln λU

f t

]
+

1
σF

g − 1
EE∗

jgt

[
∆ ln λF

jigt

]
+

1
σF

g − 1
∆ ln λE

jgt

}
.

Taking averages across tradable sectors in equation (A.2.86), we obtain equation (30) in the paper:

ET
jt

[
∆ ln PG

jgt

]
︸ ︷︷ ︸

Import
Price Indexes

= ETEFU∗
jt

[
∆ ln PU

ut

]
︸ ︷︷ ︸

(i) Average log prices

− ETEF∗
jt

[
∆ ln ϕF

f t

]
︸ ︷︷ ︸
(ii) Average log

�rm appeal

− ETEFU∗
jt

[
ln ϕU

ut

]
︸ ︷︷ ︸
(iii) Average log
product appeal

(A.2.87)

+ ETE∗
jt

[
1

σF
g − 1

∆ ln SE
jigt

]
︸ ︷︷ ︸

(iv) Dispersion country-sector
appeal-adjusted prices

+ ETEF∗
jt

[
1

σF
g − 1

∆ ln SEF
f t

]
︸ ︷︷ ︸

(v) Dispersion �rm
appeal-adjusted prices

+ ETEFU∗
jt

[
1

σU
g − 1

∆ ln SU
ut

]
︸ ︷︷ ︸

(vi) Dispersion product
appeal-adjusted prices

+ ET
jt

[
1

σF
g − 1

∆ ln λE
jgt

]
︸ ︷︷ ︸
(vii) Country - Sector

Variety

+ ETE∗
jt

[
1

σF
g − 1

∆ ln λF
jigt

]
︸ ︷︷ ︸

(viii) Firm
Variety

+ ETEF∗
jt

[
1

σU
g − 1

∆ ln λU
f t

]
︸ ︷︷ ︸

(ix) Product
Variety

,

where the means ET
jt [·], ETEFU∗

jt [·], ETEF∗
jt [·] and ETE∗

jt [·] are de�ned in equations (A.2.65), (A.2.62),

(A.2.64), (A.2.66) of this Online Appendix.

Interpretation Together equations (A.2.74) and (A.2.87) (which correspond to equations (29) and (30)

in the paper) provide an exact log-linear decomposition of the change in the aggregate cost of living.
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Each term in these equations has an intuitive interpretation. In the paper, we discuss the interpretation of

each term in equation (A.2.74). In this section of the Online Appendix, we now provide a more detailed

discussion of the interpretation of each term in equation (A.2.87).

The �rst term (i), “Average Prices,” captures changes in the average price of common imported prod-

ucts that are supplied in both periods t and t − 1. Other things equal, a fall in these average prices

(ETEFU∗
jt

[
∆ ln PU

ut
]
< 0) reduces average import price indexes and hence the cost of living. The sec-

ond and third terms ((ii) and (iii)) incorporate changes in average �rm appeal (ϕF
f t) across common �rms

and average product appeal (ϕU
ut) across common products. Our choice of units for product appeal in equa-

tion (A.2.4) implies that the second term for the average log change in appeal across common products

within each �rm is zero: ETEFU∗
jt

[
ln ϕU

ut
]
= 0. Our choice of units for �rm appeal in equation (A.2.7)

implies that the unweighted average log change in appeal across common foreign �rms within each sector

is zero: ETF∗
jt

[
∆ ln ϕF

f t

]
= 0. However, the average of �rm appeal in the third term (ETEF∗

jt

[
∆ ln ϕF

f t

]
)

involves �rst averaging across �rms within a given foreign exporter, and then averaging across foreign

exporters, which corresponds to a weighted average across �rms. Although in principle the weighted and

unweighted averages across �rms could di�er from one another, we �nd that in practice they take similar

values, which implies that the third term is close to zero.

The fourth to sixth terms ((iv)-(vi)) summarize the impact of the dispersion in appeal-adjusted prices

across common exporter-sector pairs, common �rms and common products, respectively. “Country-sector

appeal-adjusted prices” re�ects the fact that consumers are made better o� if exporters improve perfor-

mance in their most successful sectors. For example, consumers are better o� if Japanese car makers and

Saudi oil drillers become more relatively more productive (raising dispersion in appeal-adjusted prices)

than if Saudi car makers and Japanese oil drillers are the relative winners (lowering dispersion in appeal-

adjusted prices). Similarly at the �rm-level, consumers bene�t more from relative cost reductions or qual-

ity improvements for �rms with low appeal-adjusted prices (high expenditure shares), which increases

the dispersion of appeal-adjusted prices. Since varieties are substitutes (σU
g > 1 and σF

g > 1), increases in

the dispersion of these appeal-adjusted prices reduce the cost of living, as consumers can substitute away

from high-appeal-adjusted-price varieties to low-appeal-adjusted-price varieties.

The seventh to eighth terms ((vii)-(viii)) summarize the e�ect of the entry/exit of exporter-sector pairs,

�rms and products respectively. “Firm Variety” accounts for the entry and exit of foreign �rms when at

least one foreign �rm from an exporter and sector exports in both time periods. “Country-Sector Variety”

is an extreme form of foreign �rm entry and exit that arises when the number of �rms from a foreign

exporter rises from zero to a positive value or falls to zero. Finally, the last term (ix), “Product Variety,”

accounts for changes in the set of products within continuing foreign �rms. For all three terms, the lower

the shares of expenditure on common varieties at time t relative to those at time t− 1 (the smaller values

of ∆ ln λE
jgt, ∆ ln λF

jigt and ∆ ln λU
f t), the more attractive are entering varieties relative to exiting varieties,

and the greater the reduction in the cost of living between the two time periods.
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A.3 Structural Estimation

In this section of the Online Appendix, we provide further details on our structural estimation of the

elasticities of substitution from Section 3 of the paper. We outline a reverse-weighting (RW) estimator of

these elasticities of substitution (σU
g , σF

g , σG), which uses the equality between alternative expressions for

the CES unit expenditure function, as developed in Redding and Weinstein (2023).

In Subsection A.3.1, we introduce the RW estimator for the simplest case of a single CES nest with

entry and exit. The remaining subsections apply our RW estimator to our nested CES demand structure.

In Subsection A.3.2, we begin by estimating the elasticity of substitution across products (σU
g ) for each

sector g. In Subsection A.3.3, we next estimate the elasticity of substitution across �rms (σF
g ) for each

sector g. In Subsection A.3.4, we next estimate the elasticity of substitution across sectors (σG).

In robustness tests, we also report results using alternative estimates for these elasticities of substitu-

tion (σU
g , σF

g , σG), as discussed in Sections 5.1 and 5.3 of the paper. In Subsection A.3.5, we report the results

of a Monte Carlo simulation, in which we examine the performance of the RW estimator and compare it

to ordinary least squares (OLS). Finally, in Subsection A.3.6, we develop an equivalent representation of

the reverse-weighting estimator, which imposes more of the nesting structure of the model.

A.3.1 RW Estimator with Entry and Exit

Consider a single CES nest where the set of goods available in time t (Ωt) di�ers from the set of goods

available in time t− 1 (Ωt−1). The change in the unit expenditure function between periods t− 1 and t

is:

Pt

Pt−1
=

[
∑u∈Ωt

(
Put
ϕut

)1−σ
] 1

1−σ

[
∑u∈Ωt−1

(
Put−1
ϕut−1

)1−σ
] 1

1−σ

. (A.3.1)

Followng Feenstra (1994), we de�ne the common set as goods as those that are supplied in both time

periods t− 1 and t: Ωt,t−1 = Ωt ∩Ωt−1. Using this de�nition, we can re-write the change in the unit

expenditure between time periods t− 1 and t in equation (A.3.1) as follows:

Pt

Pt−1
=

(
λt

λt−1

) 1
σ−1

[
∑u∈Ωt,t−1

(
Put
ϕut

)1−σ
] 1

1−σ

[
∑u∈Ωt,t−1

(
Put−1
ϕut−1

)1−σ
] 1

1−σ

, (A.3.2)

where λt and λt−1 are the shares of common goods in total expenditure in periods t and t− 1 respectively:

λt ≡
∑u∈Ωt,t−1

(
Put
ϕut

)1−σ

∑u∈Ωt

(
Put
ϕut

)1−σ
, (A.3.3)
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λt−1 ≡
∑u∈Ωt,t−1

(
Put−1
ϕut−1

)1−σ

∑u∈Ωt−1

(
Put−1
ϕut−1

)1−σ
. (A.3.4)

The CES demand system implies the following expressions for the share of an individual good in all ex-

penditure on common goods at times t and t− 1:

S∗kt =

(
Put
ϕut

)1−σ

∑k∈Ωt,t−1

(
Pkt
ϕkt

)1−σ
=

(
Put
ϕut

)1−σ

(P∗t )
1−σ

, (A.3.5)

S∗kt−1 =

(
Put−1
ϕut−1

)1−σ

∑k∈Ωt,t−1

(
Pkt−1
ϕkt−1

)1−σ
=

(
Put−1
ϕut−1

)1−σ

(
P∗t−1

)1−σ
, (A.3.6)

where we use an asterisk to denote the value of a variable for common goods; P∗t =

[
∑u∈Ωt,t−1

(
Put
ϕut

)1−σ
] 1

1−σ

is the unit expenditure function for common goods; and P∗t−1 is de�ned analogously.

Dividing S∗kt in equation (A.3.5) by its geometric mean across common goods, and dividing S∗kt−1 in

equation (A.3.6) by its geometric mean across common goods, we also have the following relationships:

P∗t =
M∗

t [Put]

M∗
t [ϕut]

(M∗
t [S
∗
ut])

1
σ−1 , (A.3.7)

P∗t−1 =
M∗

t−1 [Put−1]

M∗
t−1 [ϕut−1]

(M∗
t−1 [S

∗
ut−1])

1
σ−1 , (A.3.8)

where M∗
t [S
∗
ut] ≡

(
∏u∈Ωt,t−1

S∗ut

)1/Nt,t−1
is the geometric mean operator across common goods and

Nt,t−1 = |Ωt,t−1| is the number of goods in the common set.

Using equations (A.3.5)-(A.3.8), we can re-write the change in the unit expenditure function between

t− 1 and t in equation (A.3.2) in the following three equivalent ways:

Pt

Pt−1
=

(
λt

λt−1

) 1
σ−1
[

∑
u∈Ωt,t−1

S∗ut−1

(
Put

Put−1

)1−σ ( ϕut

ϕut−1

)σ−1
] 1

1−σ

, (A.3.9)

Pt

Pt−1
=

(
λt

λt−1

) 1
σ−1
[

∑
u∈Ωt,t−1

S∗ut

(
Put

Put−1

)−(1−σ) ( ϕut

ϕut−1

)−(σ−1)
]− 1

1−σ

, (A.3.10)

Pt

Pt−1
=

(
λt

λt−1

) 1
σ−1 M∗

t [Put] /M∗
t [ϕut]

M∗
t−1 [Put−1] /M∗

t [ϕut−1]

(
M∗

t [S
∗
ut]

M∗
t−1

[
S∗ut−1

]) 1
σ−1

. (A.3.11)

Together these three expressions for the change in the CES unit expenditure function imply the following
two equalities:

ln

 M∗
t [Put]

M∗
t−1 [Put−1]

(
M∗

t [S
∗
ut]

M∗
t−1

[
S∗ut−1

]) 1
σ−1
 = ln


 ∑

u∈Ωt,t−1

S∗ut−1

(
Put

Put−1

)1−σ
(

ϕut/M∗
t [ϕut]

ϕut−1/M∗
t−1 [ϕut−1]

)σ−1
 1

1−σ

 , (A.3.12)
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ln

 M∗
t [Put]

M∗
t−1 [Put−1]

(
M∗

t [S
∗
ut]

M∗
t−1

[
S∗ut−1

]) 1
σ−1
 = ln


 ∑

u∈Ωt,t−1

S∗ut

(
Put

Put−1

)−(1−σ)
(

ϕut/M∗
t [ϕut]

ϕut−1/M∗
t−1 [ϕut−1]

)−(σ−1)
− 1

1−σ

 , (A.3.13)

where the terms in the common goods expenditure shares ((λt/λt−1)
1

σ−1 ) have cancelled from these two

equalities.
Taking the limit as appeal shocks become small for all goods ( ϕut/M∗

t [ϕut]
ϕut−1/M∗

t−1[ϕut−1]
→ 1 for all u), we obtain

the following moment conditions:

ln

 M∗
t [Put]

M∗
t−1 [Put−1]

(
M∗

t [Sut]

M∗
t−1 [Sut−1]

) 1
σ−1

− ln


[

∑
u∈Ωt,t−1

S∗ut−1

(
Put

Put−1

)1−σ
] 1

1−σ

 = 0, (A.3.14)

ln

 M∗
t [Put]

M∗
t−1 [Put−1]

(
M∗

t [Sut]

M∗
t−1 [Sut−1]

) 1
σ−1

− ln


[

∑
u∈Ωt,t−1

S∗ut

(
Put

Put−1

)−(1−σ)
]− 1

1−σ

 = 0, (A.3.15)

which depend only on observed data and parameters.

The RW estimator chooses the value of σ to minimize the sum of squared deviations of the moment

conditions in equations (A.3.14) and (A.3.15) from zero. As appeal shocks become small for all goods

( ϕut/M∗
t [ϕut]

ϕut−1/M∗
t−1[ϕut−1]

→ 1 for all u), the RW estimator consistently estimates the elasticity of substitution, as

shown in Redding and Weinstein (2023). In Section A.3.5 of this Online Appendix, we provide Monte Carlo

evidence on the �nite sample performance of the RW estimator and compare it to the OLS estimator.

A.3.2 Elasticity of Substitution Across Products (σU
g )

We now apply the RW estimator to our nested CES demand structure in three steps for each tier of utility.
In our �rst step, we estimate the elasticity of substitution across products within �rms (σU

g ). Equating
the three equivalent expressions for the change in the CES unit expenditure function for each �rm from

Subsection A.3.1 above, and taking the limit as appeal shocks becomes small (
ϕU

ut/MU∗
f t [ϕ

U
ut]

ϕU
ut−1/MU∗

f t−1[ϕ
U
ut−1]

→ 1 for

all u), we obtain the following two moment conditions:

mU
g

(
σU

g

)
=


ln


[

∑u∈ΩU
f t,t−1

SU∗
ut−1

(
PU

ut
PU

ut−1

)1−σU
g
] 1

1−σU
g

− ln

{
MU∗

f t

[
PU

ut
PU

ut−1

] (
MU∗

f t

[
SU∗

ut
SU∗

ut−1

]) 1
σU

g −1

}

ln


[

∑u∈ΩU
f t,t−1

SU∗
ut

(
PU

ut
PU

ut−1

)−(1−σU
g )
]− 1

1−σU
g

− ln

{
MU∗

f t

[
PU

ut
PU

ut−1

] (
MU∗

f t

[
SU∗

ut
SU∗

ut−1

]) 1
σU

g −1

}


=

(
0
0

)
. (A.3.16)

We stack these moment conditions for each foreign �rm with two or more products and for all time periods

within a given sector. We estimate the elasticity of substitution across products within �rms (σU
g ) using

the generalized method of moments (GMM):

σ̂U
g = arg min

{
mU

g

(
σU

g

)′
× I×mU

g

(
σU

g

)}
, (A.3.17)

where I is the identity matrix.
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A.3.3 Elasticity of Substitution Across Firms (σF
g )

Using our estimate of the elasticity of substitution across products (σU
g ) from the �rst step, we can recover

the appeal shifter for each product (ϕU
ut) and compute the �rm price index (PF

f t) for all foreign �rms:

ϕU
ut =

PU
ut

MU
f t

[
PU

ut
] ( SU

ut

MU
f t

[
SU

ut
]) 1

σU
g −1

, (A.3.18)

PF
f t = MU

f t

[
PU

ut

] (
MU

f t

[
SU

ut

]) 1
σU

g −1 , (A.3.19)

where we have used our choice of units for product appeal such that MU∗
f t

[
ϕU

ut
]
= 1.

In our second step, we estimate the elasticity of substitution across �rms within sectors (σF
g ). Equating

the three equivalent expressions for the change in the CES unit expenditure function for each sector from

Subsection A.3.1 above, and taking the limit as appeal shocks becomes small (
ϕF

f t/MF∗
jgt

[
ϕF

f t

]
ϕF

f t−1/MF∗
jgt−1

[
ϕF

f t−1

] → 1 for

all f ), we obtain the following two moment conditions:

mF
g

(
σF

g

)
=



ln


∑i∈ΩE

jgt,t−1
∑ f∈ΩF

jigt,t−1
SF∗

f t

(
PF

f t−1
PF

f t

)1−σF
g


1
1−σF

g

− ln

MF∗
jgt

[
PF

f t
PF

f t−1

](
MF∗

jgt

[
SF∗

f t
SF∗

f t−1

]) 1
σF

g −1


ln


∑i∈ΩE

jgt,t−1
∑ f∈ΩF

jigt,t−1
SF∗

f t

(
PF

f t
PF

f t−1

)−(1−σF
g
) (

ϕF
f t

ϕF
f t−1

)−(σF
g −1

)
− 1

1−σU
g

− ln

MF∗
jgt

[
PF

f t
PF

f t−1

](
MF∗

jgt

[
SF∗

f t
SF∗

f t−1

]) 1
σF

g −1




=

(
0
0

)
. (A.3.20)

We stack these moment conditions for all time periods for a given sector. We estimate the elasticity of

substitution across �rms (σF
g ) using the generalized method of moments (GMM):

σ̂F
g = arg min

{
mF

g

(
σF

g

)′
× I×mF

g

(
σF

g

)}
, (A.3.21)

where I is the identity matrix.

A.3.4 Elasticity of Substitution Across Sectors (σG)

Using our estimate of the elasticity of substitution across �rms (σF
g ) from the second step, we can recover

the appeal shifter for each foreign �rm (ϕF
f t) and compute the sector import price index (PG

jgt). Combining

this solution for the sector import price index (PG
jgt) with the share of expenditure within each sector on

foreign varieties (µG
jgt), we can also compute the overall sector price index (PG

jgt).
In our third step, we estimate the elasticity of substitution across sectors (σG). Equating the three

equivalent expressions for the change in the CES unit expenditure function across tradable sectors from

Subsection A.3.1 above, and taking the limit as appeal shocks becomes small (
ϕG

jgt/MT
jt

[
ϕG

jgt

]
ϕG

jgt−1/MT
jt−1

[
ϕG

jgt−1

] → 1 for

all g), we obtain the following two moment conditions:

mT
(

σG
)
=



ln



∑g∈ΩT ST
jgt−1

( µG
jgt

µG
jgt−1

) 1
σF

g −1 PG
jgt

PG
jgt−1


1−σG

1
1−σG


− ln

MT
jt

( µG
jgt

µG
jgt−1

) 1
σF

g −1 PG
jgt

PG
jgt−1

(MT
jt

[
ST

jgt
SG

jgt−1

]) 1
σG−1



ln



∑g∈ΩT ST
jgt

( µG
jgt

µG
jgt−1

) 1
σF

g −1 PG
jgt

PG
jgt−1


−
(

1−σG
)
− 1

1−σG

− ln

MT
jt

( µG
jgt

µG
jgt−1

) 1
σF

g −1 PG
jgt

PG
jgt−1

(MT
jt

[
SG

jgt
SG

jgt−1

]) 1
σG−1




=

(
0
0

)
, (A.3.22)
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We stack these moment conditions for all time periods and estimate the elasticity of substitution across

sectors (σG) using the generalized method of moments (GMM):

σ̂G = arg min
{

mT
(

σG
)′
× I×mT

(
σG
)}

, (A.3.23)

where I is the identity matrix.

A.3.5 Monte Carlo

We now provide Monte Carlo evidence on the �nite-sample performance of the reverse-weighting esti-

mator. Recall that the reverse-weighting estimator uses only the subset of common goods, because the

variety correction term cancels from equivalent expressions for the change in the unit expenditure func-

tion. Therefore, we focus on this subset of common goods, and are not required to make assumptions about

entering and exiting goods. We assume 10,000 common varieties. We assume an elasticity of substitution

of σ = 4. We begin by drawing initial values for appeal (ϕut−1) and prices (Put−1) in period t− 1 from a

joint log log normal distribution:(
ln (ϕut−1/ϕ̃t−1)
ln
(

Put−1/P̃t−1
) ) ∼ N ([ 0

0

]
,
[

χ2
ϕ ρχϕχp

ρχϕχp χ2
p

])
. (A.3.24)

Since initial appeal (ϕut−1) and initial prices (Put−1) are expressed relative to their geometric means (ϕ̃t−1

and P̃t−1, respectively), they are mean zero in logs by construction. We set the standard deviation for

initial prices to one (χp = 1); we consider three di�erent values for the correlation between initial prices

and appeal (ρ ∈ {−0.5, 0, 0.5}); and we examine �ve di�erent values for the standard deviation for initial

appeal (χϕ ∈ {0.001, 0.01, 0.1, 0.5, 1}). We use these initial realizations for appeal (ϕut−1) and prices

(Put−1) to solve for initial equilibrium expenditure shares (S∗ut) in period t− 1:

S∗ut−1 =
(Put−1/ϕut)

1−σ

∑`∈Ω (P`t−1/ϕ`t−1)
1−σ

. (A.3.25)

We next draw appeal shocks ( ϕut/ϕ̃t
ϕut−1/ϕ̃t−1

) and price shocks ( Put/P̃t
Put−1/P̃t−1

) from period t− 1 to period t from

the same joint log log normal distribution: ln
(

ϕut/ϕ̃t
ϕut−1/ϕ̃t−1

)
ln
(

Put/P̃t
Put−1/P̃t−1

)  ∼ N ([ 0
0

]
,
[

χ2
ϕ ρχϕχp

ρχϕχp χ2
p

])
, (A.3.26)

where appeal shocks ( ϕut/ϕ̃t
ϕut−1/ϕ̃t−1

) and price shocks ( Put/P̃t
Put−1/P̃t−1

) are expressed relative to their geometric

means (ϕ̃t/ϕ̃t−1 and P̃t/P̃t−1, respectively) and are hence mean zero in logs by construction. We use

these realizations for appeal and price shocks to solve for prices (Put) and expenditure shares (Sut) in

period t:

Put =

(
Put/P̃t

Put−1/P̃t−1

)
× Put−1, (A.3.27)
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S∗ut =

(
Put/P̃t

Put−1/P̃t−1

)1−σ
×
(

ϕut/ϕ̃t
ϕut−1/ϕ̃t−1

)σ−1
× S∗ut−1

∑`∈Ω

(
P`t/P̃t

P`t−1/P̃t−1

)1−σ
×
(

ϕ`t/ϕ̃t
ϕ`t−1/ϕ̃t−1

)σ−1
× S∗`t−1

. (A.3.28)

Given the prices and expenditure shares for periods t− 1 and t (Put−1, Put, S∗ut−1, S∗ut), we implement
our reverse-weighting estimator (σ̂RW) of the elasticity of substitution (σ) using the following moment
conditions:

m (σ) =


ln

{[
∑u∈Ω S∗ut−1

(
Put

Put−1

)1−σ
] 1

1−σ

}
− ln

{
Mt

[
Put

Put−1

] (
Mt

[
S∗ut

S∗ut−1

]) 1
σ−1

}

ln

{[
∑u∈Ω S∗ut

(
Put

Put−1

)−(1−σ)
]− 1

1−σ

}
− ln

{
Mt

[
Put

Put−1

] (
Mt

[
S∗ut

S∗ut−1

]) 1
σ−1

}
 =

(
0
0

)
. (A.3.29)

We stack these moment conditions and estimate the elasticity of substitution (σ) using the generalized

method of moments (GMM):

σ̂RW = arg min
{

m (σ)′ × I×m (σ)
}

, (A.3.30)

where I is the identity matrix.

To provide a point of comparison, we also estimate the elasticity of substitution (σ) using the OLS

estimator (σ̂OLS). From the CES expenditure shares in periods t− 1 and t, we have the following log linear

demand system relationship:

ln

(
S∗ut/S̃∗t

S∗ut−1/S̃∗t−1

)
= (1− σ) ln

(
Put/P̃t

Put−1/P̃t−1

)
+ (σ− 1) ln

(
ϕut/ϕ̃t

ϕut−1/ϕ̃t−1

)
. (A.3.31)

Absorbing appeal shocks into the error term (ln
(

εut
εut−1

)
), we estimate the following OLS regression:

ln

(
S∗ut/S̃∗t

S∗ut−1/S̃∗t−1

)
= β ln

(
Put/P̃t

Put−1/P̃t−1

)
+ ln

(
εut

εut−1

)
, (A.3.32)

where we recover the implied elasticity of substitution using σ̂OLS = −β̂OLS + 1.

In Figure A.3.1, we display the mean estimated elasticities of substitution across 1,000 replications

for the reverse-weighting estimator (σ̂RW) and the OLS estimator (σ̂OLS). We also report the 5th and

95th percentiles of the distribution of estimated reverse-weighting elasticities (σ̂RW) across these 1,000

replications. In each panel, the vertical axis displays the elasticity of substitution (σ), and the horizontal

axis shows the standard deviation of appeal shocks (χϕ) using a log scale. The top panel reports results for

a negative correlation of price and appeal shocks (ρ = −0.5); the middle panel gives results for orthogonal

price and appeal shocks (ρ = 0); and the bottom panel presents results for a positive correlation between

price and appeal shocks (ρ = 0.5).

Across all three panels, we �nd that the mean reverse-weighting estimate (σ̂RW) converges to the true

elasticity of substitution (σ) as appeal shocks become small (χϕ → 0). We �nd this pattern regardless of

whether we consider negatively correlated, orthogonal or positively correlated price and appeal shocks.
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Additionally, we �nd that the mean OLS estimate (σ̂OLS) converges to the true elasticity of substitution (σ)

as appeal shocks become small (χϕ → 0), because the conventional omitted variables bias becomes small.

Nevertheless, the two estimates in general di�er from one another. When price and appeal shocks

are negatively correlated in the top panel, the mean OLS estimate lies above the true parameter value. In

contrast, when price and appeal shocks are positively correlated, the mean OLS estimate lies below the true

parameter value. Again, this pattern of results is line with conventional omitted variable bias, since appeal

shocks in the regression residual have a positive impact on expenditure shares. In the case of positively

correlated price and appeal shocks in the bottom panel, we �nd that the mean RW estimator performs

somewhat better than the OLS estimator. This case of positively correlated price and appeal shocks is

likely to be the empirically relevant one, if supplying products with higher appeal incurs higher marginal

costs, and hence raises prices.

A.3.6 Robustness

As a robustness check, we now show that there is an alternative representation of the reverse-weighting

estimator for tiers of utility above the lower tier (i.e. for the �rm and sector tiers above the product tier).

For brevity, we derive this alternative representation for the elasticity of substitution across �rms (σF
g ), but

the same derivation goes through for the elasticity of substitution across sectors (σG). We begin with the

expressions for expenditure on each product (XU
ut) and expenditure on each �rm (XF

f t) from CES demand:

XU
ut =

(
PU

ut

ϕU
ut

)1−σU
g

XF
f t

(
PF

f t

)σU
g −1

, (A.3.33)

XF
f t =

(
PF

f t

ϕF
f t

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1

, (A.3.34)

where XG
jgt is importer j’s total expenditure on foreign varieties from exporters i 6= j in sector g at time

t, and PG
jgt is importer j’s sectoral import price index for sector g at time t. Combining equations (A.3.33)

and (A.3.34), we obtain:

XU
ut =

(
PU

ut

ϕU
ut

)1−σU
g
(

PF
f t

ϕF
f t

)1−σF
g

XG
jgt

(
PG

jgt

)σF
g−1 (

PF
f t

)σU
g −1

, (A.3.35)

XU
ut =

(
PU

ut

ϕU
ut

)1−σU
g (

ϕF
f t

)σF
g−1

XG
jgt

(
PG

jgt

)σF
g−1 (

PF
f t

)σU
g −σF

g
. (A.3.36)

Rearranging equation (A.3.36), we get:(
PF

f t

)σU
g −σF

g
=

XU
ut

XG
jgt

(
PU

ut

ϕU
ut

)σU
g −1 (

ϕF
f t

)−(σF
g−1) (

PG
jgt

)−(σF
g−1)

, (A.3.37)

PF
f t =

(
XU

ut

XG
jgt

) 1
σU

g −σF
g
(

PU
ut

ϕU
ut

) σU
g −1

σU
g −σF

g
(

ϕF
f t

)− σF
g −1

σU
g −σF

g
(

PG
jgt

)− σF
g −1

σU
g −σF

g . (A.3.38)
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Figure A.3.1: Mean Estimated Elasticities of Substitution for Alternative Correlations Between Price and
Appeal Shocks (ρ) and Standard Deviations of Appeal Shocks (χϕ)

(a) Negative Correlation (ρ = −0.5)

(b) Orthogonal (ρ = 0)

(c) Positive Correlation (ρ = 0.5)

Note: 1,000 Monte Carlo simulations; 10,000 varieties; joint log normal distribution of price and appeal shocks; we set the standard
deviation for initial prices to one (χp = 1); we consider three di�erent values for the correlation between initial prices and appeal
(ρ ∈ {−0.5, 0, 0.5}).
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Taking geometric means across common products within the �rm in equation (A.3.38), we obtain:

PF
f t =

(
MU∗

f t

[
XU

ut/XG
jgt

]) 1
σU

g −σF
g
(

MU∗
f t

[
PU

ut

]) σU
g −1

σU
g −σF

g
(

ϕF
f t

)− σF
g −1

σU
g −σF

g
(

PG
jgt

)− σF
g −1

σU
g −σF

g , (A.3.39)

where we have used our normalization that MU∗
f t

[
ϕU

ut
]
= 1. Now taking geometric means across common

foreign �rms within a sector in equation (A.3.39), we have:

MF∗
gt

[
PF

f t

]
=
(

MFU∗
f t

[
XU

ut/XG
jgt

]) 1
σU

g −σF
g
(

MFU∗
f t

[
PU

ut

]) σU
g −1

σU
g −σF

g
(

PG
jgt

)− σF
g −1

σU
g −σF

g , (A.3.40)

where we have used our choice of units that MF∗
jgt

[
ϕF

f t

]
= 1. Finally, using equation (A.3.40) to substitute

for MF∗
gt

[
PF

f t

]
, we obtain another equivalent expression for our uni�ed price index that exploits more of

the nesting structure of the model:

PG
jgt

PG
jgt−1

=

(
λF

gt

λF
gt−1

) 1
σF

g −1
(

MFU∗
f t

[
XU

ut/XG
jgt

XU
ut−1/XG

jgt−1

]) 1
σU

g −σF
g
(

MFU∗
f t

[
PU

ut
PU

ut−1

]) σU
g −1

σU
g −σF

g
(

PG
gt

PG
gt−1

)− σF
g −1

σU
g −σF

g
(

MF∗
gt

[
SF

f t

SF
f t−1

]) 1
σF

g −1

. (A.3.41)

Using equation (A.3.41), we can construct two moment conditions analogous to those in equation

(A.3.20) that can be used to estimate the elasticity of substitution across �rms (σF
g ). Following the same

line of reasoning, we can also construct two moment conditions analogous to those in equation (A.3.22)

that can be used to estimate the elasticity of substitution across sectors (σG).

We use these alternative representations of the moment conditions as a robustness check for our esti-

mates of the �rm and sector elasticities of substitution (σF
g , σG) from equations (A.3.20) and (A.3.22). As

appeal shocks become small (ϕF
f t/ϕF

f t−1 → 1 for all f and ϕG
jgt/ϕG

jgt−1 → 1 for all g), these alternative

representations of the moment conditions yield the same estimated elasticities of substitution (σF
g , σG). In

our empirical results for the U.S. and Chile, we use our baseline speci�cations in equations (A.3.16) and

(A.3.20) for the �rm and product elasticities of substitution. We use the robustness speci�cation based

on equation (A.3.41) for our sector elasticity of substitution in order to use more of the model’s nesting

structure where we have a relatively small number of observations on sectors.

As another robustness check, we use the property of CES that the reverse-weighting estimator can be

implemented for any subset of common goods. We now illustrate this property for the �rm price index,

but it also holds for each of our other tiers of utility. We start by noting that the change in the �rm price

index for common products (PF∗
f t /PF∗

f t−1) can be written in terms of the change in the �rm price index for

a subset of common products (PF#
f t /PF#

f t−1) and the change in the expenditure share of this subset in total

expenditure on common products (λU#
f t /λU#

f t−1) :

PF∗
f t

PF∗
f t−1

=

(
λU#

f t

λU#
f t−1

) 1
σF

g −1

 ∑u∈ΩU#
f t,t−1

(
PU#

ut
)1−σF

g

∑u∈ΩU#
f t,t−1

(
PU#

ut−1

)1−σF
g


1

1−σF
g

=

(
λU#

f t

λU#
f t−1

) 1
σF

g −1 PF#
f t

PF#
f t−1

, (A.3.42)
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where the superscript # indicates that a variable is de�ned for this subset of common goods; we denote this

subset of common goods by ΩU#
f t,t−1 ⊂ ΩU

f t,t−1; and the shares of expenditure on this subset of common

goods in periods t− 1 and t are:

λU#
f t ≡

∑u∈ΩU#
f t,t−1

(
PU

ut
ϕU

ut

)1−σU
g

∑u∈ΩU
f t,t−1

(
PU

ut
ϕU

ut

)1−σU
g

, λU#
f t−1 ≡

∑u∈ΩU#
f t,t−1

(
PU

ut−1
ϕU

ut−1

)1−σU
g

∑u∈ΩU
f t,t−1

(
PU

ut−1
ϕU

ut−1

)1−σU
g

. (A.3.43)

Using this property of CES, we obtain the following three equivalent expressions for the change in the

�rm price index for common products (PF∗
f t /PF∗

f t−1), which are analogous to those for the change in the

overall �rm price index (PF
f t/PF

f t−1):

PF∗
f t

PF∗
f t−1

=

(
λU#

f t

λU#
f t−1

) 1
σU

g −1

 ∑
u∈ΩU#

f t,t−1

SU#
ut−1

(
PU

ut/ϕU
ut

PU
ut−1/ϕU

ut−1

)1−σU
g


1

1−σU
g

, (A.3.44)

PF∗
f t

PF∗
f t−1

=

(
λU#

f t

λU#
f t−1

) 1
σU

g −1

 ∑
u∈ΩU#

f t,t−1

SU#
ut

(
PU

ut/ϕU
ut

PU
ut−1/ϕU

ut−1

)−(1−σU
g )

− 1

1−σU
g

, (A.3.45)

PF∗
f t

PF∗
f t−1

=

(
λU#

f t

λU#
f t−1

) 1
σU

g −1

MU#
f t

[
PU

ut
PU

ut−1

](
MU#

f t

[
SU#

ut
SU#

ut−1

]) 1
σU

g −1

, (A.3.46)

where SU#
ut−1 is the share of an individual product in total expenditure on this subset of common goods:

SU#
ut−1 ≡

(
PU

ut/ϕU
ut
)1−σU

g

∑`∈ΩU#
f t,t−1

(
PU
`t /ϕU

`t

)1−σU
g

, u ∈ ΩU#
f t,t−1; (A.3.47)

MU#
f t [·] is the geometric mean across this subset of common goods such that:

MU#
f t

[
PU

ut

]
≡

 ∏
u∈ΩU#

f t,t−1

PU
ut


1

NU#
f t,t−1

= 1, (A.3.48)

where NU#
f t,t−1 =

∣∣∣ΩU#
f t,t−1

∣∣∣ is the number of elements in this subset of common goods; and we now choose
units in which to measure product appeal (ϕU

ut) such that its geometric mean across this subset of common
goods is equal to one:

MU#
f t

[
ϕU

ut

]
≡

 ∏
u∈ΩU#

f t,t−1

ϕU
ut


1

NU#
f t,t−1

= 1. (A.3.49)

Using the three equivalent expressions for the change in each �rm’s price index in equations (A.3.44)-

(A.3.46), and re-arranging terms, we obtain the following two equalities:

ΘU#+
f t,t−1

 ∑
u∈ΩU#

f t,t−1

SU#
ut−1

(
PU

ut

PU
ut−1

)1−σU
g


1
1−σU

g

= MU#
f t

[
PU

ut

PU
ut−1

](
MU#

f t

[
SU#

ut

SU#
ut−1

]) 1
σU

g −1

, (A.3.50)
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(
ΘU#−

f t,t−1

)−1

 ∑
u∈ΩU#

f t,t−1

SU#
ut

(
PU

ut

PU
ut−1

)−(1−σU
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−

1
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PU

ut

PU
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](
MU#
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SU#

ut

SU#
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]) 1
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,

(A.3.51)

where the terms in the share of expenditure on this subset of common products (
(

λU#
f t /λU#

f t−1

)1/(σU
g −1)

)

have cancelled; ΘU#+
f t,t−1 is a forward aggregate demand shifter and ΘU#−

f t,t−1 is a backward aggregate demand
shifter such that:

ΘU#+
f t,t−1 ≡


∑u∈ΩU#

f t,t−1
SU#

ut−1

(
PU

ut
PU

ut−1

)1−σU
g
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ut
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ut−1

)σU
g −1
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
1
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, (A.3.52)

ΘU#−
f t,t−1 ≡


∑u∈ΩU#

f t,t−1
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ut

(
PU

ut
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1

1−σU
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. (A.3.53)

Using the identifying assumption that the appeal shocks cancel out across this subset of common products

(ΘU#+
f t,t−1 =

(
ΘU#−

f t,t−1

)−1
= 1), equations (A.3.52) and (A.3.53) can be used to construct moment conditions

to estimate the elasticity of substitution across products (σU
g ) that are analogous to those in equation

(A.3.16) above. In estimating the elasticities of substitution for the U.S. and Chile, we focus on the subset

of common goods for each tier of utility K that have relative changes in prices (PK
kt/PK

kt−1) and expenditures

(XK
kt/XK

kt−1) in between the 10th and 90th percentiles, which enables us to abstract from implausibly large

annual changes in prices and expenditures for outlying observations. Given these estimated elasticities of

substitution (σU
g , σF

g , σG), we solve for the appeal shifters (ϕU
ut, ϕF

f t, ϕG
jgt) that rationalize the observed data

on prices (PU
ut) and expenditures (XU

ut) for all observations.

A.4 Data Description

In this section of the Online Appendix, we report further details on the data sources and de�nitions for

the U.S. trade transactions data and Chilean trade transactions data used in the paper.

A.4.1 U.S. Data

The U.S. trade transactions data comes from the U.S. Census Bureau’s Longitudinal Firm Trade Transac-

tions Database (LFTTD). This database covers the universe of U.S.-based �rms that import merchandise

from abroad. For each import shipment, we observe the freight value of the shipment in U.S. dollars, the

quantity shipped, the date of the transaction, the product classi�cation (according to 10-digit Harmonized

System (HS) codes), and the Manufacturing ID (MID). The MID is a �eld that importing �rms must record

in CBP Form 7501 in order to complete the importation of goods into the United States.

We use the MID to identify the manufacturer of the merchandise. The �rst two characters of the MID

are the two-digit ISO country code for the country of origin. The next three characters are the start of
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the �rst word of the exporter’s name. The next three characters are the start of the second word of that

name. The next four characters are the start of the largest number that appears in the street address of the

exporter. The last three characters are the start of the exporter’s city.

Kamal, Krizan and Monarch (2015) documents the characteristics of the MID and its ability to identify

a foreign supplier. The authors show that simple cleaning procedures, such as removing the city portion of

the MID or removing the address-number portion of the MID, result in a close match between the number

of exporting �rms to the U.S. from each exporting country reported in the LFTTD and that reported in

exporting country data.

Guided by these results, we de�ne foreign exporting �rms using the MID, after having removed both

the address-number and the city, and the NAICS 4-digit code. This procedure enables us to merge together

multi-plant �rms that operate in di�erent cities. After implementing this procedure, we compared the

number of �rms per country exporting to the U.S. in the LFTTD and foreign country sources and found

that they matched closely. In addition to removing the address from the MID, we also implement the

following additional cleaning procedures:

1. Standardize the units in which quantities are reported (e.g., we convert dozens to counts and grams

to kilograms).

2. Drop an observation if the unit of quantity does not exist.

3. Drop observations that are indicated to have a high likelihood of input error (as indicated by a

“blooper” variable in the data).

4. Drop an observation if the MID is missing.

5. Drop an observation if the ISO code (the �rst two digits of the MID) is invalid.

6. Drop an observation if the MID does not contain the �rm-name portion.

7. Drop an observation if the quantity or value is invalid (negative or missing).

8. If the exporter is from Canada, the �rst two letters in the MID denotes the Canadian province rather

than the ISO code of Canada. We therefore collapse provinces into one Canada.

9. The ISO codes in the MID often separate China and Hong Kong, which we collapse into China.

10. Our transaction data includes imports from U.S. territories and also imports from domestic origin

returned to the United States with no change in condition or after having been processed and/or

assembled in other countries. We drop these observations, so that we only consider transactions

with a foreign country of origin.
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A.4.2 Chilean Data

The Chilean trade transactions data come from Datamyne and take a similar form as our U.S. trade trans-

actions data. For each import customs shipment, we observe the cost-inclusive-of-freight value of the

shipment in U.S. dollars (converted using market exchange rates), the quantity shipped, the date of the

transaction, the product classi�cation (according to 8-digit Harmonized System (HS) codes), the country

of origin, and the brand of the exporter (e.g. Nestlé, Toyota).

Using this information on import shipments, we construct a dataset for importer j (Chile) with many

exporters i (countries of origin), sectors g (2-digit HS codes), �rms f (foreign brands within exporter within

sector), and products u (8-digit HS codes within foreign brands within sectors) and time t (year). We drop

the small number of HS8 codes that do not use consistent units over time (e.g. we drop any HS8 code

that switches from counts to kilograms). We also drop any observations for which countries of origin or

brands are missing as well as those where the brand is a major trading company.1 After several additional

cleaning rules, which will be outlined in the next section, we collapse the import shipments data to the

annual level by exporting �rm and product, weighting by trade value, which yields a total of 6.5 million

observations on Chilean imports by exporter-�rm-product-year spanning the years 2007-2014.

A.4.3 Data Cleaning Methodology for Chilean Data

In this section, we explain the method used to clean and cluster the �rm names in the Chilean import data.

A.4.3.1 Initial Cleaning of Raw Firm Names

We begin by implementing the following basic cleaning procedures to deal with obvious and easily �xable

problems with the �rm names.

1. Drop trading company names such as “MITSUBISHI CORPORATION”, “MITSUBISHI CORP”, and

“SUMITOMO CORP”.

2. Trim company names to have a maximum string length of 50 (this impacted two �rm names).

3. Remove substrings such as “-F”, “- F”, “S.A.”.

4. Remove most punctuations and symbols. We remove all of the following: ,.;:()[]{}!%#?/\@^*

5. Drop �rm names that consist of only one alphabetical letter (e.g. if the brand name is “A”).

6. Add a space in front of common words. We implement this, because we observe many conjoined

words (e.g. APPLEINCORPORATED).
1These were taken from the Forbes list of the top 10 trading companies.
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7. Remove extra spaces between words (when there is more than one space between words) and re-

move spaces that come before or after the �rm name (e.g. “ APPLE INCORPORATED ”

becomes “APPLE INCORPORATED”).

8. Delete companies that are identi�ed only by a Chinese city name (e.g. �rm name is simply “BEI-

JING”).

9. After applying these steps, remove �rm names that are blank.

A.4.3.2 Standardizing Firm Names

We then use stnd_compname, a user-written Stata package by Wasi and Flaaen primarily to:

1. Remove entity names (e.g. LLC, LTD, INC)

2. Shorten commonly used words (e.g. ELECTRONICS, TECHNOLOGY) that have less distinguishing

power, so that they will have less weighting during the string-similarity clustering.

The stnd_compname package comes with 43 standardizations for approximately 104 commonly used words

(such as ENTERPRISE, INTERNATIONAL, MANAGEMENT, etc). We add approximately 100 standardiza-

tions and 180 words to this list for a total of 150 standardizations and around 300 words based on which

words were the most common in the data. In addition to standardizing words, we also implement two

more cleaning steps to complement the standardization:

1. Search through and remove a word if the �rst letter of the word is a numeral and the word is not the

�rst word of the �rm name. (MAZDA 4X 7TR turns into MAZDA)

2. If there is numeral within a word that is not the �rst word in a name, we remove the numeral and

the rest of the letters following the numeral in the word. (FUJI F342FDIF turns into FUJI F)

A.4.3.3 Clustering

We then run string-similarity clustering (using strgroup, a user-written Stata package by Julian Reif) on the

standardized �rm names using a number of di�erent thresholds and groups. These thresholds determine

two strings’ edit distance below which the two strings (i.e. �rm names) will be grouped together. Varying

this threshold is useful, because we observe that �rm names are more likely to refer to the same �rm

if they share the same HS category. For example, we would be more comfortable assuming that “Sony

Corp” and “Pony Corp” refer to the same company if we were only looking at makers of DVD players

than doing cross-sector comparisons (because such cross-sector comparisons could involve assuming that

an exporter of DVDs is also an exporter of farm animals). We take advantage of this by implementing

clustering multiple times within multiple HS levels (2,4,6 and 8) and choosing stricter clustering thresholds

for broader HS levels (i.e. as we cluster within more disaggregated HS-levels, the criterion for grouping
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�rm names are made less strict). Speci�cally, we set our thresholds at 15 percent, 20 percent, 22 percent,

and 30 percent for clustering within 2-digit HS codes, 4-digit HS codes, 6-digit HS codes, and 8-digit HS

codes, respectively. After creating 4 di�erent �rm identi�ers for the various HS levels (HS2, HS4, HS6, and

HS8), the groupings are then merged together. If �rm name A is matched with �rm name B, and �rm name

B is matched with �rm name C, then �rm name A is matched with �rm name C, and so on.

In parallel with the string-similarity clustering on the standardized �rm names, we also implement

the string similarity clustering on the �rm names prior to standardization. We do this in case the stan-

dardization was ine�ective (e.g. we missed certain words to be standardized). We run this clustering on a

much stricter threshold than in the earlier step, so that we remain conservative about grouping �rm names

together. If the clustering results are too large (i.e. the threshold is not strict enough), we restrict the size

of a cluster to 5 unique �rm names (so that a �rm name can be spelled in up to 5 di�erent ways while still

be identi�ed as the same �rm).

After clustering on the two sets of �rm names (the �rm names prior to standardization and those after

standardization) we merge the clusters together. If �rm A is matched with �rm B in the �rst step and �rm

B is matched with �rm C in the second step, then these groupings are merged, so that �rm A is matched

with C as well, implying that �rms A, B, and C are all allocated to the same group.

A.4.3.4 Additional Cleaning Steps

After standardizing and clustering, we apply additional cleaning rules:

1. Now that standardization and clustering is complete, we drop the remaining observations with trad-

ing companies, blank �rm names, and �rm names that are only identi�ed by a single alphabetical

letter.

2. We observe many �rm names in the data of the form “A & W” or “T & W” where the �rm names

consist of two letters with an “&” in between. The clustering method often clusters these �rm names

together (depending on the HS level) even if only one of these letters are the same (e.g. “A & W”

and “T & W”), because the di�erence between the two �rm names are 1/5 or 20 percent, which is

within the threshold in many cases. To address this, we apply a rule such that these �rm names are

separated into di�erent groups unless there is an exact match.

3. We again restrict the size of a cluster to 5 unique �rm names. If a cluster is larger than 5 unique �rm

names, we cluster again on an ever-stricter threshold until the size of the cluster is �ve or less.

4. We sometimes encounter observations where the entire �rm name is contained exactly at the start

of another (e.g. “SONY” and “SONY ELECTRONICS” or “HEWLETT PACKARD” and “HEWLETT

PACKARD ENTERPRISE”). Even after standardizing common words, these �rm names often fail to

be clustered together because their edit distances are too large. We combat this by creating a rule
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such that if one �rm name appears at the beginning of another, the two �rm names are grouped

together.

A.4.3.5 Validation

After implementing the above steps, we then checked how well our procedure worked by manually check-

ing the results of this algorithm for the 1,249 raw �rm names in the Japanese steel sector (which we had not

looked at when developing the procedure). We manually checked the accuracy using two steps. First, we

sorted the �rm list alphabetically and counted the number of �rm names that should have been grouped

together (based on our manual inspection) but were not grouped together by our clustering algorithm.

Second, we sorted the �rm names by our groups and counted the number of �rm names that should not

have been grouped together (based on our manual inspection) but were grouped together by our clus-

tering algorithm. Summing these type I and type II errors, we found that our cleaning algorithm and

manual checking grouped �rms in the same way for 99.9 percent of observations. As a �nal check on the

sensitivity of our results to this cleaning algorithm, we replicated our main results of the Chilean import

transactions data using the �rm names prior to these cleaning steps. Again we �nd that most of the vari-

ation in revealed comparative advantage (RCA) across countries and sectors is explained by variety and

appeal. Therefore, while our clustering algorithm improves the allocation of import transactions to �rms,

our main qualitative and quantitative conclusions hold regardless of whether or not we use this algorithm.

A.5 U.S. Empirical Results

In this section of the Online Appendix, we report additional empirical results using our U.S. data for Section

5 of the paper.

A.5.1 RW Elasticities of Substitution

In Figure A.5.1, we plot our estimated product, �rm and sector elasticities of substitution (σ̂U
g , σ̂F

g , σ̂G)

across sectors, sorted based on the ranking of the estimated �rm elasticity of substitution (σ̂F
g ). We also

show 95% con�dence intervals for the estimated product and �rm elasticities of substitution (σ̂U
g , σ̂F

g )

based on bootstrapped standard errors. As can be seen in the �gure, we �nd a natural ordering where

σ̂U
g > σ̂F

g > σ̂G. We also �nd that the con�dence intervals are narrow enough such that the product

elasticity is signi�cantly larger than the �rm elasticity (σ̂U
g > σ̂F

g ) at the 5 percent level of signi�cance for

all sectors, and the �rm elasticity is also signi�cantly larger than the sector elasticity (σ̂F
g > σ̂G) at this

signi�cance level for all sectors.
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Figure A.5.1: Estimated Elasticities of Substitution, Within Firms (σ̂U
g ), Across Firms (σ̂F

g ) and Across Sec-
tors (σ̂G), sorted based on the ranking of σ̂F

g (U.S. Data)
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Note: Estimated elasticities of substitution across products (σU
g shown by the solid blue line) and �rms (σF

g shown by the solid red
line) for each NAICS-4 sector; sectors ranked by the elasticity of substitution across �rms (σF

g ); estimated elasticity of substitution
across sectors (σG) shown by the horizontal green line; dashed lines denote 95 percent bootstrapped con�dence intervals.

A.5.2 Variance Decomposition

In this subsection of the Online Appendix, we discuss our regression-based variance decomposition of

revealed comparative advantage (RCA) into its components. We also report the results of a robustness test

using an alternative variance decomposition suggested by Grömping (2007).

A.5.2.1 Regression-based Variance Decomposition

Our regression-based variance decomposition is relatively common in the macroeconomics and interna-

tional trade literatures, including, for example, Klenow and Rodriguez-Clare (1997) (see the equation on

page 80 of that paper); Eaton, Kortum and Kramarz (2004) (see the equation at the top of page 153 of that

paper); Bernard, Jensen, Redding and Schott (2009) (see the discussion on page 488 and the results in Table

1 of that paper); and Bernard, Redding and Schott (2011) (see the equation at the top of page 1305 and the

results in Table II of that paper). We now show that this regression-based variance decomposition allocates

the covariance terms equally across the components of the decomposition.
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Consider the following accounting decomposition, in which the variable y is the sum of the variables

x and z:

y = x + z. (A.5.1)

Our regression-based variance decomposition estimates an OLS regression of each of the individual com-

ponents x and z on the overall value of y:

x = ax + bxy + εx, (A.5.2)

z = az + bzy + εz. (A.5.3)

By the properties of OLS:

bx =
cov (x, y)

var (y)
=

cov (x, x + z)
var (y)

=
var (x) + cov (x, z)

var (y)
, (A.5.4)

bz =
cov (z, y)
var (y)

=
cov (z, x + z)

var (y)
=

var (z) + cov (x, z)
var (y)

, (A.5.5)

which shows that the covariance terms are allocated equally across the two coe�cients (bx, bz) and hence

allocated equally across the two components of the variance decomposition. Summing these two coe�-

cients, we have:

bx + bz =
var (x) + var (z) + 2cov (x, z)

var (y)
= 1, (A.5.6)

which shows that the two coe�cients sum to one. Therefore, each coe�cient (bx, bz) provides a measure

of the relative importance of each term to the variance decomposition, where the covariance terms are

allocated equally across the two components of the variance decomposition. In general, the estimated bx

and/or bz coe�cients in equations (A.5.4) and (A.5.5) can be negative if the covariance terms are negative

and large in absolute magnitude relative to the variance terms.

A.5.2.2 Alternative Variance Decomposition

An alternative variance decomposition is proposed in Grömping (2007) based on hierarchical partitioning,

which has the desirable property that the contribution of any variable to the explained variance must be

positive. Consider again the following accounting decomposition, in which the variable y is the sum of

the variables x and z:

y = x + z. (A.5.7)

Estimate the following three regressions:

y = ax + bxx + εx, (A.5.8)

y = az + bzz + εz, (A.5.9)
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Table A.1: Variance Decomposition U.S. RCA (Grömping 2007)

Log Level RCA 2011 Log Change RCA 1998-2011
Firm-Level Product-Level Firm-Level Product-Level

Decomposition Decomposition Decomposition Decomposition
Firm Price Index 0.129 - 0.178 -
Firm Appeal 0.155 0.110 0.325 0.297
Firm Variety 0.338 0.311 0.394 0.400
Firm Dispersion 0.378 0.351 0.103 0.103
Product Prices - 0.087 - 0.153
Product Variety - 0.055 - 0.038
Product Dispersion - 0.086 - 0.009

Note: Relative importance decomposition for the log level of RCA in 2011 and the log change in RCA from 1998-2011 (from
Grömping 2007); dispersion corresponds to the dispersion of appeal-adjusted prices.

y = axy + bxyx + bxzz + εxy. (A.5.10)

The contribution of x to the variance of y is de�ned as the average of (i) the R-squared from regression

(A.5.8) when only x is included and (ii) the increase in the R-squared when both x and z are included in

regression (A.5.10). Similarly, the contribution of of z to the variance of y is de�ned as the average of (i)

the R-squared from regression (A.5.9) when only z is included and (ii) the increase in the R-squared when

both x and z are included in regression (A.5.10).

Generalizing this approach to J > 2 components, the contribution of each component to the variance

of the total is the increase in the R-squared from adding this component to a regression where it is absent,

averaged over all possible regressions formed from di�erent permutations of the J − 1 other components.

In Table A.1, we implement the variance decomposition from Table 3 in the paper for U.S. RCA using

this alternative procedure. The results are quite similar. For example, the importance of prices, appeal,

variety, and dispersion in the decomposition for RCA levels presented in Table 3 are 0.09, 0.22, 0.32, and

0.36 respectively, whereas the Grömping (2007) decomposition gives us 0.13, 0.16, 0.34, and 0.38. Similarly,

the importance of prices, appeal, and variety in the decomposition for RCA changes presented in Table 3

are -0.01, 0.42, 0.50, and 0.08 respectively, whereas the Grömping (2007) decomposition gives us 0.18, 0.33,

0.39, 0.10. Thus, while the Grömping (2007) approach does have the bene�t of eliminating the small neg-

ative contribution of price movements to RCA, the di�erence in methodologies mostly a�ects the second

signi�cant digit of the estimates. As we discuss in Section A.6.3 below, our results are also robust across

di�erent methodologies for the RCA decomposition using Chilean data.

A.5.3 Exporter Price Indexes Across Sectors and Countries

No further results required.
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A.5.4 Trade Patterns

As discussed in Sections 5.1 and 5.3 of the paper, we undertake a robustness check, in which we carry out

a grid search over the range of plausible values for elasticities of substitution across �rms and products.

In particular, we consider values of σF
g from 2 to 8 (in 0.5 increments) and values of σU

g from (σF
g + 0.5)

to 20 in 0.5 increments, while holding σG constant at our estimated value, which respects our estimated

ranking that σU
g > σF

g > σG.

We begin by showing that the percentage contributions from �rm variety and �rm dispersion are

invariant across this parameter grid, because the elasticities of substitution cancel from these expressions.

From equation (A.2.42) in Section A.2.10.1 of this Online Appendix, the overall contribution from both �rm

and product variety to the level of log RCA is,
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, (A.5.11)

where the component of this contribution that captures �rm variety is,

ln
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)
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which depends solely on observed moments in the data and is invariant to the assumed elasticities of

substitution for �nite values of these elasticities (σU
g < ∞ and σF

g < ∞). Taking di�erences over time in

equation (A.5.12), this invariance result also holds for changes in log RCA.

Similarly, from equation (A.2.41) in Section A.2.10.1 of this Online Appendix, the overall contribution

from the dispersion of appeal-adjusted prices across common products and �rms for the level of log RCA

is,
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where the component of this contribution that captures �rm dispersion is,
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 , (A.5.14)
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which depends solely on observed moments in the data and is invariant to the assumed elasticities of

substitution for �nite values of these elasticities (σU
g < ∞ and σF

g < ∞). Taking di�erences over time in

equation (A.5.14), this invariance result also again holds for changes in log RCA.

In Figure A.5.2, we show histograms across the parameter grid for the contribution from each of the

remaining terms from our decomposition of the level of RCA in equation (34) in the paper. The contri-

butions from product prices, product variety and product dispersion in the �nal three panels sum to the

contribution from �rm prices in the �rst panel. Additionally, the �rm price and �rm appeal contributions

in the �rst two panels plus the unreported contributions from �rm variety and �rm dispersion sum to one.

In Figure A.5.3, we display analogous results for our decomposition of changes in RCA over time, where

the �ve panels of the �gure have the same relationship with one another as in Figure A.5.2.

In both �gures, a higher value for σF
g raises the contribution from average prices and reduces the

contribution from average appeal. Nonetheless, across the entire grid of parameter values, average prices

account for less than 30 percent of the level of the RCA and less than 10 percent of the changes in RCA. In

contrast, for all parameter values on the grid, average appeal’s contribution to the level of RCA is around as

large as that from average prices (from less than 5 percent to over 25 percent in Figure A.5.2). Furthermore,

its contribution to changes in RCA is substantially larger than that from average prices (from just over 35

percent to just under 60 percent in Figure A.5.3).

In summary, our �ndings that most of the variation in patterns of RCA is explained by factors other

than average prices is robust to the consideration of alternative elasticities of substitution. In particular,

the contributions from �rm variety and �rm dispersion are invariant to these elasticities of substitution.

Furthermore, across the range of plausible values for these elasticities of substitution, the contribution

from average appeal remains large relative to that from average prices.
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Figure A.5.2: Contributions to the Level of U.S. RCA in 2011 Across the Parameter Grid for the Firm and
Product Elasticities of Substitution
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Note: Contributions to the level of revealed comparative advantage (RCA) in equation (34) in the paper; the contributions from
product prices, product variety and product dispersion in the �nal three panels sum to the contribution from �rm prices in the
�rst panel; the �rm price and �rm appeal contributions in the �rst two panels plus the unreported contributions from �rm variety
and �rm dispersion sum to one.
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Figure A.5.3: Contributions to the Change in U.S. RCA in from 1998-2011 Across the Parameter Grid for
the Firm and Product Elasticities of Substitution
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Note: Contributions to changes in revealed comparative advantage (RCA) in equation (34) in the paper; the contributions from
product prices, product variety and product dispersion in the �nal three panels sum to the contribution from �rm prices in the
�rst panel; the �rm price and �rm appeal contributions in the �rst two panels plus the unreported contributions from �rm variety
and �rm dispersion sum to one.

A.5.5 Additional Theoretical Restrictions

In Section 5.4 of the paper, we compare the observed data for �rm sales and our model solutions for the �rm

price index and �rm appeal (ln VF
f t ∈

{
ln XF

f t, ln PF
f t, ln ϕF

f t

}
) with their theoretical predictions under the

assumptions of a Pareto distribution or a log normal distribution. In this section of the Online Appendix,

we derive these theoretical predictions, as summarized in equations (35) and (36) in the paper.

Empirical Distributions In particular, we use the QQ estimator of Kratz and Resnick (1996), as in-

troduced into the international trade literature by Head, Mayer and Thoenig (2016). We start with the

empirical distributions. Ordering �rms by the value of a given variable VF
f t for f ∈

{
1, . . . , NF

jigt

}
for a

given exporter i to importer j in sector g at time t, we observe the empirical quantiles:

V f t = ln
(

VF
f t

)
. (A.5.15)
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We can use these empirical quantiles to estimate the empirical cumulative distribution function:

F̂jigt

(
VF

f t

)
=

f − b
NF

jigt + 1− 2b
, b = 0.3, (A.5.16)

where the plot position of b = 0.3 can be shown to approximate the median rank of the distribution (see

Benard and Boslevenbach 1953). We next turn to the theoretical distributions, �rst under the assumption

of a Pareto distribution, and next under the assumption of a log normal distribution.

ParetoDistribution Under the assumption that the variable VF
f t has a Pareto distribution, its cumulative

distribution function is given by:

Fjigt

(
VF

f t

)
= 1−

(
VF

jigt

VF
f t

)aV
g

, (A.5.17)

where Fjigt (·) is the cumulative distribution function; VF
jigt is the lower limit of the support of the distri-

bution for variable VF
f t for exporter i, importer j, sector g and time t; and aV

g is the Pareto shape parameter

for variable VF
f t for sector g.

Inverting this cumulative distribution function, and taking logarithms, we obtain the following pre-

dicted theoretical quantile for each variable:

ln
(

VF
f t

)
= ln VF

jigt −
1

aV
g

ln
[
1−Fjigt

(
VF

f t

)]
, (A.5.18)

which corresponds to equation (35) in the paper.

We estimate equation (A.5.18) by OLS using the empirical quantile from equation (A.5.15) for ln
(

VF
f t

)
on the left-hand side and the empirical estimate of the cumulative distribution function from equation

(A.5.16) for Fjigt

(
VF

f t

)
on the right-hand side. We estimate this regression for each sector across foreign

�rms (allowing the slope coe�cient aV
g to vary across sectors) and including �xed e�ects for each exporter-

sector-year combination (allowing the intercept ln VF
jigt to vary across exporters, sectors and time). The

�tted values from this regression correspond to the predicted theoretical quantiles, which we compare

to the empirical quantiles observed in the data. Under the null hypothesis of a Pareto distribution, there

should be a linear relationship between the theoretical and empirical quantiles that coincides with the

45-degree line.

To assess this theoretical prediction, we estimate equation (35) in the paper for two separate subsam-

ples: �rms with values below the median for each exporter-sector-year cell and �rms with values above

the median for each exporter-sector-year cell. Under the null hypothesis of a Pareto distribution, the es-

timated slope coe�cient 1/aV
g should be the same for �rms below and above the median. In the bottom

three panels of Figure A.5.4, we display the estimated slope coe�cients 1/aV
g for each 4-digit NAICS in-

dustry for the log �rm price index (ln PF
f t to the left), log �rm exports (ln XF

f t in the middle), and log �rm

appeal (ln ϕF
f t to the right). In each panel, we sort industries by the estimated slope coe�cient for the full
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sample for that variable (shown by the black straight line). The red and blue numeric industry codes show

the estimates for the subsamples of �rms below and above the median respectively. For all three variables,

we strongly reject the null hypothesis of a Pareto distribution, with substantial di�erences in the estimated

coe�cients below and above the median, which are signi�cant at conventional levels.

Figure A.5.4: Estimated Coe�cients from Regressions of the Empirical Quantiles on the Theoretical Quan-
tiles Implied by a Pareto or Log Normal distribution (U.S. data)
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Note: Red below median; blue above median; black line pooled coefficient.

Estimated Coefficients

Note: Regressions of empirical quantiles on theoretical quantiles for �rm observations below (red) and above (blue) the median
for each exporter-sector-year cell; numbers corresponds to industry NAICS codes; theoretical quantiles in the top three panels
based on a log normal distribution; theoretical quantiles in the bottom three panels based on a Pareto distribution; left column
shown results for the �rm price index; middle columns shows results for observed �rm sales; right column shows results for �rm
appeal).

Log Normal Distribution In contrast, under the assumption that the variable VF
f t has a log normal

distribution, its cumulative distribution function is given by:

ln
(

VF
f t

)
∼ N

(
κV

jigt,
(

χV
g

)2
)

, (A.5.19)
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where κV
jigt is the mean for ln VF

f t for exporter i in importer j and sector g at time t and χV
g is the standard

deviation for ln VF
f t for sector g. It follows that the standardized value of the log of each variable is drawn

from a standard normal distribution:

Fjigt

(
VF

f t

)
= Φ

 ln
(

VF
f t

)
− κV

jigt

χV
g

 , (A.5.20)

where Φ (·) is the standard normal cumulative distribution function. Inverting this cumulative distribution

function, we obtain the following predictions for the theoretical quantiles of each variable:

ln
(

VF
f t

)
− κV

jigt

χV
g

= Φ−1
(
Fjigt

(
VF

f t

))
, (A.5.21)

which can be re-expressed as:

ln
(

VF
f t

)
= κV

jigt + χV
g Φ−1

(
Fjigt

(
VF

f t

))
, (A.5.22)

which corresponds to equation (36) in the paper.

Again we estimate equation (A.5.22) by OLS using the empirical quantile from equation (A.5.15) for

ln
(

VF
f t

)
on the left-hand side and the empirical estimate of the cumulative distribution function from

equation (A.5.16) forFjigt

(
VF

f t

)
on the right-hand side. We estimate this regression for each sector across

foreign �rms (allowing the slope coe�cient χV
g to vary across sectors) and including �xed e�ects for each

exporter-sector-year combination (allowing the intercept κV
jigt to vary across exporters, sectors and time).

In the top three panels of Figure A.5.4, we display the estimated slope coe�cients χV
g for each 4-digit

NAICS industry for the log �rm price index (ln PF
f t to the left), log �rm exports (ln XF

f t in the middle),

and log �rm appeal (ln ϕF
f t to the right), using the same coloring as for the bottom three panels discussed

above.

As apparent from the �gure, we �nd that the log normal distributional assumption provides a closer

approximation to the data than the Pareto distributional assumption. Consistent with Bas, Mayer and

Thoenig (2017), we �nd smaller departures from the predicted linear relationship between the theoretical

and empirical quantiles for a log normal distribution than for a Pareto distribution. Nevertheless, we reject

the null hypothesis of a log normal distribution at conventional signi�cance levels for all three variables

for the majority of industries, with substantial di�erences in estimated coe�cients above and below the

median for a number of industries.

A.5.6 Additional Reduced-Form Evidence

In Figures A.5.5-A.5.8 below, we show that our U.S. trade transactions data exhibit have the same reduced-

form properties as found in existing studies in the empirical trade literature (see for example Bernard,
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Jensen and Schott 2009 and Bernard, Jensen, Redding and Schott 2009 for the U.S.; Mayer, Melitz and

Ottaviano 2014 for France; and Manova and Zhang 2012 for China).

First, we �nd a high concentration of trade across countries and a dramatic increase in Chinese import

penetration over time. As shown in Figure A.5.5, the top 20 import source countries account for around

80 percent of U.S. imports; China’s import share more than doubles from 7 to 18 percent from 1997-2011;

in contrast, Japan’s import share more than halves from 14 to 6 percent over this period.

Second, we �nd high rates of product and �rm turnover and evidence of selection conditional on

product and �rm survival. In Figure A.5.6, we display the fraction of �rm-product observations and import

value by tenure (measured in years) for 2011, where recall that �rms here correspond to foreign exporting

�rms. Around 50 percent of the �rm-product observations in 2011 have been present for two years or less,

but the less than 5 percent of these observations that have survived for at least �fteen years account for

over 20 percent of import value.

Third, we �nd that international trade is dominated by multi-product �rms. In Figure A.5.7, we display

the fraction of �rm observations and import value in 2011 accounted for by �rms exporting di�erent

numbers of products. Although less than 40 percent of exporting �rms are multi-product, they account

for more than 90 percent of import value.

Fourth, we �nd that the extensive margins of �rm and product exporting account for most of the

cross-section variation in aggregate trade. In Figure A.5.8, we display the log of the total value of U.S.

imports from each foreign country, the log number of �rm-product observations with positive trade for

that country, and the log of average imports per �rm-product observation with positive trade from that

country. We display these three variables against the rank of countries in U.S. total import value, with the

largest country assigned a rank of one (China). By construction, total import value falls as we consider

countries with higher and higher ranks. Substantively, most of this decline in total imports is accounted

for by the extensive margin of the number of �rm-product observations with positive trade, whereas the

intensive margin of average imports per �rm-product observation with positive trade remains relatively

�at.

Therefore, across these and a range of other empirical moments, our data are representative of existing

empirical �ndings using international trade transactions data.
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Figure A.5.5: Country Shares of U.S. Imports over Time
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Figure A.5.6: Distribution Firm-Product Observations and Import Value by Tenure 2011 (U.S. data)
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Figure A.5.7: Distribution of Firm Observations Across Number of Products 2011 (U.S. data)
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Figure A.5.8: Extensive and Intensive Margins of Firm-Product Imports Across Countries 2011 (U.S. data)
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A.6 Chilean Empirical Results

In this section of the Online Appendix, we replicate the empirical results from Section 5 of the paper, but

using our Chilean data instead of our U.S. data. In Section A.6.1, we report our estimates of the elasticities

of substitution (σU
g , σF

g , σG), which we use to invert the model and recover the values of product, �rm

and sector appeal (ϕU
ut, ϕF

f t, ϕG
jgt). In Section A.6.2, we use these estimates to compute the exporter price

indexes that determine the cost of sourcing goods across countries and sectors. In Section A.6.3, we report

our main results for the determinants of comparative advantage, aggregate trade and aggregate prices. In

Section A.6.4, we compare the results of our framework with special cases that impose additional theoret-

ical restrictions. Finally, in Section A.6.5, we con�rm that our Chilean data exhibit the same reduced-form

properties as our U.S. data, and as found in other empirical studies using international trade transactions

data.

A.6.1 Elasticities of Substitution: RW and HRWMethods Compared

We begin by showing that we �nd a similar pattern of estimated elasticities of substitution using the

Chilean data as using the U.S. data in Section 5.1 of the paper. In Table A.2, we summarize our estimates

of the elasticities of substitution (σU
g , σF

g , σG) using the Chilean data. We report quantiles of the distribu-

tions of the estimated product and �rm elasticities (σU
g , σF

g ) across sectors, as well as the single estimated

elasticity of substitution across sectors (σG). As for the U.S., we �nd that the estimated product and �rm

elasticities are statistically signi�cantly larger than one, and always below eleven. We obtain a median es-

timated elasticity across products (σU
g ) of 5.0, a median elasticity across �rms (σF

g ) of 2.7 and an elasticity

across sectors (σG) of 1.69, which compare closely with our U.S. estimates.

Although we do not impose this restriction on the estimation, we again �nd a natural ordering, in

which varieties are more substitutable within �rms than across �rms, and �rms are more substitutable

within industries than across industries: σ̂U
g > σ̂F

g > σ̂G. We �nd that the product elasticity is signi�cantly

larger than the �rm elasticity at the 5 percent level of signi�cance for 98 percent of sectors, and the �rm

elasticity is signi�cantly larger than the sector elasticity at this signi�cance level for 88 percent of sectors.

Therefore, the Chilean data also rejects the special cases in which consumers only care about �rm varieties

(σU
g = σF

g = σG), in which varieties are perfectly substitutable within sectors (σU
g = σF

g = ∞), and in

which products are equally di�erentiated within and across �rms for a given sector (σU
g = σF

g ). Instead,

we �nd evidence of both �rm di�erentiation within sectors and product di�erentiation within �rms, as for

the U.S. in the paper.
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Table A.2: Estimated Elasticities of Substitution, Within Firms (σU
g ), Across Firms (σF

g ) and Across Sectors
(σG) using Chilean Data

Percentile Elasticity Elasticity Elasticity Product-Firm Firm-Sector
Across Across Across Di�erence Di�erence

Products (σU
g ) Firms (σF

g ) Sectors (σG) (σU
g − σF

g ) (σF
g − σG)

Min 4.34 1.80 1.69 1.36 0.11
5th 4.44 2.09 1.69 1.63 0.40
25th 4.63 2.40 1.69 2.06 0.71
50th 5.01 2.68 1.69 2.39 0.99
75th 5.54 3.02 1.69 2.82 1.34
95th 6.88 3.40 1.69 4.33 1.71
Max 8.47 4.14 1.69 4.43 2.45

Note: Estimated elasticities of substitution from the reverse-weighting estimator discussed in Section 3 of the paper and in Section
A.3 of this Online Appendix. Sectors are 2-digit Harmonized System (HS) codes; �rms correspond to foreign exported brands
within each foreign country within each sector; and products u re�ect 8-digit HS codes within exported brands within sectors.

Our estimated elasticities of substitution are again broadly consistent with those of other studies that

have used similar data but di�erent methodologies and/or nesting structures. Our estimates of the product

and �rm elasticities (σF
g and σU

g ) are only slightly smaller than those estimated by Hottman et al. (2016)

using di�erent data (U.S. barcodes rather than internationally-traded HS products) and a di�erent estima-

tion methodology based on Feenstra (1994).2 When we apply this alternative methodology to our data as

a robustness check, we also obtain similar estimates, with median elasticities of 4.2 at the product level

and 1.8 at the �rm level, which are close to the 5.0 and 2.7 obtained using the RW method (see Table A.3).

Thus, our estimated elasticities typically do not di�er substantially from those obtained using other stan-

dard methodologies. However, the HRW method generates elasticities with more dispersion in the Chilean

data. When we estimate the elasticities using the HRW method, we get one negative elasticity (out of 86).

This irregularity does not appear when we implement the RW procedure. Moreover, the di�erences in

the elasticity point estimates do not produce qualitative di�erences in our decompositions of RCA as we

document in Section A.6.3.
2Our median estimates for the elasticities of substitution within and across �rms of 5.0 and 2.7 respectively compare with

those of 6.9 and 3.9 respectively in Hottman et al. (2016).

50



Table A.3: Estimated Elasticities of Substitution (Hottman et al. (2016)), Within Firms (σU) and Across
Firms (σF) using Chilean Data

Percentile Elasticity Elasticity Product-Firm
Across Across Di�erence

Products (σU) Firms (σF) (σU − σF)

Min 1.93 -9.88 0.70
5th 2.34 1.08 1.04
25th 3.67 1.47 1.70
50th 4.16 1.76 2.44
75th 5.19 2.08 3.08
95th 8.87 4.85 5.03
Max 17.22 8.34 23.38

Note: Estimated elasticities of substitution using the Hottman et al. (2016) methodology. Sectors are 2-digit Harmonized System
(HS) codes; �rms correspond to foreign exported brands within each foreign country within each sector; and products u re�ect
8-digit HS codes within exported brands within sectors.

As an additional robustness check, we re-estimated the product, �rm and sector elasticities using 4-

digit HS categories as our de�nition of sectors instead of 2-digit HS categories. We �nd a similar pattern

of results, with a somewhat larger median product elasticity of 5.2, a median �rm elasticity of 2.6, and a

sector elasticity of 1.7. As discussed in Section 5.1 of the paper and reported in further detail in Section

A.5.4 of this Online Appendix, we also demonstrate the robustness of our results to undertaking a grid

search over the range of plausible values for the elasticity of substitution across �rms and products.

In Figure A.5.1, we plot our estimated product, �rm and sector elasticities of substitution (σ̂U
g , σ̂F

g ,

σ̂G), sorted based on the ranking of the estimated �rm elasticity of substitution (σ̂F
g ). We also show 95%

con�dence intervals for the estimated product and �rm elasticities of substitution (σ̂U
g , σ̂F

g ) based on boot-

strapped standard errors. As can be seen in the �gure, we �nd a natural ordering where σ̂U
g > σ̂F

g > σ̂G.

We also �nd that the con�dence intervals are narrow enough such that the product elasticity is signi�cantly

larger than the �rm elasticity (σ̂U
g > σ̂F

g ) at the 5 percent level of signi�cance for 98 percent of sectors, and

the �rm elasticity is signi�cantly larger than the sector elasticity (σ̂F
g > σ̂G) at this signi�cance level for

88 percent of sectors.
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Figure A.6.1: Estimated Elasticities of Substitution, Within Firms (σ̂U
g ), Across Firms (σ̂F

g ) and Across Sec-
tors (σ̂G), sorted based on the ranking of σ̂F

g (Chile Data)
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Note: Estimated elasticities of substitution across products (σU
g shown by the solid blue line) and �rms (σF

g shown by the solid
red line) for each HS2 sector; sectors ranked by the elasticity of substitution across �rms (σF

g ); estimated elasticity of substitution
across sectors (σG) shown by the horizontal green line; dashed lines denote 95 percent bootstrapped con�dence intervals.

A.6.2 Exporter Price Indexes Across Sectors and Countries

We next show that we �nd a similar pattern of results for the exporter price indexes across countries and

sectors using our Chilean data as using our U.S. data in Section 5.2 of the paper.

In the four panels of Figure A.6.2, we display the log of the exporter price index (ln PE
jigt) against its

components using the Chilean data, where each observation is an exporting country and sector pair. For

brevity, we show results for 2014, but �nd the same pattern for the other years in our sample. Whereas we

show bin scatters using the U.S. data in Figure 1 in the paper, we show the observations for each exporting

country and sector using our Chilean data in Figure A.6.2. In the top left panel, we compare the log exporter

price index (ln PE
jigt) to average log product prices (EFU

jigt

[
ln PU

ut
]
). In the special case in which �rms and

products are perfect substitutes within sectors (σU
g = σF

g = ∞) and there are no di�erences in appeal

(ϕF
f t = ϕF

mt for all f , m and ϕU
ut = ϕU

`t for all u, `), these two variables would be perfectly correlated. In

contrast to these predictions, we �nd a positive but imperfect correlation, with an estimated regression

slope of 0.24 and R2 of essentially zero. In other words, average prices are weakly correlated with the true
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CES price index, which underscores the problem of using average prices as a proxy for the CES price index.

Figure A.6.2: Exporter-Sector Price Indexes and their Components Versus Average Log Product Prices,
2014 (Chilean data)
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Note: Log exporter-sector price index and its components for Chilean imports in 2014 from equation (21) in the paper; dispersion
corresponds to the dispersion of appeal-adjusted prices; Blue dots show exporter-sector observations; Red line shows the linear
regression relationship between the variables.

In the remaining panels of Figure A.6.2, we explore the three sources of di�erences between the ex-

porter price index and average log product prices. As shown in the top-right panel, exporter-sectors with

high average prices (horizontal axis) also have high average appeal (vertical axis), so that the impact of

higher average prices in raising sourcing costs is partially o�set by higher average appeal. This positive

relationship between average appeal and prices is strong and statistically signi�cant, with an estimated re-

gression slope of 0.59 and R2 of 0.34. This �nding of a tight connection between higher appeal and higher

prices is consistent with the quality interpretation of appeal stressed in Schott (2004), in which producing

higher appeal incurs higher production costs.3

In the bottom-left panel of Figure A.6.2, we show that the contribution from the number of varieties to
3This close relationship between appeal and prices is consistent the �ndings of a number of studies, including the analysis

of U.S. barcode data in Hottman et al. (2016) and the results for Chinese footwear producers in Roberts et al. (2018).
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the exporter-sector price index exhibits an inverse U-shape, at �rst increasing with average prices before

later decreasing. This contribution ranges by more than six log points, con�rming the empirical relevance

of consumer love of variety. In contrast, in the bottom-right panel of Figure 1, we show that the contri-

bution from the dispersion of appeal-adjusted prices displays the opposite pattern of a U-shape, at �rst

decreasing with average prices before later increasing. While the extent of variation is smaller than for

the variety contribution, this term still �uctuates by more than four log points between its minimum and

maximum value. Therefore, the imperfect substitutability of �rms and products implies important contri-

butions from the number of varieties and the dispersion in appeal-adjusted prices across those varieties

towards the true cost of sourcing goods across countries and sectors.

These non-conventional determinants are not only important in the cross-section but are also impor-

tant for changes in the cost of sourcing goods over time. A common empirical question in macroeconomics

and international trade is the e�ect of price shocks in a given sector and country on prices and real eco-

nomic variables in other countries. However, it is not uncommon to �nd that measured changes in prices

often appear to have relatively small e�ects on real economic variables, which has stimulated research on

“elasticity puzzles” and “exchange rate disconnect.” Although duality provides a precise mapping between

prices and quantities, the actual price indexes used by researchers often di�er in important ways from the

formulas for price indexes from theories of consumer behavior. For example, as discussed in the paper,

our average price term is the log of the “Jevons Index,” which is used by the U.S. Bureau of Labor Statistics

(BLS) as part of its calculation of the consumer price index. Except in special cases, however, this average

price term will not equal the theoretically-correct measure of the change in the unit expenditure function.

We �rst demonstrate this point for aggregate import prices. In Figure A.6.3, we use equation (30) in

the paper to decompose the log change in aggregate import price indexes (ET
jt

[
∆ ln PG

jgt

]
) for Chile from

2008-14, where the analogous results for the U.S. are reported in the third column of Table 2 in the paper.

This �gure provides some important insights into why it is di�cult to link import behavior to conventional

price measures. If one simply computed the change in the cost of imported goods using a conventional

Jevons Index of the prices of those goods (the �rst term in equation (30) in the paper), one would infer a

substantial increase in the cost of imported goods of around 9.2 percent over this time period (prices are

measured in current price U.S. dollars). However, this positive contribution from higher prices of imported

goods was o�set by a substantial negative contribution from �rm entry (variety). This expansion in �rm

variety reduced the cost of imported goods by around 11.7 percent. By contrast, country-sector and �rm

dispersion fell over this period, which raised the cost of imported goods, and o�set some of the variety

e�ects. As a result, the true increase in aggregate import prices from 2008-14 was only 4.4 percent, less than

half of the value implied by a conventional Jevons Index. In other words, the true measure of aggregate

import prices is strongly a�ected by factors other than movements in average prices.
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Figure A.6.3: Growth of Aggregate Import Prices 2008-14 (Chilean data)
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Note: Decomposition of the growth in the aggregate import price index in Chile from 2008-2014 using equation (30) in the paper;
dispersion corresponds to the dispersion of appeal-adjusted prices.

We next show that this point applies not only to aggregate import prices but also to changes in the

exporter price indexes ∆ ln PE
jigt that summarize the cost of sourcing goods across countries and sectors.

Figure A.6.4 displays the same information as in Figure A.6.2, but for log changes from 2008-2014 rather

than for log levels in 2014 (where the corresponding results using the U.S. data are in Figures 1 and 2

respectively in the paper). Whereas we show bin scatters using the U.S. data in the paper, we again show

the observations for each exporting country and sector using our Chilean data in this Online Appendix. In

changes, the correlation between average prices and the true model-based measure of the cost of sourcing

goods is even weaker and the role for appeal is even greater. Indeed, the slope for the regression of average

log changes in appeal on average log changes in prices is almost one, indicating that most price changes

are almost completely o�set by appeal changes. As in the U.S. data, this result highlights the challenge

of rationalizing the observed price and expenditure share data using price indexes such as the Sato-Vartia

price index that assume no changes in appeal.
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Figure A.6.4: Log Changes in Sector-Exporter Price Indexes and their Components Versus Average Log
Changes in Product Prices, 2008-2014 (Chilean data)
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Note: Log changes in the exporter-sector price index and its components for Chilean imports from 2008-2014 based on equation
(22) in the paper; dispersion corresponds to the dispersion of appeal-adjusted prices; Blue dots show exporter-sector observations;
Red line shows the linear regression relationship between the variables.

A.6.3 Trade Patterns

The similarity of our �ndings for exporter price indexes for Chile and the U.S. suggests that we should

also �nd similar results for patterns of trade, because revealed comparative advantage (RCA) depends on

relative price indexes. In this section of the Online Appendix, we con�rm that this is indeed the case.

In Table A.4, we present the decompositions of RCA from equation (34) in Section 5.3 of the paper, but

using our Chilean data instead of our U.S. data (see Table 3 in the paper for the U.S. results). In Columns

(1)-(2), we report results for levels of RCA. In Columns (3) and (4), we present the corresponding results

for changes in RCA. While Columns (1) and (3) undertake these decompositions down to the �rm level,

Columns (2) and (4) undertake them all the way down to the product-level. For brevity, we concentrate on

the results of the full decomposition in Columns (2) and (4). We �nd that average prices make a relatively

small contribution to explaining patterns of trade. In the cross-section, average product prices account for
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12.6 percent of the variation in RCA. In comparison, in the time-series, we �nd an even smaller contri-

bution of 9 percent. These results re�ect the low correlations between average prices and exporter price

indexes seen in the last section. If average prices are weakly correlated with exporter price indexes, they

are unlikely to matter much for RCA, because RCA is determined by relative exporter price indexes. By

contrast, we �nd that average appeal is two to three times more important than average prices, with a

contribution of 23 percent for the levels of RCA and 36 percent for the changes in RCA. When we repeat

this exercise using the Grömping (2007) decomposition in Table A.5, we obtain qualitatively similar results.

Table A.4: Variance Decomposition Chilean RCA

Log Level RCA 2014 Log Change RCA 2008-14
Firm-Level Product-Level Firm-Level Product-Level

Decomposition Decomposition Decomposition Decomposition
Firm Price Index 0.126 - 0.091 -
Firm Appeal 0.233 0.233 0.356 0.356
Firm Variety 0.344 0.344 0.464 0.464
Firm Dispersion 0.297 0.297 0.089 0.089
Product Prices - 0.107 - 0.060
Product Variety - 0.013 - 0.030
Product Dispersion - 0.010 - 0.002

Note: Variance decomposition for the log level of RCA in 2014 and the log change in RCA from 2008-14 (from equation (34) in
the paper).

Table A.5: Variance Decomposition Chilean RCA (Grömping 2007)

Log Level RCA 2014 Log Change RCA 2008-14
Firm-Level Product-Level Firm-Level Product-Level

Decomposition Decomposition Decomposition Decomposition
Firm Price Index 0.142 - 0.170 -
Firm Appeal 0.191 0.170 0.328 0.306
Firm Variety 0.383 0.371 0.398 0.403
Firm Dispersion 0.284 0.282 0.104 0.105
Product Prices - 0.120 - 0.149
Product Variety - 0.029 - 0.034
Product Dispersion - 0.029 - 0.003

Note: Relative importance decomposition for the log level of RCA in 2011 and the log change in RCA from 1998-2011 (from
Grömping 2007).

By far the most important of the di�erent mechanisms for trade in Table A.4 is �rm variety, which

accounts for 34 and 46 percent of the level and change of RCA respectively. These �ndings for �rm variety

are consistent with research that emphasizes the role of the extensive margin in understanding patterns of

trade, including Hummels and Klenow (2005), Chaney (2008) and Kehoe and Ruhl (2013). But we also �nd
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a notable contribution from the dispersion of appeal-adjusted prices across �rms, which accounts for 30

percent of the variation in RCA in the cross-section and 9 percent of this variation over time. These results

are consistent with a substantial role for producer heterogeneity, as emphasized in the large literature on

heterogeneous �rms following Melitz (2003), as reviewed in Bernard, Jensen, Redding and Schott (2007)

and Melitz and Redding (2014).

As with the U.S. data, we �nd that switching to the choice of elasticity estimation and method of

variance decomposition when using Chilean data has little qualitative impact on the results. For example,

the importance of prices, appeal, variety, and dispersion in the decomposition for RCA levels are 0.13, 0.23,

0.34, and 0.30, respectively, when using our methodology to estimate the elasticities (see the �rst column

of Table A.4), and 0.06, 0.30, 0.34, and 0.30 when using the HRW methodology (see the �rst column of Table

A.6). When we use both the HRW estimated elasticities and the Grömping (2007) variance decomposition,

we �nd contributions of 0.13, 0.20, 0.38, and 0.29, respectively (see the �rst column of Table A.7). In our

decomposition for RCA changes, we again �nd similar contributions of prices, appeal, and variety, whether

we use the RW or the HRW estimated elasticities, and regardless of which of the two methods of variance

decomposition we use (see the �nal two columns of Tables A.4, A.6 and A.7).

Table A.6: Variance Decomposition Chilean RCA, HRW Sigmas

Log Level RCA 2014 Log Change RCA 2008-14
Firm-Level Product-Level Firm-Level Product-Level

Decomposition Decomposition Decomposition Decomposition
Firm Price Index 0.064 - 0.053 -
Firm Appeal 0.295 0.295 0.391 0.391
Firm Variety 0.344 0.344 0.467 0.467
Firm Dispersion 0.298 0.298 0.089 0.089
Product Prices - 0.051 - 0.032
Product Variety - 0.009 - 0.019
Product Dispersion - 0.007 - 0.002

Note: Variance decomposition for the log level of RCA in 2014 and the log change in RCA from 2008-14 (from equation (34) in
the paper), using the HRW elasticities.
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Table A.7: Variance Decomposition Chilean RCA, HRW Sigmas (Grömping 2007)

Log Level RCA 2014 Log Change RCA 2008-14
Firm-Level Product-Level Firm-Level Product-Level

Decomposition Decomposition Decomposition Decomposition
Firm Price Index 0.132 - 0.201 -
Firm Appeal 0.199 0.175 0.307 0.288
Firm Variety 0.383 0.371 0.390 0.395
Firm Dispersion 0.286 0.283 0.102 0.103
Product Prices - 0.117 - 0.190
Product Variety - 0.031 - 0.021
Product Dispersion - 0.022 - 0.002

Note: Relative importance decomposition for the log level of RCA in 2011 and the log change in RCA from 1998-2011 (from
Grömping 2007), using the HRW elasticities.

We now show that the non-conventional forces of variety, average appeal and the dispersion of appeal-

adjusted prices are also important for understanding movements in aggregate Chilean imports from its

largest trade partners, consistent with our U.S. results in Section 5.3 of the paper. In Figure A.6.5, we show

the time-series decompositions of aggregate import shares from equation (28) in the paper for Chile’s

top-six trade partners. As apparent from the �gure, we can account for the substantial increase in China’s

market share over the sample period by focusing mostly on increases in �rm variety (orange), average �rm

appeal (gray), and the dispersion of appeal-adjusted prices across �rms (light blue).4 In contrast, average

product prices (green) increased more rapidly for China than for the other countries in our sample, which

worked in the opposite direction to reduce China’s market share. In other words, our decomposition indi-

cates that the reason for the explosive growth of Chinese exports was not due to cheaper Chinese exports,

but rather substantial �rm entry (variety), appeal upgrading, and improvements in the performance of

leading �rms relative to lagging �rms (the dispersion of appeal-adjusted prices). By contrast the dramatic

falls in import shares from Argentina and Brazil were driven by a con�uence of factors that all pushed in

the same direction: higher average product prices, �rm exit (variety), a deterioration in the performance

of leading �rms relative to lagging �rms (the dispersion of appeal-adjusted prices), and falls in average

appeal relative to other countries.
4Our �nding of an important role for �rm entry for China is consistent with the results for export prices in Amiti, Dai,

Feenstra, and Romalis (2020). However, their price index is based on the Sato-Vartia formula, which abstracts from changes in
appeal for surviving varieties, and they focus on Chinese export prices rather than trade patterns.
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Figure A.6.5: Country Aggregate Shares of Chilean Imports
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Note: Decomposition of exporting countries shares of total Chilean imports from equation (28) in the paper; dispersion corre-
sponds to the dispersion of appeal-adjusted prices.

A.6.4 Additional Theoretical Restrictions

We now compare our approach, which exactly rationalizes both micro and macro trade data, with special

cases of this approach that impose additional theoretical restrictions. We show that we �nd a similar

pattern of results using the Chilean data as using the U.S. data in Section 5.4 of the paper. As a result

of imposing additional theoretical restrictions, these special cases no longer exactly rationalize the micro

trade data, and we quantify the implications of these departures from the micro data for macro trade

patterns and prices.

NoChanges in Appeal Almost all existing theoretical research with CES demand in international trade

is encompassed by the Sato-Vartia price index, which assumes no shifts in appeal for common varieties.

Duality suggests that there are two ways to assess the importance of this assumption. First, we can work

with a price index and examine how a CES price index that allows for appeal shifts (i.e., the UPI in equation

(20) in the paper) di�ers from a CES price index that does not allow for appeal shifts (i.e., the Sato-Vartia

index). Since the common goods component of the UPI (CG-UPI) and the Sato-Vartia indexes are identical

in the absence of appeal shifts, the di�erence between the two is a metric for how important appeal shifts

are empirically. Second, we can substitute each of these price indexes into our expression for revealed
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comparative advantage (RCA) in equation (25) in the paper, and examine how important the assumption of

no appeal shifts is for understanding patterns of trade. Because we know that the UPI perfectly rationalizes

the data, any deviation from the data arising by using a di�erent price index must re�ect the e�ect of the

restrictive assumptions used in the index’s derivation. In order to make the comparison fair, we need to also

adjust the Sato-Vartia index for variety changes, which we do by using the Feenstra (1994) index, which is

based on the same no-appeal-shifts assumption for common goods, but adds the variety correction term

given in equation (20) in the paper to incorporate entry and exit.

In Figure A.6.6, we report the results of these comparisons using our Chilean data, which corresponds

to Figure 4 in the paper using our U.S. data. The top two panels consider exporter price indexes, while the

bottom two panels examine RCA. In the top-left panel, we compare the Sato-Vartia exporter price index (on

the vertical axis) with our common goods exporter price index (the CG-UPI on the horizontal axis), where

each observation is an exporter-sector pair. If the assumption of time-invariant appeal were satis�ed in

the data, these two indexes would be perfectly correlated with one another and aligned on the 45-degree

line. Again, we �nd little relationship between them. The reason is immediately apparent if one recalls

the top-right panel of Figure A.6.4, which shows that price shifts are strongly positively correlated with

appeal shifts. The Sato-Vartia price index fails to take into account that higher prices are typically o�set by

higher appeal. In the top-right panel, we compare the Feenstra exporter price index (on the vertical axis)

with our overall exporter price index (the UPI on the horizontal axis), where each observation is again

an exporter-sector pair. These two price indexes have exactly the same variety correction term, but use

di�erent common goods price indexes (the CG-UPI and Sato-Vartia indexes respectively). The importance

of the variety correction term as a share of the overall exporter price index accounts for the improvement

in the �t of the relationship. However, the slope of the regression line is only around 0.5, and the regression

R2 is about 0.1. Therefore, the assumption of no shifts in appeal for existing goods results in substantial

deviations between the true and measured costs of sourcing goods from an exporter and sector.
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Figure A.6.6: Sector-exporter Price Indexes with Time-Invariant Appeal (Vertical Axis) Versus Time-
Varying Appeal (Horizontal Axis) for Chile
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In the bottom left panel, we compare predicted changes in RCA based on relative exporter Sato-Vartia

price indexes (on the vertical axis) with actual changes in RCA (on the horizontal axis). As the Sato-Vartia

price index has only a weak correlation with the UPI, we �nd that it has little predictive power for changes

in RCA, which are equal to relative changes in the UPI across exporters and sectors. Hence, observed

changes in trade patterns are almost uncorrelated with the changes predicted under the assumption of

no shifts in appeal and no entry and exit of �rms and products. In the bottom right panel, we compare

predicted changes in RCA based on relative exporter Feenstra price indexes (on the vertical axis) with

actual changes in RCA (on the horizontal axis). The improvement in the �t of the relationship attests to

the importance of adjusting for entry and exit. However, again the slope of the regression line is only

around 0.5 and the regression R2 is about 0.1. Therefore, even after adjusting for the shared entry and exit

term, the assumption of no appeal shifts for existing goods can generate predictions for changes in trade

patterns that diverge substantially from those observed in the data.
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Additional Functional Form Restrictions We now examine the implications of imposing additional

theoretical restrictions on these cross-sectional distributions. In particular, an important class of existing

trade theories assumes not only a constant demand-side elasticity but also a constant supply-side elasticity,

as re�ected in the assumption of Fréchet or Pareto productivity distributions. As our approach uses only

demand-side assumptions, we can examine the extent to which these additional supply-side restrictions are

satis�ed in the data. In particular, we compare the observed data for �rm sales and our model solutions for

the �rm price index and �rm appeal (ln VF
f t ∈

{
ln XF

f t, ln PF
f t, ln ϕF

f t

}
) with their theoretical predictions

under alternative supply-side distributional assumptions.

To derive these theoretical predictions, we use the QQ estimator. The QQ estimator compares the

empirical quantiles in the data with the theoretical quantiles implied by alternative distributional assump-

tions. As shown in Section A.5.5 of this Online Appendix, under the assumption that a �rm variable VF
f t

has a Pareto distribution, we obtain the following theoretical prediction for the quantile of the logarithm

of that variable:

ln
(

VF
f t

)
= ln VF

jigt −
1

aV
g

ln
[
1−Fjigt

(
VF

f t

)]
. (A.6.1)

where Fjigt (·) is the cumulative distribution function; ln VF
jigt is the lower limit of the support of the

Pareto distribution, which is a constant across �rms f for a given importer j, exporter i, sector g and year

t; aV
g is the shape parameter of this distribution, which we allow to vary across sectors g.

We estimate equation (A.6.1) by OLS using the empirical quantile for ln
(

VF
f t

)
on the left-hand side

and the empirical estimate of the cumulative distribution function for Fjigt

(
VF

f t

)
on the right-hand side.

We estimate this regression for each sector across foreign �rms (allowing the slope coe�cient aV
g to vary

across sectors) and including �xed e�ects for each exporter-sector-year combination (allowing the inter-

cept ln VF
jigt to vary across exporters, sectors and time). The �tted values from this regression correspond

to the predicted theoretical quantiles, which we compare to the empirical quantiles observed in the data.

Under the null hypothesis of a Pareto distribution, there should be a linear relationship between the the-

oretical and empirical quantiles that coincides with the 45-degree line.

In Figure A.6.7, we show the predicted theoretical quantiles (vertical axis) against the empirical quan-

tiles (horizontal axis) using our Chilean data. We display results for log �rm imports (top left), log �rm

price indexes (top right) and log �rm appeal (bottom left). In each case, we observe sharp departures from

the linear relationship implied by a Pareto distribution, with the actual values below the predicted values

in both the lower and upper tails. Following the same approach as in Section 5.4 of the paper, we estimate

the regression in equation (A.6.1) separately for observations below and above the median, and compare

the estimated coe�cients. Consistent with the U.S. results in Figure A.5.4 of this Online Appendix, we �nd

substantial departures from linearity using the Chilean data, which are statistically signi�cant at conven-

tional levels.
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Figure A.6.7: Theoretical and Empirical Quantiles for Chile (Pareto Distribution)

Note: Relationships between theoretical quantiles predicted by a Pareto distribution and empirical quantiles for log �rm imports,
the log �rm price index and log �rm appeal.

As a point of comparison, we also examine the alternative distributional assumption of a log normal

distribution. As shown in Section A.5.5 of this Online Appendix, under this distributional assumption, we

obtain the following theoretical prediction for the quantile of the logarithm of a variable VF
f t:

ln
(

VF
f t

)
= κV

jigt + χV
g Φ−1

(
Fjigt

(
VF

f t

))
. (A.6.2)

where Φ−1 (·) is the inverse of the normal cumulative distribution function; κV
jigt and χV

g are the mean

and standard deviation of the log variable, such that ln
(

VF
f t

)
∼ N

(
κV

jigt,
(

χV
g

)2
)

; we make analogous

assumptions about these parameters as for the Pareto distribution above; we allow the parameter control-

ling the mean (κV
jigt) to vary across exporters i, sectors g and time t for a given importer j; we allow the

parameter controlling dispersion (χV
g ) to vary across sectors g.

Again we estimate equation (A.6.2) by OLS using the empirical quantile for ln
(

VF
f t

)
on the left-hand

side and the empirical estimate of the cumulative distribution function for Fjigt

(
VF

f t

)
on the right-hand

side. We estimate this regression for each sector across foreign �rms (allowing the slope coe�cient χV
g to

vary across sectors) and including �xed e�ects for each exporter-sector-year combination (allowing the

intercept κV
jigt to vary across exporters, sectors and time).

In Figure A.6.8, we show the predicted log normal theoretical quantiles (vertical axis) against the em-

pirical quantiles (horizontal axis) using our Chilean data. Again we display results for log �rm imports (top

left), log �rm price indexes (top right) and log �rm appeal (bottom left). In each case, we �nd that the rela-
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tionship between the theoretical and empirical quantiles is closer to linearity for a log-normal distribution

than for a Pareto distribution, which is consistent with Bas, Mayer and Thoenig (2017) and Fernandes et

al. (2021). Nonetheless, we observe substantial departures from the theoretical predictions of a log-normal

distribution, and we reject the null hypothesis of normality at conventional levels of signi�cance for the

majority of sectors using a Shapiro-Wilk test. Following the same approach as in Section 5.4 of the pa-

per, we also estimate the regression in equation (A.6.2) separately for observations below and above the

median, and compare the estimated coe�cients. Consistent with the U.S. results in Figure A.5.4 of this

Online Appendix, we again �nd substantial departures from linearity using the Chilean data, which are

statistically signi�cant for the majority of sectors at conventional levels.

Figure A.6.8: Theoretical and Empirical Quantiles for Chile (Log Normal Distribution)

Note: Relationships between theoretical quantiles predicted by a log normal distribution and empirical quantiles for log �rm
imports, the log �rm price index and log �rm appeal.

A.6.5 Additional Reduced-Form Evidence

In Figures A.6.9-A.6.12, we con�rm that our Chilean trade transaction data have the same reduced-form

properties as our U.S. data and as found in other empirical studies using international trade transactions

data (see for example Bernard, Jensen and Schott 2009 and Bernard, Jensen, Redding and Schott 2009 for

the U.S.; Mayer, Melitz and Ottaviano 2014 for France; and Manova and Zhang 2012 for China).

First, Chilean imports are highly concentrated across countries and characterized by a growing role

of China over time. As shown in Figure A.6.9, Chile’s six largest import sources in 2007 were (in order of

size) China, the U.S., Brazil, Germany, Mexico, and Argentina, which together accounted for more than

60 percent of its imports. Between 2007 and 2014, China’s import share grew by over 50 percent, with all
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other major suppliers except Germany experiencing substantial declines in their market shares.

Second, we �nd high rates of product and �rm turnover and evidence of selection conditional on

product and �rm survival. In Figure A.6.10, we display the fraction of �rm-product observations and

import value by tenure (measured in years) for 2014, where recall that �rms here correspond to foreign

exporting �rms. Around 50 percent of the �rm-product observations in 2014 have been present for one

year or less, but the just over 10 percent of these observations that have survived for at least seven years

account for over 40 percent of import value.

Third, we �nd that international trade is dominated by multi-product �rms. In Figure A.6.11, we display

the fraction of �rm observations and import value in 2014 accounted for by �rms exporting di�erent

numbers of products. Although less than 30 percent of exporting �rms are multi-product, they account

for more than 70 percent of import value.

Fourth, we �nd that the extensive margins of �rm and product exporting account for most of the

cross-section variation in aggregate trade. In Figure A.6.12, we display the log of the total value of Chilean

imports from each foreign country, the log number of �rm-product observations with positive trade for

that country, and the log of average imports per �rm-product observation with positive trade from that

country. We display these three variables against the rank of countries in Chile’s total import value, with

the largest country assigned a rank of one (China). By construction, total import value falls as we consider

countries with higher and higher ranks. Substantively, most of this decline in total imports is accounted

for by the extensive margin of the number of �rm-product observations with positive trade, whereas the

intensive margin of average imports per �rm-product observation with positive trade remains relatively

�at.

Therefore, across these and a range of other empirical moments, the Chilean data are representative

of empirical �ndings using international trade transactions data for a number of other countries.
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Figure A.6.9: Country Shares of Chilean Imports over Time
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Figure A.6.10: Distribution Firm-Product Observations and Import Value by Tenure 2014 (Chilean Data)
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Figure A.6.11: Distribution of Firm Observations Across Number of Products 2014 (Chilean Data)
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Figure A.6.12: Extensive and Intensive Margins of Firm-Product Imports Across Countries 2014 (Chilean
Data)
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A.7 Unobserved Di�erences in Product Composition

In this section of the Online Appendix, we show that our approach allows for unobserved di�erences in

composition within observed product categories, which enter the model in the same way as unobserved

di�erences in appeal for each observed product category. In the paper, we assume for simplicity that

the products supplied by �rms are the same as those observed in the data, which enables us to abstract

from these unobserved di�erences in product composition. We now generalize our results to the case in

which �rms supply products at a more disaggregated level (e.g. unobserved barcodes) than the categories

observed in the data (Harmonized System (HS) categories).

A.7.1 True Data Generating Process

We suppose that the true data generating process is as follows. At the aggregate level, we have sectors (g);

below sectors we have �rms ( f ); below �rms we have products (u); and below products we have barcodes

(b). Aggregate utility and the consumption index for each sector remain unchanged. The consumption

index for each �rm (C f t) is de�ned over an unobserved consumption index for each product (CU
ut):

CF
f t =

 ∑
u∈ΩU

f t

(
ϕU

utC
U
ut

) σU
g −1

σU
g


σU

g
σU

g −1

, σU
g > 1, ϕU

ut > 0, (A.7.1)

where σU
g is the elasticity of substitution across products within the �rm; ϕU

ut is the appeal for each product;

and ΩU
f t is the set of products supplied by �rm f at time t. Each product consumption index (CU

ut) is de�ned

over the unobserved consumption of each barcode (CB
bt):

CU
ut =

 ∑
b∈ΩB

ut

(
ϕB

btC
B
bt

) σB
g −1

σB
g


σB

g
σB

g −1

, σB
g > 1, ϕB

bt > 0. (A.7.2)

Similarly, the dual price index for each �rm (PF
f t) is de�ned over an unobserved dual price index for each

product (PU
ut):

PF
f t =

 ∑
u∈ΩU

f t

(
PU

ut

ϕU
ut

)1−σU
g

 1
1−σU

g

, (A.7.3)

and this unobserved dual price index for each product (PU
ut) is de�ned over the unobserved price of each

barcode (PB
bt):

PU
ut =

 ∑
b∈ΩB

ut

(
PB

bt

ϕB
bt

)1−σB
g


1
1−σB

g

. (A.7.4)
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A.7.2 Observed Data

Suppose that in the data we observe the total value of sales of each product (EU
ut), which corresponds to

the sum of the sales of all the unobserved barcodes (EU
ut = ∑b∈ΩB

ut
EB

bt):

EU
ut = PU

utC
U
ut = ∑

b∈ΩB
ut

EB
bt = ∑

b∈ΩB
ut

PB
btC

B
bt. (A.7.5)

We also observe the total physical quantity of each product (QU
ut), which corresponds to the sum of the

physical quantities of all barcodes (QU
ut = ∑b∈ΩB

ut
CB

bt). Dividing sales by quantities for each product,

we can compute a unit value for each product (PU
ut = EU

ut/QU
ut). Note that observed expenditure on

each product equals both (i) observed physical quantities times observed unit values and (ii) unobserved

consumption indexes times unobserved price indexes:

PU
utC

U
ut = PU

utQU
ut = EU

ut, (A.7.6)

which implies that the ratio of observed unit values to unobserved price indexes is the inverse of the ratio

of observed physical quantities to unobserved consumption indexes:

PU
ut

PU
ut

=
1

QU
ut/CU

ut
. (A.7.7)

A.7.3 Relationship Between Observed and Unobserved Variables

We now use these relationships to connect the observed physical quantities and unit values (QU
ut, PU

ut)

to the true unobserved consumption and price indexes (CF
f t, PF

f t). The �rm consumption index (CF
f t) can

be re-written in terms of the observed physical quantities of each product (QU
ut) and a quality-adjustment

parameter (θU
ut) that captures the appeal of each product (ϕU

ut) and the discrepancy between the observed

quantity of each product (QU
ut) and the unobserved product consumption index (CU

ut):

CF
f t =

 ∑
u∈ΩU

f t

(
θU

utQU
ut

) σU
g −1

σU
g


σU

g
σU

g −1

, (A.7.8)

where the appeal-adjustment parameter is de�ned as:

θU
ut ≡ ϕU

ut
CU

ut

QU
ut

. (A.7.9)

Combining this de�nition in equation (A.7.9) with the relationship between observed and unobserved

variables in equation (A.7.7), the �rm price index (PF
f t) also can be re-written in terms of the observed unit

values for each product (PU
ut) and this same appeal-adjustment parameter (θU

ut):

PF
f t =

 ∑
u∈ΩU

f t

(
PU

ut

θU
ut

)1−σU
g

 1
1−σU

g

. (A.7.10)
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Note that equations (A.7.8) and (A.7.10) are identical to equations (A.7.1) and (A.7.3), except that the un-

observed consumption and price indexes (CF
f t, PF

f t) in equations (A.7.1) and (A.7.3) are replaced by the

observed quantities and unit values (QU
ut, PU

ut), and the unobserved appeal parameters (ϕU
ut) are replaced

by the appeal-adjustment parameter (θU
ut). Therefore, we can implement our entire analysis using the ob-

served quantities and unit values (QU
ut, PU

ut) and the appeal-adjustment parameter (θU
ut). We cannot break

out this appeal-adjustment parameter (θU
ut) into the separate contributions of true product appeal (ϕU

ut) and

the discrepancy between the true consumption index and observed physical quantities (CU
ut/QU

ut). But we

can use our estimation procedure to estimate the elasticity of substitution across products (σU
g ), recover

the appeal-adjustment parameter for each product (θU
ut), recover the true �rm consumption and price in-

dexes (CF
f t, PF

f t), estimate the elasticity of substitution across �rms (σF
g ), and implement the remainder of

our analysis.
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