The Economics of Spatial Mobility: Theory and Evidence Using Smartphone Data

Yuhei Miyauchi
Boston University

Kentaro Nakajima
Hitotsubashi University

Stephen J. Redding
Princeton University, NBER, CEPR

April 2022

1 "Konzatsu-Tokei (R)" Data refers to people flow data constructed from individual location information sent from mobile phones under users’ consent, through applications provided by NTT DOCOMO, INC (including mapping application Docomo Chizu NAVI). Those data is processed collectively and statistically in order to conceal private information. Original location data is GPS data (latitude, longitude) sent every five minutes, and it and does not include information to specify individual. The copyrights of all tables and figures presented in this document belong to ZENRIN DataCom CO., LTD.
Motivation

- Each day, millions of trips occur within urban areas
 - Commuting trips
 - Non-commuting trips
 - Occur as a part of a trip chain (e.g., a coffee shop on the way to work, shopping expedition)

- Trip chains induce consumption externality across space
 - Large employment or commercial districts attract consumer foot traffic
 - Relevant for firm location decisions and internal structure of the city
 - Decline of nontradable service demand in downtown during Covid-19 pandemic

- Challenges for analyzing spatial mobility
 - Lack of data
 - Lack of theoretical/empirical approach to handle high-dimensionality of travel decisions
This Paper

- Documents patterns of commuting and non-commuting trips using new smartphone data for Japan
 - Tracks GPS location every 5 minutes (minimum) from a mapping application
 - Shows that non-commuting trips are frequent, related to nontradable service availability, occur within a trip chain, and decline during the Covid-19 pandemic
This Paper

- Documents patterns of commuting and non-commuting trips using new smartphone data for Japan
 - Tracks GPS location every 5 minutes (minimum) from a mapping application
 - Shows that non-commuting trips are frequent, related to nontradable service availability, occur within a trip chain, and decline during the Covid-19 pandemic

- Develops a quantitative theoretical model of travel itinerary decision
 - Agents decide the set and sequence of destinations for consumption during a day
 - Embeds this decision to a canonical quantitative general equilibrium urban model featuring commuting
 - Develops importance sampling method for estimation / simulation to overcome high-dimensionality

Shows that trip chains and consumption externality are crucial for:

- Explaining the decline of nontradable service demand in downtown during Covid-19 pandemic
- Welfare assessment of public transportation infrastructure
This Paper

Documents patterns of commuting and non-commuting trips using new smartphone data for Japan

- Tracks GPS location every 5 minutes (minimum) from a mapping application
- Shows that non-commuting trips are frequent, related to nontradable service availability, occur within a trip chain, and decline during the Covid-19 pandemic

Develops a quantitative theoretical model of travel itinerary decision

- Agents decide the set and sequence of destinations for consumption during a day
- Embeds this decision to a canonical quantitative general equilibrium urban model featuring commuting
- Develops importance sampling method for estimation / simulation to overcome high-dimensionality

Shows that trip chains and consumption externality are crucial for:

- explaining the decline of nontradable service demand in downtown during Covid-19 pandemic
- welfare assessment of public transportation infrastructure
Related Literature

- **Trip chains and shopping externality**: Eaton-Lipsey ’82, Fujita-Thisse ’96, Ushchev-Sloev-Thisse ’15; Shoag-Veuger ’18, Relihan ’22, Koster-Pasidis-van-Ommeren ’19

- **Using cell phone or smartphone data to capture spatial urban mobility**: Athey-Ferguson-Gentzkow-Schmidt ’21, Couture-Dingel-Green-Handbury ’21, Kreindler-Miyauchi ’22, Gupta-Kontokosta-Van-Nieuwerburgh ’22

- **High-dimensional discrete choice models**: Kloek-van-Dijk ’78, Ackerberg ’09 (for importance sampling); Jia ’08, Antras-Fort-Tintelnot ’14, Thomassen-Smith-Seiler-Schiraldi ’17, Arkolakis-Eckert-Shi ’21, Allen-Arkolakis ’21

Outline

1. Data
2. Patterns of Spatial Mobility
3. Travel Itinerary Decisions
4. Quantitative Urban Model
5. Covid-19 Pandemic
6. Transportation Infrastructure
7. Conclusion
Smartphone GPS Data from Japan

- Tracks anonymised GPS location every 5 minutes (minimum) whenever phone is on
 - From one of the most popular map app in Japan (Docomo Chizu NAVI)
 - Each month $\approx 545,000$ users ($\approx 0.5\%$ population) and $\approx 1,497,000,000$ GPS points
Smartphone GPS Data from Japan

- Tracks anonymised GPS location every 5 minutes (minimum) whenever phone is on
 - From one of the most popular map app in Japan (*Docomo Chizu NAVI*)
 - Each month ≈ 545,000 users (≈ 0.5% population) and ≈ 1,497,000,000 GPS points

- NTT Docomo Inc. pre-processes original GPS data points
 - **Stay**: no movement ≤ 100 meters for ≥ 15 minutes
 - **Home** location: most frequent location (defined by the groups of geographically contiguous stays) in terms of number of stays each month
 - **Work** location: second most frequent location, ≥ 600 meters from home
 - Work location is not assigned for users with “unreliable” work location (e.g., if the user does not appear in work location ≥ 5 days; ≈ 30% of users)
 - **Other** location: all other stays that are neither home nor work location
Smartphone GPS Data from Japan

- Tracks anonymised GPS location every 5 minutes (minimum) whenever phone is on
 - From one of the most popular map app in Japan (*Docomo Chizu NAVI*)
 - Each month $\approx 545,000$ users ($\approx 0.5\%$ population) and $\approx 1,497,000,000$ GPS points

- NTT Docomo Inc. pre-processes original GPS data points
 - **Stay**: no movement ≤ 100 meters for ≥ 15 minutes
 - **Home** location: most frequent location (defined by the groups of geographically contiguous stays) in terms of number of stays each month
 - **Work** location: second most frequent location, ≥ 600 meters from home
 - Work location is not assigned for users with “unreliable” work location (e.g., if the user does not appear in work location ≥ 5 days; $\approx 30\%$ of users)
 - **Other** location: all other stays that are neither home nor work location

- We mostly focus on user-days in April 2019 whose:
 - first and last stays of the day is at home (to avoid overnight travelers)
 - whose workplace is assigned
 - and whose home and work is within Tokyo metropolitan area
Example of Stays (around Meiji Shrine)

- Each grid is about 20 meter by 20 meter
- Measure location at a fine level of spatial disaggregation
- Track the movement of users through the park to the shrine
Work and non-work stays display expected patterns on weekdays v. weekends
Validation of Home and Workplace Population Density

(A) Residential Location

Each dot: municipality in greater Tokyo metropolitan area

Approximate log-linear relationships between smartphone and census measures of residence and workplace employment probabilities

y = 0.923x – 2.458
(0.011) (0.013)
R² = 0.968

(B) Employment Location

y = 0.996x – 2.021
(0.008) (0.009)
R² = 0.985
Outline

1. Data
2. Patterns of Spatial Mobility
3. Travel Itinerary Decisions
4. Quantitative Urban Model
5. Covid-19 Pandemic
6. Transportation Infrastructure
7. Conclusion
Patterns of Spatial Mobility

Document the patterns of non-commuting and commuting trips:

1. Non-commuting trips are frequent
2. Non-commuting trips are related to availability of non-tradable services
3. Non-commuting trips are closer to home on average than commuting trips
4. Non-commuting trips occur as a part of trip chains
5. Non-commuting and commuting trips are affected by the Covid-19 pandemic
1) Non-commuting trips are frequent

- Weekdays:
 - Other: 1.6
 - Work: 1.14

- Weekends:
 - Other: 1.93
 - Work: 0.47
2) Non-commuting trips are related to availability of non-tradable services

Horizontal axis: number of establishments for nontradable services by nontradable sector
3) Non-commuting trips are closer to home than commuting trips

Median (Work): 9.04
Median (Other, weekdays): 7.34
Median (Other, weekends): 6.04
4) Non-commuting trips occur as a part of trip chains

- Trip chains ≡ a sequence of stays starting and ending at home by weekdays and weekends
5) Non-commuting and commuting trips are affected by pandemics

- On March 28, 2020, an “emergency order” has been announced in Tokyo prefecture
- People are “encouraged” to stay at home unless “absolutely necessary”
- Temporarily lifted on May 25, 2020
5) Non-commuting and commuting trips are affected by pandemics

- On March 28, 2020, an “emergency order” has been announced in Tokyo prefecture
- People are “encouraged” to stay at home unless “absolutely necessary”
- Temporarily lifted on May 25, 2020

(A) Number of Stays per Day

(B) Median Distance of Stays from Home
5) Reduction of foot traffic in downtown during pandemic
Travel Itinerary Decisions

- Develop a model of agents’ travel itinerary decisions

- Two steps:
 1. Given residential location, decide workplace and employment sector given wages, commuting cost, and anticipated consumption access
 2. Given residential and employment locations, decide a set and sequence of consumption locations separately for workdays and non-workdays

- Solve the problem backward

- Later: embed this decision into a GE framework with residential location decision
Consumption Travel

- Multiple locations in the city: $N \equiv \{1, \ldots, n\}$
- An agent with home location $h \in N$ and work location $j \in \{N, \emptyset\}$ decide consumption itinerary I
 - $j = \emptyset$ for non-workday or non-employed
 - $I \in \mathcal{I}_{hj}$: a (non-empty) ordered subset of N, must include j
 - $C(I)$: set of destinations excluding workplace j
- In each destination, a bundle of nontradable services is provided at (amenity-adjusted) price index P_n
Consumption Travel

- Multiple locations in the city: \(N \equiv \{1, \ldots, n\} \)

- An agent with home location \(h \in N \) and work location \(j \in \{N, \emptyset\} \) decide consumption itinerary \(I \)
 - \(j = \emptyset \) for non-workday or non-employed
 - \(I \in \mathcal{I}_{hj} \): a (non-empty) ordered subset of \(N \), must include \(j \)
 - \(C(I) \): set of destinations excluding workplace \(j \)

- In each destination, a bundle of nontradable services is provided at (amenity-adjusted) price index \(P_n \)

- Agent \(\omega \) chooses \(I_\omega \) that maximizes the indirect utility:

\[
I_\omega = \max_{I \in \mathcal{I}_{hj}} \left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}}
\tau_{I|hj}^{-1} \epsilon_{I|\omega}
\]

 - \(\sigma \): elasticity of substitution
 - \(\epsilon_{I|\omega} \): idiosyncratic preference shock
 - \(\tau_{I|hj} \): total iceberg travel cost; embrace travel cost saving through trip chains (i.e., \(\tau_{\{1,2\}|hj} < \tau_{\{1\}|hj} \tau_{\{2\}|hj} \))
Consumption Travel Choice Probability

- Assume that $e_{\omega I}$ follows i.i.d. Fréchet distribution with dispersion parameter θ

- The probability that agents choose itinerary I is given by

$$
\Lambda_{I|h_j} = \frac{\left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1}}{\sum_{\ell \in I|h_j} \left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1}}^\theta
$$

- Expected utility from consumption access given home h and workplace j:

$$
A_{hj} = \varrho \left[\sum_{\ell \in I|h_j} \left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{\theta}{1-\sigma}} \left(\tau_{\ell|h_j} \right)^{-\theta} \right]^{-\frac{1}{\theta}}
$$

- Challenge: high-dimensionality of $I_{hj} \Rightarrow$ importance sampling method
Commuting

- Indirect utility with work j and sector $k \in T, S$ (tradable and nontradable) given home h:

\[
U_{jk\omega|h} = w_{jk} \bar{A}_{hj}^{\alpha^S} \left(\tau_{hj}^W \right)^{-1} \bar{e}_{jk\omega|h}^W
\]

- α^S: expenditure share for nontradable services
- w_{jk}: wage; τ_{hj}^W: commuting cost; $\bar{e}_{jk\omega|h}^W$: idiosyncratic preference (Fréchet with dispersion θ)

- Anticipated consumption access:

\[
\bar{A}_{hj} = \xi A_{hj}^S + (1 - \xi) A_{h\emptyset}^S
\]

- ξ: probability of going to work during the day

- Probability of choosing (j, k) given h:

\[
\Omega_{jk|h} = \frac{\left(w_{jk} \bar{A}_{hj}^{\alpha^S} \left(\tau_{hj}^W \right)^{-1} \right)^\phi}{\sum_{j'} \sum_{k' \in \{T, S\}} \left(w_{j'k'} \bar{A}_{hj'}^{\alpha^S} \left(\tau_{hj'}^W \right)^{-1} \right)^\phi}
\]
Simulating Travel Itinerary Choice

Challenge for estimation and simulation: high-dimensionality of denominator of $\Lambda_{I|h_j}$

\[
\Lambda_{I|h_j} = \frac{\left[\left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1} \right]^\theta}{\sum_{\ell \in I_{hj}} \left[\left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1} \right]^\theta}
\]

Solution: importance sampling method (Kloek-Fan-Dijk '78, Ackerberg '09)

1. Draw R itineraries $\{I_r\}$ from auxiliary distribution $F_{hj}(\cdot)$, obtain empirical distribution $E_{I|h_j}$ on $I_{R_{hj}} \subset I_{hj}$

2. Weight each draw by the likelihood ratio between $F_{hj}(I)$ and $\Lambda_{I|h_j}$

\[
\tilde{\Lambda}_{I|h_j} = \frac{E_{I|h_j} \Lambda_{I|h_j}}{F_{hj}(I)}
\]

Any $F_{hj}(\cdot)$ with common support as $\Lambda_{I|h_j}$ ensures $\tilde{\Lambda}_{I|h_j} \rightarrow \Lambda_{I|h_j}$ as $R \rightarrow \infty$; in practice "myopic sequential choice" has good approximation detail finite-sample properties
Simulating Travel Itinerary Choice

- Challenge for estimation and simulation: high-dimensionality of denominator of $\Lambda_{I|h_j}$

\[
\Lambda_{I|h_j} = \frac{\left(\sum_{n \in C(I)} P_{n}^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1}}{\sum_{\ell \in I_{h_j}} \left(\sum_{n \in C(\ell)} P_{n}^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1}} \theta
\]

- Solution: importance sampling method (Kloek-Fan-Dijk ’78, Ackerberg ’09)

- Draw R itineraries $\{I_r\}$ from auxiliary distribution $F_{h_j}(\cdot)$, obtain empirical distribution $E_{I|h_j}$ on $I_{R|h_j} \subset I_{h_j}$

- Weight each draw by the likelihood ratio between $F_{h_j}(I)$ and $\tilde{\Lambda}_{I|h_j} = E_{I|h_j} \Lambda_{I|h_j} / F_{h_j}(I)$

- Any $F_{h_j}(\cdot)$ with common support as $\Lambda_{I|h_j}$ ensures $\tilde{\Lambda}_{I|h_j} \rightarrow \Lambda_{I|h_j}$ as $R \rightarrow \infty$; in practice “myopic sequential choice” has good approximation detail finite-sample properties
Simulating Travel Itinerary Choice

- Challenge for estimation and simulation: high-dimensionality of denominator of $\Lambda_{I|h_j}$

$$\Lambda_{I|h_j} = \frac{\left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1}} {\sum_{\ell \in \mathcal{I}_{h_j}} \left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1}}$$

- Solution: importance sampling method (Kloek-Fan-Dijk ’78, Ackerberg ’09)
 1. Draw R itineraries $\{I_r\}$ from auxiliary distribution $F_{h_j}(\cdot)$, obtain empirical distribution $\mathcal{E}_{I|h_j}$ on $\mathcal{I}_{h_j}^R \subset \mathcal{I}_{h_j}$
 2. Weight each draw by the likelihood ratio between $F_{h_j}(I)$ and $\Lambda_{I|h_j}$
Simulating Travel Itinerary Choice

- Challenge for estimation and simulation: high-dimensionality of denominator of $\Lambda_{I|h_j}$

$$\Lambda_{I|h_j} = \frac{\left[\left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1} \right]^{\theta}}{\sum_{\ell \in \mathcal{I}_{h_j}} \left[\left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1} \right]^{\theta}}$$

- Solution: importance sampling method (Kloek-Fan-Dijk ’78, Ackerberg ’09)

1. Draw R itineraries $\{I_r\}$ from auxiliary distribution $F_{h_j}(\cdot)$, obtain empirical distribution $\mathcal{E}_{I|h_j}$ on $\mathcal{I}_{h_j}^R \subset \mathcal{I}_{h_j}$
2. Weight each draw by the likelihood ratio between $F_{h_j}(I)$ and $\Lambda_{I|h_j}$

$$\tilde{\Lambda}_{I|h_j} = \frac{\mathcal{E}_{I|h_j} \Lambda_{I|h_j} / F_{h_j}(I)}{\sum_{\ell \in \mathcal{I}_{h_j}^R} \mathcal{E}_{\ell|h_j} \Lambda_{\ell|h_j} / F_{h_j}(\ell)} = \frac{\mathcal{E}_{I|h_j} \left[\left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1} \right]^{\theta} / F_{h_j}(I)}{\sum_{\ell \in \mathcal{I}_{h_j}^R} \mathcal{E}_{\ell|h_j} \left[\left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1} \right]^{\theta} / F_{h_j}(\ell)}$$
Simulating Travel Itinerary Choice

- Challenge for estimation and simulation: high-dimensionality of denominator of $\Lambda_{I|h_j}$

$$\Lambda_{I|h_j} = \frac{\left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1}}{\sum_{\ell \in I_hj} \left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1}} \theta$$

- Solution: importance sampling method (Kloek-Fan-Dijk ’78, Ackerberg ’09)

1. Draw R itineraries $\{I_r\}$ from auxiliary distribution $F_{hj}(\cdot)$, obtain empirical distribution $E_{I|h_j}$ on $\mathcal{T}_R \subset \mathcal{T}_{hj}$

2. Weight each draw by the likelihood ratio between $F_{hj}(I)$ and $\Lambda_{I|h_j}$

$$\tilde{\Lambda}_{I|h_j} = \frac{E_{I|h_j} \Lambda_{I|h_j} / F_{hj}(I)}{\sum_{\ell \in \mathcal{T}_R} E_{\ell|h_j} \Lambda_{\ell|h_j} / F_{hj}(\ell)} = \frac{E_{I|h_j} \left(\sum_{n \in C(I)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1}}{\sum_{\ell \in \mathcal{T}_R} E_{\ell|h_j} \left(\sum_{n \in C(\ell)} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\ell|h_j}^{-1}} \theta / F_{hj}(I) / F_{hj}(\ell)$$

- Any $F_{hj}(\cdot)$ with common support as $\Lambda_{I|h_j}$ ensures $\tilde{\Lambda}_{I|h_j} \rightarrow \Lambda_{I|h_j}$ as $R \rightarrow \infty$; in practice “myopic sequential choice” has good approximation
Simulating Consumption Access

- Using simulated $\Lambda_{I|h_j}^*$, we can construct consumption access $\mathbb{A}_{h_j}^*$:

$$
\mathbb{A}_{h_j}^* = \rho \left[\left(\sum_{n \in C(I)} p_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{I|h_j}^{-1} \right]^{\theta} / \Lambda_{I|h_j}^*
$$

- For stability of simulation, use I that is most frequently drawn in auxiliary distribution
Estimation

- Parametrize travel cost for non-commuting travel as:

$$\tau_{I|h_j} = \eta^{Ih} \exp(\rho D_{I|h_j})$$

 - η: iceberg cost of stopping at an additional location
 - ρ: semi-elasticity of travel cost with respect to travel time (i.e., value of time)
 - $D_{I|h_j}$: total travel time to follow itinerary I minus the direct round trip to workplaces ($D_{hj} + D_{jh}$)

- Parametrize travel cost for commuting travel as:

$$\tau_{hj}^W = \exp(\rho (D_{hj} + D_{jh}))$$

- Estimate $\{\eta, \rho, \theta, \sigma, \phi, \{P_i\}, \{w_{nk}\}\}$ through GMM
Given \(\{\eta, \rho\} \), estimate \(\{\theta, \sigma, \phi, \{P_n\}, \{w_{nk}\}\} \):

1. **Estimate \(\{P_n\} \) and \(\theta \) from destination choice conditional on visiting only one location by PPML:**

\[
\Lambda_{\text{single}}^{\{n\}|h\emptyset} = \frac{P_n^{-\theta} \exp(-\rho \theta D_{\{n\}|h\emptyset})}{\sum_{\ell \in N} P_\ell^{-\theta} \exp(-\rho \theta D_{\{\ell\}|h\emptyset})}.
\]

2. **Estimate \(\sigma \) using the estimated price index:**

\[
\log P_n - \log p_n = \beta_0 + \frac{1}{1-\sigma} \log M_{nS} + \epsilon_n
\]

* \(p_n \): variety-specific price (use official food price index)
* \(M_{nS} \): number of nontradable establishments; instrumented by the same value in 1980

3. **Estimate \(\{w_{jk}\} \) and \(\phi \) from commuting gravity equations (with simulated \(\tilde{A}_{hj} \)):**

\[
\Omega_{jk|h} = \frac{w_{jk}^{\phi} \tilde{A}_{hj}^{\phi \alpha^S} \exp(-\rho \phi (D_{hj} + D_{jh}))}{\sum_{j'} \sum_{k' \in \{T, S\}} w_{j'k'}^{\phi} \tilde{A}_{hj'}^{\phi \alpha^S} \exp(-\rho \phi (D_{hj'} + D_{j'h}))}
\]

4. **Estimate \(\{\eta, \rho\} \) by GMM with moments: (1) number of stays per day (use simulated and observed \(\Lambda_{I|hj} \); for \(\eta \)) and (2) variance of residential income (for \(\rho \))**
Estimate parameters for consumption itinerary choice: Results

- Spatial unit: 240 municipalities in Tokyo metropolitan area
- Draw 200 importance samples for each home-work
- Assume maximum number of stays per day = 5

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Estimated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>5.3</td>
<td>Elasticity of substitution</td>
</tr>
<tr>
<td>θ</td>
<td>4.5</td>
<td>Dispersion of Fréchet shocks for travel itinerary choice</td>
</tr>
<tr>
<td>ϕ</td>
<td>3.04</td>
<td>Dispersion of Fréchet shocks for workplace choice</td>
</tr>
<tr>
<td>ρ</td>
<td>0.69</td>
<td>Travel cost per hour</td>
</tr>
<tr>
<td>η</td>
<td>2.1</td>
<td>Travel cost of stopping at a location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Calibrated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>0.71</td>
<td>Fraction of workdays</td>
</tr>
<tr>
<td>α^S</td>
<td>0.6</td>
<td>Expenditure share of nontradable sector</td>
</tr>
</tbody>
</table>

- Visiting an additional location is equivalent to $\log(\eta) / \rho \approx 1$ hours of additional travel
Model Fit

(i) targeted moments

(ii) untargeted moments
Outline

1. Data
2. Patterns of Spatial Mobility
3. Travel Itinerary Decisions
4. Quantitative Urban Model
5. Covid-19 Pandemic
6. Transportation Infrastructure
7. Conclusion
General Equilibrium

Embed itinerary decision into a canonical GE urban model (e.g., Ahlfeldt et al ’15; Tsivanidis ’19)

- **Production**
 - Two sectors: tradables and nontradables
 - Cobb-Douglas production function with labor and floor space
 - Perfect competition for tradables, monopolistic competition & free entry for nontradables

- Agents decide home location based on rents, residential amenity, and anticipated workplace and consumption access

- Labor market clearing ⇒ wages

- Floor space market clearing ⇒ rents

- Goods market clearing ⇒ nontradable prices

- Amenity and productivity spillovers
Calibration of General Equilibrium Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^H</td>
<td>expenditure share for residential floor space</td>
<td>0.25</td>
<td>Data</td>
</tr>
<tr>
<td>β^S</td>
<td>labor share in production for nontradable sector</td>
<td>0.8</td>
<td>Data</td>
</tr>
<tr>
<td>β^T</td>
<td>labor share in production for tradable sector</td>
<td>0.8</td>
<td>Data</td>
</tr>
<tr>
<td>η^W</td>
<td>elasticity of production spillover in tradable sector</td>
<td>0.19</td>
<td>$\beta^S / (\sigma - 1)$</td>
</tr>
<tr>
<td>η^B</td>
<td>elasticity of residential amenity spillover</td>
<td>0</td>
<td>Ahlfeldt-Pietrostefani (2019) (Conservative)</td>
</tr>
<tr>
<td>μ</td>
<td>share of capital for floor space production</td>
<td>0.75</td>
<td>Ahlfeldt et al (2015)</td>
</tr>
</tbody>
</table>
Use our model to predict the change of peoples’ movement patterns during pandemic

Estimate the “short-run effect” of “emergency order” from 3/28-5/25 in 2020

- Calibrate the baseline model using April 2019 data
- Change two parameters:
 - ρ (value of time): use April 2020 data to fit the gravity equation of consumption travel conditional on visiting only one location (fix θ)
 - ζ (probability of going to work): change as observed in the data (No effect on productivity or labor supply)
- Run counterfactuals without changing GE objects ($\{R_n, L_n, P_n, w_n, Q_n\}$)

Compare against the model where agents visit only one consumption location from home
Model accurately predicts decline of consumer foot traffic in downtown
Outline

1 Data
2 Patterns of Spatial Mobility
3 Travel Itinerary Decisions
4 Quantitative Urban Model
5 Covid-19 Pandemic
6 Transportation Infrastructure
7 Conclusion
Transportation Infrastructure

- Assess impacts of public transit that was developed in Tokyo metropolitan areas after 1960
- Counterfactuals to remove these public transit (increase of travel time)
Transportation Infrastructure

- Evaluate change in residential welfare:

\[
\mathbb{E}[\max_h U_{h\omega}] = q^R \left[\sum_h B_h^\theta Q_h^{-\theta H} \left(\sum_{j'} \sum_{k' \in \{T,S\}} \left(w_{j'k'} \hat{A}_{hj'}^{\alpha S} \left(\tau_{hj'}^W \right)^{-1} \right) \phi \right) \right]^{\theta/\phi} \]

<table>
<thead>
<tr>
<th></th>
<th>Δ Welfare (%)</th>
<th>Relative to Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Baseline</td>
<td>-7.4</td>
<td>100</td>
</tr>
<tr>
<td>(2) No Consumption Trips</td>
<td>-5.8</td>
<td>78</td>
</tr>
<tr>
<td>(3) No Trip Chains (Single Consumption Location from Home)</td>
<td>-6.0</td>
<td>81</td>
</tr>
<tr>
<td>(4) No Trip Chains (All Consumption Locations from Home)</td>
<td>-6.5</td>
<td>88</td>
</tr>
</tbody>
</table>

- Omitting consumption travel and/or trip chains leads to underestimation of the effects on spatial concentration and welfare gains from transportation improvement
Outline

1. Data
2. Patterns of Spatial Mobility
3. Travel Itinerary Decisions
4. Quantitative Urban Model
5. Covid-19 Pandemic
6. Transportation Infrastructure
7. Conclusion
Conclusions

- We analyze spatial mobility using smartphone data and a new model of travel itinerary
- We develop the importance sampling method to overcome high-dimensionality issue
 - Can be applied to other applications such as bundled product and store choice, establishment location choices, import choices, shipping route choices, ...
- We show that accurately capturing patterns of spatial mobility is crucial for assessing mobility shocks such as Covid-19 pandemic and transportation infrastructure improvement
Thank You
Appendix
Many devices with missing workplace assignments are not used every day
Log Difference of Day- and Night-time Population

- Log Difference between Day-time and Night-time population is greater during weekdays than during weekends.
Divide municipalities into 10 strata (23 wards in central Tokyo aggregated into one unit)
Validation of Commuting Flows

- Commuting probabilities decay at a similar rate with distance in smartphone and census data.

- Gravity regression including workplace fixed effects, residence fixed effects and indicator variables for distance grid cells.
Work and non-work stays display expected patterns on weekdays v. weekends
Stay by Hour

Weekdays

Weekends

Probability

Hour

Home Other Work

Home Other Work
Frequency of Stays | Smartphone vs. Travel Survey

Weekdays
- Other: Smartphone 1.6, Person trip survey 0.95
- Work: Smartphone 1.14, Person trip survey 0.73

Weekends
- Other: Smartphone 1.93
- Work: Smartphone 0.47
For each 500 meter grid cell, compute the employment share of each service sector in total service sector employment using separate economic census data.

If a non-commuting trip to a grid cell is observed, we allocate that trip to a service sector probabilistically using the shares of sectors in service employment in that grid cell.

If no service-sector employment in the mesh, assign "Z Others."
5) Non-commuting trips an trip chains during pandemics

- During weekdays, reduction of non-commuting stays through work trip chains (Panel C)
- During weekends, reduction of non-commuting stays outside work trip chains (Panel D)
General Equilibrium: Agents’ Residential Location Choice

- Indirect utility with home h:

$$U_{h\omega} = B_h Q_h^{-\alpha H} \left(\sum_{j'} \sum_{k\in\{T,S\}} \left(w_{j'k} A_{hj'}^s \left(\frac{\tau_{hj'}}{\tau_{hj}} \right)^{-1} \right)^\phi \right)^{1/\phi} \epsilon_{h\omega}$$

- Assuming the Fréchet distribution for $\epsilon_{hjk\omega}$, probability of choosing (h) is:

$$\Omega_{h}^R = \frac{\left(B_h Q_h^{-\alpha H} \right)^\phi \sum_{j'} \sum_{k\in\{T,S\}} \left(w_{j'k} A_{hj'}^s \left(\frac{\tau_{hj'}}{\tau_{hj}} \right)^{-1} \right)^\phi}{\sum_{h'} \left(B_{h'} Q_{h'}^{-\alpha H} \right)^\phi \sum_{j'} \sum_{k\in\{T,S\}} \left(w_{j'k} A_{h'j'}^s \left(\frac{\tau_{h'j'}}{\tau_{hj}} \right)^{-1} \right)^\phi}$$
Monopolistic competition + free entry

Marginal cost for a firm is given by
\[c_i = \frac{1}{a_iS} w_i^S Q_i^{1-\beta^S}, \]

Firms have to pay \(f_i^S \) unit of output to enter, determine entry as:
\[M_iS = \frac{1}{f_iS \sigma - 1} \left(\frac{L_iS}{\beta^S} \right)^{\beta^S} \left(\frac{H_iS}{1 - \beta^S} \right)^{1 - \beta^S} \]

Price index is given by
\[P_i = p_i (M_iS)^{\frac{1}{1-\sigma}} = \frac{1}{A_iS} w_i^S Q_i^{1-\beta^S}, \]
where
\[A_iS = \tilde{a}_iS (L_iS)^{\beta^S \sigma-1} (H_iS)^{1 - \beta^S \sigma-1} \]
Production: Tradable sector

- Tradable good produced using labor and floor space in each location i according to constant returns to scale technology under perfect competition

$$P_i^T = \frac{1}{A_{iT}} w_i^T \beta^T Q_i^{1-\beta^T}, \quad 0 < \beta^T < 1$$

- Tradable good is costlessly traded and chosen as the numeraire

$$P_i^T = P^T = 1 \quad \text{for all} \quad i \in N$$

- Marshallian externality:

$$A_{iT} = a_{iT} \left(\frac{L_{iT}}{K_i} \right)^{\eta^W}$$
Floor Space Supply

- Land is owned by absentee landlord

- Perfectly competitive developers supply floor space for residential and business purposes in each location

- The inverse supply function for floor space is

\[Q_i = \psi_i H_i^{\frac{1-\mu}{\mu}} \]

- \(H_i \): total floor space in location \(i \)
- \(\psi_i \): exogenous characteristics of land space
- \(1 - \mu \): share of land used for floor space construction
Endogenous Amenity

- Amenity of location n endogenously depends on the residential density

$$B_n = b_n \left(\frac{R_n}{K_n} \right)^{\eta^n}$$

where R_n is the total measure of residents in location n.
Market Clearing

- Floor space market clearing:

\[H_i = H_i^U + \sum_{k \in \{T, S\}} H_{ik} \]

- \(H_{i,U} \): residential floor space consumption
- \(H_{i,k} \): commercial floor space allocated for sector \(k \)

- Nontradeable service market clearing:

\[P_n A_n S \left(\frac{L_n S}{\beta^S} \right)^\beta^S \left(\frac{H_{nS}}{1 - \beta^S} \right)^{1-\beta^S} = \alpha^S \sum_{h,j,k} \sum_I w_{jk} \Omega_{hjk} \tilde{\Lambda}_{I|h} \Psi_{n|I} \]
The proposed itinerary I is simulated in the following order:

1. For each h and j, randomly generate the total number of stays, $|I|$, and the number of stays that agents make up to the stay at workplace (if any), ι, from the observed distribution in the data.

2. Determine the i-th location n_i starting from $i = 1$.
 - If the i-th location of the day is at workplace (i.e., $i = \iota$), set the stay location as $n_i = j$.
 - If the i-th location of the day is not at workplace, assume that agents choose the location myopically without considering subsequent stays. Namely, denoting the itinerary up to $(i-1)$-th stay by I_{i-1}, we sample n_i following the probability:

 $$
 \Pi_{n_i}^i = \left[\frac{\left(\sum_{n \in \{n_i, I_{i-1}\}} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\{I_{i-1}, n_i\}|h_j}^{-1}}{\sum_{\ell \in N} \left(\sum_{n \in \{\ell, I_{i-1}\}} P_n^{1-\sigma} \right)^{-\frac{1}{1-\sigma}} \tau_{\{I_{i-1}, \ell\}|h_j}^{-1}} \right]^{\theta}
 $$

3. Repeat Step 2 for $i = 1, \ldots, |I|$.
Finite-Sample Properties of Importance Sampling

(A) Finite-Sample Bias

<table>
<thead>
<tr>
<th>Number of draws per home-work</th>
<th>10th pctl</th>
<th>25th pctl</th>
<th>50th pctl</th>
<th>75th pctl</th>
<th>90th pctl</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.84</td>
<td>0.88</td>
<td>0.93</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>0.88</td>
<td>0.93</td>
<td>0.96</td>
<td>0.99</td>
<td>1.01</td>
</tr>
<tr>
<td>100</td>
<td>0.92</td>
<td>0.95</td>
<td>0.97</td>
<td>0.99</td>
<td>1.01</td>
</tr>
<tr>
<td>200</td>
<td>0.94</td>
<td>0.96</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>500</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1000</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2000</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(B) Finite-Sample Variance

![Graph showing finite-sample variance](image-url)
Covid-19 Counterfactual: Fit to Other Moments

<table>
<thead>
<tr>
<th>(a) Targeted Moments</th>
<th>(1) Data</th>
<th>(2) Model (Baseline)</th>
<th>(3) Model (No Trip Chain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a-1) Δ log probability of work stay per day</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>(a-2) Δ gravity coefficient conditional on visiting only one location</td>
<td>-0.27</td>
<td>-0.27</td>
<td>-0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Untargeted Moments</th>
<th>(1) Data</th>
<th>(2) Model (Baseline)</th>
<th>(3) Model (No Trip Chain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b-1) Δ log number of nonwork stay per user-day</td>
<td>-0.06</td>
<td>-0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>(b-2) Δ log number of nonwork stay per user-day given workdays</td>
<td>-0.04</td>
<td>-0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>(b-3) Δ log number of nonwork stay per user-day given non-workdays</td>
<td>-0.10</td>
<td>-0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>(b-4) Δ log median distance to nonwork stays from home</td>
<td>-0.19</td>
<td>-0.19</td>
<td>-0.06</td>
</tr>
</tbody>
</table>
Covid-19 Counterfactual: Alternative Calibration to Model (Gravity)
Transportation Counterfactual: General Equilibrium Variables

![Chart of Transportation Counterfactual: General Equilibrium Variables](image-url)