Inequality and Unemployment in a Global Economy

Elhanan Helpman Oleg Itskhoki Stephen Redding Harvard and CIFAR Harvard LSE

Spring, 2011

Motivation Trade and Inequality

- Two central propositions in trade:
 - Aggregate welfare gains from trade, but...
 - Distributional conflict: both winners and losers from trade
- 1980-90s: globalization and growing inequality

Motivation Trade and Inequality

- Two central propositions in trade:
 - Aggregate welfare gains from trade, but...
 - Distributional conflict: both winners and losers from trade
- 1980-90s: globalization and growing inequality
- Traditional framework: Stolper-Samuelson Theorem of HO model
 - Some apparent empirical limitations

Motivation Trade and Inequality

- Two central propositions in trade:
 - Aggregate welfare gains from trade, but...
 - Distributional conflict: both winners and losers from trade
- 1980-90s: globalization and growing inequality
- Traditional framework: Stolper-Samuelson Theorem of HO model
 - Some apparent empirical limitations
- We propose an alternative framework:
 - Agent heterogeneity and selection into exporting
 - Reallocation within industries
 - Composition of workers across firms

Empirical Motivation

1 Reallocation occurs largely within rather than between industries

- e.g., Levinsohn (1999) for Chile

2 Wage dispersion across firms within sectors

- Linked to productivity dispersion (e.g., Davis and Haltiwanger 1991)
- Employer-size wage premium (e.g., Oi and Idson 1999)
- 3 Wage differences between exporters & non-exporters within sectors
 - Bernard and Jensen (1995, 1997)
- 4 This exporter wage premium is linked to workforce composition
 - Kaplan and Verhoogen (2006), Munch and Skaksen (2008), Schank, Schnabel and Wagner (2007)

Our Approach

- New analytical framework
 - consistent with a number of product and labor market facts
- Main ingredients:
 - 1 Heterogeneity in firm productivity
 - 2 Heterogeneity in worker ability
 - imperfectly observed match-specific ability
 - 3 Random search and matching
 - 4 Screening of workers by firms
 - **5** Production technology with complementarities

Our Approach

- New analytical framework
 - consistent with a number of product and labor market facts
- Main ingredients:
 - 1 Heterogeneity in firm productivity
 - 2 Heterogeneity in worker ability
 - imperfectly observed match-specific ability
 - 8 Random search and matching
 - 4 Screening of workers by firms
 - **5** Production technology with complementarities
- Main findings:
 - 1 Trade increases wage inequality within sectors
 - for general asymmetric countries
 - robust to the specifics of general equilibrium
 - 2 Direct effect of trade is to increase unemployment
 - **3** Welfare gains are ensured for risk-neutral agents

Related Theoretical Literature

- Heterogeneous firms and trade:
 - Melitz (2003), BEJK (2003) and Yeaple (2004)
- Search and matching:
 - Labor and Macro: Mortenson (1970, 2003), Pissarides (1974, 2000), Diamond (1982), and Burdett & Mortensen (1998)
 - Trade: Davidson et al. (1998, 1999), Felbermayr et al. (2008, 2009), Helpman & Itskhoki (2007), and Tybout & Guner (2009)
 - Two-sided heterogeneity: Shimer & Smith (2000), Acemoglu (1997), Albrecht & Vroman (2002), Postel-Vinay & Robin (2002), Cahuc et al. (2006), Davidson et al. (2008), and Lentz (2008)
- Trade and efficiency or fair wages:
 - Amiti & Davis (2008), Davis & Harrigan (2007), Egger & Kreickemeier (2007, 2008), Grossman & Helpman (2008)
- Trade and technology-skill complementarities:
 - Bustos (2007), Verhoogen (2008), Costinot & Vogel (2009), Burstein & Vogel (2009), Blanchard & Willmann (2009)
- Firm recruitment policies and worker screening:
 - Barron et al. (1987), Pellizzari (2005), Autor & Scarborough (2005)

Road Map

Model Outline

- 2 Sectoral Equilibrium
- 3 Trade and Wage Inequality
- 4 Trade and Unemployment
- General Equilibrium
 - Economy with an Outside Sector
 - Single-sector Economy
 - Risk Aversion

Model Outline

- Two asymmetric countries
- One heterogeneous factor: labor
- Melitz-type sector
- Static one-shot game

Model Outline

- Two asymmetric countries
- One heterogeneous factor: labor
- Melitz-type sector
- Static one-shot game

• Timing:

- 1 Workers choose a sector to search for a job
- 2 Workers are matched with firms
- **3** Firms screen workers
- 4 Firm bargain with hired workers
- Workers that are not sampled or sampled but not hired are unemployed

- CRRA preferences with CES demand across varieties within sectors
 - Firm revenue in the domestic market:

$$r = Ay^{\beta}, \qquad 0 < \beta < 1$$

- Monopolistic competition as in Melitz (2003)
 - Fixed entry cost: fe
 - Productivity draw $\theta \sim \text{Pareto}(z)$
 - Fixed production cost: f_d
 - Trade: variable iceberg cost au > 1 and fixed cost f_x
 - Revenue of the firm:

$$r(\theta) = \Upsilon(\theta)^{1-\beta} A y(\theta)^{\beta},$$

$$Y(\theta) = 1 + I_{x}(\theta) \cdot \tau^{-\frac{\beta}{1-\beta}} \left(\frac{A^{*}}{A}\right)^{\frac{1}{1-\beta}}$$

Production Technology

• Production function:

$$y = \theta h^{\gamma} \bar{a} = \theta \left(\frac{1}{h}\right)^{1-\gamma} \int_0^h a_i \mathrm{d}i, \qquad 0 < \gamma < 1$$

- human capital complementarity (team production)
- managerial time as fixed factor (Rosen, 1982)
- Unobserved match-specific ability: $a \sim \text{Pareto}(k)$
- Search cost: $b \cdot n$ (Diamond-Mortensen-Pissarides)

• Screening cost:
$$\frac{c}{\delta}(a_c)^{\delta}$$

• Output:

$$y = \kappa_y \theta n^\gamma a_c^{1-\gamma k}, \qquad \gamma k < 1$$

Firm's Problem

• Wage bargaining (Stole and Zwiebel, 1996):

$$w(\theta) = \frac{\beta \gamma}{1 + \beta \gamma} \frac{r(\theta)}{h(\theta)}$$

Firm's Problem

• Wage bargaining (Stole and Zwiebel, 1996):

$$w(\theta) = \frac{\beta\gamma}{1+\beta\gamma} \frac{r(\theta)}{h(\theta)}$$

• Firm solves:

$$\pi(\theta) = \max_{\substack{n \ge 0, \\ a_c \ge a_{\min}, \\ I_X \in \{0,1\}}} \left\{ \frac{1}{1 + \beta \gamma} \mathbf{Y}^{1-\beta} A \left[\kappa_y \theta n^{\gamma} a_c^{1-\gamma k} \right]^{\beta} - bn - \frac{c}{\delta} a_c^{\delta} - I_x f_x - f_d \right\}$$

Firm's Problem

• Wage bargaining (Stole and Zwiebel, 1996):

$$w(\theta) = \frac{\beta\gamma}{1+\beta\gamma} \frac{r(\theta)}{h(\theta)}$$

• Firm solves:

$$\pi(\theta) = \max_{\substack{n \ge 0, \\ a_c \ge a_{\min}, \\ I_x \in \{0,1\}}} \left\{ \frac{1}{1 + \beta \gamma} Y^{1-\beta} A \left[\kappa_y \theta n^\gamma a_c^{1-\gamma k} \right]^\beta - bn - \frac{c}{\delta} a_c^\delta - I_x f_x - f_d \right\}$$

- $\theta < \theta_d$ exit and $\theta > \theta_x$ export
- More productive firms:
 - sample more workers and are more selective
 - hire more workers (provided $\delta > k$)
 - pay higher wages
- Wage inequality across firms within sectors:
 - Employer-size wage premium (e.g. Oi and Idson 1999)
 - Rent-sharing (e.g. Van Reenen 1996)

Exporter Wage Premium

• Market access variable:

$$\mathbf{Y}(\theta) = \left\{ \begin{array}{ll} 1, & \theta < \theta_{x}, \\ \mathbf{Y}_{x} > 1, & \theta \geq \theta_{x} \end{array} \right., \qquad \mathbf{Y}_{x} = 1 + \tau^{\frac{-\beta}{1-\beta}} \left(\frac{A^{*}}{A}\right)^{\frac{1}{1-\beta}}$$

Exporter Wage Premium

• Market access variable:

$$\mathbf{Y}(\theta) = \left\{ \begin{array}{ll} 1, & \theta < \theta_X, \\ \mathbf{Y}_X > 1, & \theta \ge \theta_X \end{array} \right., \qquad \mathbf{Y}_X = 1 + \tau^{\frac{-\beta}{1-\beta}} \left(\frac{A^*}{A}\right)^{\frac{1}{1-\beta}}$$

• Revenue across firms:

$$r(\theta) = r_d Y(\theta)^{\frac{1-\beta}{\Gamma}} \left(\frac{\theta}{\theta_d}\right)^{\beta/\Gamma}$$

Intuition: profit is smooth, revenue jumps for exporters to cover f_X

-1

Exporter Wage Premium

• Market access variable:

$$\mathbf{Y}(\theta) = \left\{ \begin{array}{ll} 1, & \theta < \theta_X, \\ \mathbf{Y}_X > 1, & \theta \ge \theta_X \end{array} \right., \qquad \mathbf{Y}_X = 1 + \tau^{\frac{-\beta}{1-\beta}} \left(\frac{A^*}{A}\right)^{\frac{1}{1-\beta}}$$

• Revenue across firms:

$$r(\theta) = r_d Y(\theta)^{\frac{1-\beta}{T}} \left(\frac{\theta}{\theta_d}\right)^{\beta/T}$$

Intuition: profit is smooth, revenue jumps for exporters to cover f_X

• Exporters pay higher wages (Bernard and Jensen 1995, 1997)

$$w(\theta) = \frac{b}{h(\theta)/n(\theta)} = b \left(\frac{a_{c}(\theta)}{a_{\min}}\right)^{k} = w_{d} \Upsilon(\theta)^{\frac{(1-\beta)k}{\delta \Gamma}} \left(\frac{\theta}{\theta_{d}}\right)^{\frac{\beta k}{\delta \Gamma}}$$

• Exporters differ in workforce composition (Schank et al. 2007)

1

Wage Profiles

Open Economy vs. Autarky

Wage Distribution

• In autarky, the wage distribution is $Pareto(1 + 1/\mu)$:

$$G_w^a = 1 - \left(\frac{w_d}{w}\right)^{1+1/\mu}$$
, $\mu = \frac{\beta k/\delta}{z\Gamma - \beta}$

- Consistent with evidence linking wage and productivity dispersion
 - Davis and Haltiwanger (1991)
 - Faggio, Salvanes and Van Reenen (2007)
- In the closed economy, μ is a sufficient statistic for inequality
 - Coef. of Variation, Lorenz Curve (Gini Coef.), Theil Index
- In the open economy, the wage distribution is a mix of:
 - Truncated Pareto $(1+1/\mu)$ (non-exporting firms)
 - Pareto $(1+1/\mu)$ (exporting firms)

Open Economy Wage Distribution

- Autarky: $w_X^- \to \infty$
- All firms export: $w_x^+ \rightarrow w_d$

Wage Inequality

Lemma

In a trade equilibrium where all firms export, wage inequality in the differentiated sector is the same as in autarky

Proof: In both cases the wage distribution is $Pareto(1+1/\mu)$

Wage Inequality

Lemma

In a trade equilibrium where all firms export, wage inequality in the differentiated sector is the same as in autarky

Proof: In both cases the wage distribution is $Pareto(1 + 1/\mu)$

Proposition

In a trade equilibrium where some but not all firms export, wage inequality in the differentiated sector is strictly greater than in autarky

Proof:

- i. Consider a counterfactual *autarkic* wage distribution $G_w^c(w)$ with shape param. $1 + 1/\mu$ and the same mean as in the open economy
- ii. $G_w^c(w)$ second-order stochastically dominates $G_w(w)$

▶ Theil Index

Actual vs. Counterfactual Wage Distributions

Figure: Wage Densities

Actual vs. Counterfactual Wage Distributions

Figure: Wage CDFs

Wage Inequality Additional Results

• Define a measure of trade openness: $ho\equiv heta_d/ heta_{ imes}\in [0,1]$

– where ρ^z equals the fraction of exporting firms

- Inequality: lowest in autarky (ho=0) or if all firms export (ho=1)
- Inequality: strictly greater when only some firms export (0 <
 ho < 1)
 - Intuition: some but not all workers are employed by exporters who pay higher wages than non-exporters
- Inequality is increasing (decreasing) in trade openness when the fraction of exporting firms ρ^z is low (high)
- Average wages conditional on being employed are higher in the open economy than in autarky
- In the open economy, wages in terms of the numeraire are higher at exporters and lower at non-exporters than in autarky

Wage Inequality

Additional Results

Theil Index

• Sectoral unemployment rate:

$$u = \frac{L-H}{L} = 1 - \frac{H}{N}\frac{N}{L} = 1 - \sigma x$$

• Sectoral unemployment rate:

$$u = \frac{L - H}{L} = 1 - \frac{H}{N}\frac{N}{L} = 1 - \sigma x$$

• Labor market tightness: x = N/L

$$\begin{cases} bx = \omega \\ b = \alpha_0 x^{\alpha_1} \end{cases} \} \quad \Rightarrow \quad x = \left(\frac{\omega}{\alpha_0}\right)^{\frac{1}{1+\alpha_1}} ,$$

• Sectoral unemployment rate:

$$u = \frac{L - H}{L} = 1 - \frac{H}{N}\frac{N}{L} = 1 - \sigma x$$

• Labor market tightness: x = N/L • Labor Market Equilibrium

)
$$(\omega)^{\frac{1}{1+\alpha_1}}$$

$$\begin{array}{l} bx = \omega \\ b = \alpha_0 x^{\alpha_1} \end{array} \right\} \quad \Rightarrow \quad x = \left(\frac{\omega}{\alpha_0}\right)^{\frac{1}{1+\alpha_1}},$$

• Hiring rate:

$$\sigma = H/N = \varphi(\rho) \cdot \sigma^{a}$$
, $\sigma^{a} = (1 + \mu)^{-1} \cdot h_{d}/n_{d}$

– Property: $\varphi(\rho) < \varphi(0) = 1$ for all $\rho > 0$

• Sectoral unemployment rate:

$$u = \frac{L-H}{L} = 1 - \frac{H}{N}\frac{N}{L} = 1 - \sigma x$$

• Labor market tightness: x = N/L • Labor Market Equilibrium

$$\begin{cases} bx = \omega \\ b = \alpha_0 x^{\alpha_1} \end{cases} \Rightarrow \quad x = \left(\frac{\omega}{\alpha_0}\right)^{\frac{1}{1+\alpha_1}},$$

• Hiring rate:

$$\sigma = H/N = \varphi(\rho) \cdot \sigma^{a}, \qquad \sigma^{a} = (1+\mu)^{-1} \cdot h_{d}/n_{d}$$

– Property:
$$arphi(
ho) < arphi(0) = 1$$
 for all $ho > 0$

Proposition

Holding ω constant, the unemployment rate is higher in a trade equilibrium than in autarky

- Intuition: Reallocation towards more productive and selective firms

Income Inequality

- Income inequality takes into account both wage inequality and unemployment
- Theil Index and Gini Coefficient:

$$\mathcal{T}_{l} = \mathcal{T}_{w} - \ln(1 - u)$$
$$\mathcal{G}_{l} = u + (1 - u)\mathcal{G}_{w}$$

Proposition

The distribution of income is more unequal in a trade equilibrium than in autarky

 Both wage inequality and unemployment are higher in a trade equilibrium than in autarky

General Equilibrium

1 Economy with an Outside Sector

- Constant expected income: $\omega = 1$
- Constant labor market tightness: x
- Expected welfare gains from trade
- Aggregate variables depend on sectoral composition

General Equilibrium

1 Economy with an Outside Sector

- Constant expected income: $\omega = 1$
- Constant labor market tightness: x
- Expected welfare gains from trade
- Aggregate variables depend on sectoral composition
- One-sector Economy
 - Expected income ω increases with trade (expected welfare gains)
 - Additional income effect for unemployment: x increases
 - No sectoral compositional effects

General Equilibrium

1 Economy with an Outside Sector

- Constant expected income: $\omega = 1$
- Constant labor market tightness: x
- Expected welfare gains from trade
- Aggregate variables depend on sectoral composition
- One-sector Economy
 - Expected income ω increases with trade (expected welfare gains)
 - Additional income effect for unemployment: x increases
 - No sectoral compositional effects
- **3** Risk Aversion (with an Outside Sector)
 - Uncertainty affects sectoral composition (risk premium: $\omega>1$)
 - Trade increases income risk: ω increases
 - Additional risk effect for unemployment: x increases
 - Two counteracting effects on expected welfare

Summary

- New theoretical framework to examine the relationship between trade and inequality:
 - composition of workers across firms
 - reallocation within industries
- Trade: expected welfare gains but greater social disparity
- Further trade liberalization has non-monotonic effects on inequality

Summary

- New theoretical framework to examine the relationship between trade and inequality:
 - composition of workers across firms
 - reallocation within industries
- Trade: expected welfare gains but greater social disparity
- Further trade liberalization has non-monotonic effects on inequality
- Current and future research:
 - HIR (work in progress): Risk and Uncertainty in a Global Economy
 - Helpman-Itskhoki-Muendler-Redding (work in progress): Empirical Evidence using Brazilian data
 - Itskhoki (2008): Optimal Redistribution in an Open Economy

Thank You