Motivation
Trade and Inequality

• Two central propositions in trade:
 – Aggregate welfare gains from trade, but...
 – Distributional conflict: both winners and losers from trade

• 1980-90s: globalization and growing inequality
Motivation
Trade and Inequality

• Two central propositions in trade:
 – Aggregate welfare gains from trade, but...
 – Distributional conflict: both winners and losers from trade

• 1980-90s: globalization and growing inequality

• Traditional framework: Stolper-Samuelson Theorem of HO model
 – Some apparent empirical limitations
Motivation
Trade and Inequality

• Two central propositions in trade:
 – Aggregate welfare gains from trade, but…
 – Distributional conflict: both winners and losers from trade

• 1980-90s: globalization and growing inequality

• Traditional framework: Stolper-Samuelson Theorem of HO model
 – Some apparent empirical limitations

• We propose an alternative framework:
 – Agent heterogeneity and selection into exporting
 – Reallocation within industries
 – Composition of workers across firms
Empirical Motivation

1. **Reallocation** occurs largely within rather than between industries
 - e.g., Levinsohn (1999) for Chile

2. **Wage dispersion** across firms within sectors
 - Linked to productivity dispersion (e.g., Davis and Haltiwanger 1991)
 - Employer-size wage premium (e.g., Oi and Idson 1999)

3. **Wage differences** between exporters & non-exporters within sectors

4. **This exporter wage premium** is linked to workforce composition

5. **Labor market frictions** and unemployment
Our Approach

• New analytical framework
 – consistent with a number of product and labor market facts

• Main ingredients:
 1. Heterogeneity in firm productivity
 2. Heterogeneity in worker ability
 – imperfectly observed match-specific ability
 3. Random search and matching
 4. Screening of workers by firms
 5. Production technology with complementarities

Main findings:
1. Trade increases wage inequality within sectors
 – for general asymmetric countries
 – robust to the specifics of general equilibrium
2. Direct effect of trade is to increase unemployment
3. Welfare gains are ensured for risk-neutral agents
Our Approach

• New analytical framework
 – consistent with a number of product and labor market facts

• Main ingredients:
 1. Heterogeneity in firm productivity
 2. Heterogeneity in worker ability
 – imperfectly observed match-specific ability
 3. Random search and matching
 4. Screening of workers by firms
 5. Production technology with complementarities

• Main findings:
 1. Trade increases wage inequality within sectors
 – for general asymmetric countries
 – robust to the specifics of general equilibrium
 2. Direct effect of trade is to increase unemployment
 3. Welfare gains are ensured for risk-neutral agents
Related Theoretical Literature

• Heterogeneous firms and trade:

• Search and matching:
 – Trade: Davidson et al. (1998, 1999), Felbermayr et al. (2008, 2009), Helpman & Itskhan (2007), and Tybout & Guner (2009)

• Trade and efficiency or fair wages:

• Trade and technology-skill complementarities:

• Firm recruitment policies and worker screening:
Road Map

1. Model Outline

2. Sectoral Equilibrium

3. Trade and Wage Inequality

4. Trade and Unemployment

5. General Equilibrium
 - Economy with an Outside Sector
 - Single-sector Economy
 - Risk Aversion
Model Outline

- Two asymmetric countries
- One heterogeneous factor: labor
- Melitz-type sector
- Static one-shot game
Model Outline

- Two asymmetric countries
- One heterogeneous factor: labor
- Melitz-type sector
- Static one-shot game

Timing:

1. Workers choose a sector to search for a job
2. Workers are matched with firms
3. Firms screen workers
4. Firm bargain with hired workers

- Workers that are not sampled or sampled but not hired are unemployed
• CRRA preferences with CES demand across varieties within sectors
 – Firm revenue in the domestic market:
 \[r = Ay^\beta, \quad 0 < \beta < 1 \]

• Monopolistic competition as in Melitz (2003)
 – Fixed entry cost: \(f_e \)
 – Productivity draw \(\theta \sim \text{Pareto}(z) \)
 – Fixed production cost: \(f_d \)
 – Trade: variable iceberg cost \(\tau > 1 \) and fixed cost \(f_x \)
 – Revenue of the firm:
 \[
 r(\theta) = Y(\theta)^{1-\beta} Ay(\theta)^\beta,
 \]
 \[
 Y(\theta) = 1 + I_x(\theta) \cdot \tau^{-\frac{\beta}{1-\beta}} \left(\frac{A^*}{A} \right)^{\frac{1}{1-\beta}}
 \]
Production Technology

- Production function:

\[y = \theta h^\gamma a = \theta \left(\frac{1}{h} \right)^{1-\gamma} \int_0^h a_i \, di, \quad 0 < \gamma < 1 \]

 - human capital complementarity (team production)
 - managerial time as fixed factor (Rosen, 1982)

- Unobserved match-specific ability: \(a \sim \text{Pareto}(k) \)

- Search cost: \(b \cdot n \) (Diamond-Mortensen-Pissarides)

- Screening cost: \(\frac{c}{\delta} (a_c)^\delta \)

- Output:

\[y = \kappa y \theta n^\gamma a_c^{1-\gamma k}, \quad \gamma k < 1 \]
Firm’s Problem

- Wage bargaining (Stole and Zwiebel, 1996):

\[w(\theta) = \frac{\beta \gamma r(\theta)}{1 + \beta \gamma h(\theta)} \]
Firm’s Problem

- Wage bargaining (Stole and Zwiebel, 1996):

\[w(\theta) = \frac{\beta \gamma r(\theta)}{1 + \beta \gamma h(\theta)} \]

- Firm solves:

\[
\pi(\theta) = \max_{\begin{align*}
n &\geq 0, \\
a_c &\geq a_{\text{min}}, \\
l_x &\in \{0,1\} \end{align*}} \left\{ \frac{1}{1 + \beta \gamma} Y^{1-\beta} A \left[\kappa y \theta n^\gamma a_{c}^{1-\gamma k} \right]^\beta - b n - \frac{c}{\delta} a_{c}^\delta - l_x f_x - f_d \right\}
\]
Firm’s Problem

• Wage bargaining (Stole and Zwiebel, 1996):

\[w(\theta) = \frac{\beta \gamma r(\theta)}{1 + \beta \gamma h(\theta)} \]

• Firm solves:

\[\pi(\theta) = \max_{n \geq 0, \ a_c \geq a_{\text{min}}, \ l_x \in \{0,1\}} \left\{ \frac{1}{1 + \beta \gamma} Y^{1-\beta} A \left[\kappa_y \theta n^\gamma a_c^{1-\gamma k} \right]^\beta - bn - \frac{c}{\delta} a^\delta - l_x f_x - f_d \right\} \]

• \(\theta < \theta_d \) exit and \(\theta > \theta_x \) export

• More productive firms:
 – sample more workers and are more selective
 – hire more workers (provided \(\delta > k \))
 – pay higher wages

• Wage inequality across firms within sectors:
 – Employer-size wage premium (e.g. Oi and Idson 1999)
 – Rent-sharing (e.g. Van Reenen 1996)
Exporter Wage Premium

- Market access variable:

\[
Y(\theta) = \begin{cases}
 1, & \theta < \theta_x, \\
 Y_x > 1, & \theta \geq \theta_x
\end{cases}, \quad Y_x = 1 + \tau^{1-\beta} \left(\frac{A^*}{A} \right)^{\frac{1}{1-\beta}}
\]
Exporter Wage Premium

- Market access variable:

\[Y(\theta) = \begin{cases}
1, & \theta < \theta_x, \\
Y_x > 1, & \theta \geq \theta_x
\end{cases} , \quad Y_x = 1 + \tau^{1-\beta} \left(\frac{A^*}{A} \right) \frac{1}{1-\beta} \]

- Revenue across firms:

\[r(\theta) = r_d Y(\theta)^{\frac{1-\beta}{1}} \left(\frac{\theta}{\theta_d} \right)^{\beta/\Gamma} \]

Intuition: profit is smooth, revenue jumps for exporters to cover \(f_x \)
Exporter Wage Premium

• Market access variable:

\[Y(\theta) = \begin{cases}
1, & \theta < \theta_x, \\
Y_x > 1, & \theta \geq \theta_x
\end{cases}, \quad Y_x = 1 + \tau^{\frac{\beta}{1-\beta}} \left(\frac{A^*}{A} \right)^{\frac{1}{1-\beta}} \]

• Revenue across firms:

\[r(\theta) = r_d Y(\theta)^{\frac{1-\beta}{\Gamma}} \left(\frac{\theta}{\theta_d} \right)^{\beta/\Gamma} \]

Intuition: profit is smooth, revenue jumps for exporters to cover \(f_x \)

• Exporters pay higher wages (Bernard and Jensen 1995, 1997)

\[w(\theta) = \frac{b}{h(\theta)/n(\theta)} = b \left(\frac{a_c(\theta)}{a_{\min}} \right)^k = w_d Y(\theta)^{(1-\beta)k} \left(\frac{\theta}{\theta_d} \right)^{\frac{\beta k}{\delta \Gamma}} \]

• Exporters differ in workforce composition (Schank et al. 2007)
Wage Profiles
Open Economy vs. Autarky

Productivity, θ

Wage rate, $w(\theta)$

$w^a(\theta)$

$w(\theta)$

θ_d

θ_x

θ^a_d

θ^a
Wage Distribution

• In autarky, the wage distribution is Pareto\((1 + 1/\mu)\):

\[
G_w^a = 1 - \left(\frac{w_d}{w} \right)^{1+1/\mu}, \quad \mu = \frac{\beta k/\delta}{z\Gamma - \beta}
\]

• Consistent with evidence linking wage and productivity dispersion
 – Davis and Haltiwanger (1991)
 – Faggio, Salvanes and Van Reenen (2007)

• In the closed economy, \(\mu\) is a **sufficient statistic** for inequality
 – Coef. of Variation, Lorenz Curve (Gini Coef.), Theil Index

• In the open economy, the wage distribution is a mix of:
 – Truncated Pareto\((1 + 1/\mu)\) (non-exporting firms)
 – Pareto\((1 + 1/\mu)\) (exporting firms)
Wage Density
Open Economy

- Autarky: $w^{-}_{x} \rightarrow \infty$
- All firms export: $w^{+}_{x} \rightarrow w_{d}$
Wage Inequality

Lemma

In a trade equilibrium where all firms export, wage inequality in the differentiated sector is the same as in autarky

Proof: In both cases the wage distribution is Pareto\((1 + 1/\mu)\)
Wage Inequality

Lemma

In a trade equilibrium where all firms export, wage inequality in the differentiated sector is the same as in autarky

Proof: In both cases the wage distribution is Pareto($1 + 1/\mu$)

Proposition

In a trade equilibrium where some but not all firms export, wage inequality in the differentiated sector is strictly greater than in autarky

Proof:

i. Consider a counterfactual *autarkic* wage distribution $G^C_w(w)$ with shape param. $1 + 1/\mu$ and the same mean as in the open economy

ii. $G^C_w(w)$ second-order stochastically dominates $G_w(w)$

Theil Index
Actual vs. Counterfactual Wage Distributions

Figure: Wage Densities
Actual vs. Counterfactual Wage Distributions

Figure: Wage CDFs
Wage Inequality
Additional Results

• Define a measure of trade openness: \(\rho \equiv \frac{\theta_d}{\theta_x} \in [0, 1] \)
 – where \(\rho \) equals the fraction of exporting firms

• Inequality: lowest in autarky (\(\rho = 0 \)) or if all firms export (\(\rho = 1 \))

• Inequality: strictly greater when only some firms export (\(0 < \rho < 1 \))
 – Intuition: some but not all workers are employed by exporters who pay higher wages than non-exporters

• Inequality is increasing (decreasing) in trade openness when the fraction of exporting firms \(\rho \) is low (high)

• Average wages conditional on being employed are higher in the open economy than in autarky

• In the open economy, wages in terms of the numeraire are higher at exporters and lower at non-exporters than in autarky
Theil Index, $T_w = \mu - \ln(1+\mu)$
Unemployment

- Sectoral unemployment rate:

\[u = \frac{L - H}{L} = 1 - \frac{H N}{N L} = 1 - \sigma x \]
Unemployment

• Sectoral unemployment rate:

\[
U = \frac{L - H}{L} = 1 - \frac{HN}{NL} = 1 - \sigma x
\]

• Labor market tightness: \(x = \frac{N}{L} \)

\[
\begin{align*}
(bx = \omega) \\
(b = \alpha_0 x^{\alpha_1})
\end{align*}
\]

\[
\Rightarrow x = \left(\frac{\omega}{\alpha_0} \right)^{\frac{1}{1+\alpha_1}}
\]
Unemployment

• Sectoral unemployment rate:

\[u = \frac{L - H}{L} = 1 - \frac{H}{N} \frac{N}{L} = 1 - \sigma x \]

• Labor market tightness: \(x = \frac{N}{L} \)

\[
\begin{align*}
bx &= \omega \\
\frac{b}{\alpha_0} &= \alpha_1 \\
\Rightarrow \\
x &= \left(\frac{\omega}{\alpha_0} \right)^{1 + \alpha_1}
\end{align*}
\]

• Hiring rate:

\[\sigma = \frac{H}{N} = \varphi(\rho) \cdot \sigma^a, \quad \sigma^a = (1 + \mu)^{-1} \cdot \frac{h_d}{n_d} \]

- Property: \(\varphi(\rho) < \varphi(0) = 1 \) for all \(\rho > 0 \)
Unemployment

• Sectoral unemployment rate:

\[u = \frac{L - H}{L} = 1 - \frac{H N}{N L} = 1 - \sigma x \]

• Labor market tightness: \(x = \frac{N}{L} \)

\[
\begin{align*}
bx &= \omega \\
b &= \alpha_0 x^{\alpha_1}
\end{align*}
\]

\[\Rightarrow \quad x = \left(\frac{\omega}{\alpha_0} \right)^{\frac{1}{1+\alpha_1}}, \]

• Hiring rate:

\[\sigma = \frac{H}{N} = \varphi(\rho) \cdot \sigma^a, \quad \sigma^a = \left(1 + \mu\right)^{-1} \cdot \frac{h_d}{n_d} \]

- Property: \(\varphi(\rho) < \varphi(0) = 1 \) for all \(\rho > 0 \)

Proposition

Holding \(\omega \) constant, the unemployment rate is higher in a trade equilibrium than in autarky

- Intuition: Reallocation towards more productive and selective firms
Income Inequality

- Income inequality takes into account both wage inequality and unemployment

- Theil Index and Gini Coefficient:

 \[T_i = T_w - \ln(1 - u) \]

 \[G_i = u + (1 - u)G_w \]

Proposition

The distribution of income is more unequal in a trade equilibrium than in autarky

- Both wage inequality and unemployment are higher in a trade equilibrium than in autarky
Economy with an Outside Sector

- Constant expected income: $\omega = 1$
- Constant labor market tightness: x
- Expected welfare gains from trade
- Aggregate variables depend on sectoral composition
General Equilibrium

1. Economy with an Outside Sector
 - Constant expected income: $\omega = 1$
 - Constant labor market tightness: x
 - Expected welfare gains from trade
 - Aggregate variables depend on sectoral composition

2. One-sector Economy
 - Expected income ω increases with trade (expected welfare gains)
 - Additional *income effect* for unemployment: x increases
 - No sectoral compositional effects
General Equilibrium

1. Economy with an Outside Sector
 - Constant expected income: \(\omega = 1 \)
 - Constant labor market tightness: \(x \)
 - Expected welfare gains from trade
 - Aggregate variables depend on sectoral composition

2. One-sector Economy
 - Expected income \(\omega \) increases with trade (expected welfare gains)
 - Additional income effect for unemployment: \(x \) increases
 - No sectoral compositional effects

3. Risk Aversion (with an Outside Sector)
 - Uncertainty affects sectoral composition (risk premium: \(\omega > 1 \))
 - Trade increases income risk: \(\omega \) increases
 - Additional risk effect for unemployment: \(x \) increases
 - Two counteracting effects on expected welfare
Summary

• New theoretical framework to examine the relationship between trade and inequality:
 – composition of workers across firms
 – reallocation within industries

• Trade: expected welfare gains but greater social disparity

• Further trade liberalization has non-monotonic effects on inequality
Summary

• New theoretical framework to examine the relationship between trade and inequality:
 – composition of workers across firms
 – reallocation within industries

• Trade: expected welfare gains but greater social disparity

• Further trade liberalization has non-monotonic effects on inequality

• Current and future research:
 – HIR (work in progress): Risk and Uncertainty in a Global Economy
 – Helpman-Itskhoki-Muendler-Redding (work in progress): Empirical Evidence using Brazilian data
 – Itskhoki (2008): Optimal Redistribution in an Open Economy
Thank You