
ON THE EXCHANGE OF INTERSECTION AND SUPREMUM OF
σ-FIELDS IN FILTERING THEORY∗

BY RAMON VAN HANDEL

Princeton University

We construct a stationary Markov process with trivial tail σ-field and a
nondegenerate observation process such that the corresponding nonlinear fil-
tering process is not uniquely ergodic. This settles in the negative a conjecture
of the author in the ergodic theory of nonlinear filters arising from an erro-
neous proof in the classic paper of H. Kunita (1971), wherein an exchange of
intersection and supremum of σ-fields is taken for granted.

1. Introduction and main result. Let E and F be Polish spaces, and consider
an E × F -valued stochastic process (Xk, Yk)k∈Z with the following properties:

1. (Xk, Yk)k∈Z is a stationary Markov process.
2. There exist transition kernels P from E to E and Φ from E to F such that

P[(Xn, Yn) ∈ A|Xn−1, Yn−1] =
∫

1A(x, y) P (Xn−1, dx) Φ(x, dy).

Such a process is called a stationary hidden Markov model; its dependence struc-
ture is illustrated schematically in Figure 1. In applications, (Xk)k∈Z represents
a “hidden” process which is not directly observable, while the observable process
(Yk)k∈Z represents “noisy observations” of the hidden process [4].

Of fundamental importance in the theory of hidden Markov models is the non-
linear filter (πk)k≥0, defined as the regular conditional probability

πn = P[Xn ∈ · |Y1, . . . , Yn].

That is, πn is the conditional distribution of the current state of the hidden process
given the observations to date. It is a basic fact in this theory that the filtering
process (πk)k≥0 is itself a Markov process taking values in the space P(E) of
probability measures on E, whose transition kernel Π can be expressed in terms of
the transition kernels P and Φ that determine the model (this and other basic facts
on nonlinear filters are reviewed in the appendix).

Following Kunita [12], we will be interested in the structure of the space of
Π-invariant probability measures in P(P(E)). It is easily seen that for every Π-
invariant measure m ∈ P(P(E)), the barycenter µ ∈ P(E) of m must be invariant
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FIG 1. Dependence structure of a hidden Markov model.

for the transition kernel P of the hidden process. Conversely, for every P -invariant
measure µ ∈ P(E), there exists at least one Π-invariant measure m ∈ P(P(E))
whose barycenter is µ. However, the latter need not be unique.

THEOREM 1.1 (Kunita). Let P[X0 ∈ · ] := µ be the P -invariant measure
defined by the stationary hidden Markov model (Xk, Yk)k∈Z as above. If

(1.1)
⋂
n≤0

(
FY
−∞,0 ∨ FX

−∞,n

)
= FY

−∞,0 P-a.s.,

then there exists a unique Π-invariant measure with barycenter µ. The converse
holds if in addition Φ possesses a transition density with respect to some σ-finite
reference measure. [Here FY

−∞,0 := σ{Yk : k ≤ 0}, FX
−∞,n := σ{Xk : k ≤ n}.]

REMARK 1.2. Though the main ideas of the proof are implicitly contained in
[12], this simple and general statement does not appear in the literature without var-
ious additional simplifying assumptions. For completeness, and in order to make
this paper self-contained, we therefore include the proof in the appendix.

Theorem 1.1 is not actually stated as such by Kunita [12]. Instead, Kunita as-
sumes that the hidden process (Xk)k∈Z is purely nondeterministic:

DEFINITION 1.3. A stochastic process (Xk)k∈Z is called purely nondetermin-
istic if its past tail σ-field

⋂
n≤0 FX

−∞,n is P-a.s. trivial.

Kunita’s main theorem states1 that if the hidden process (Xk)k∈Z is purely non-
deterministic, then there exists a unique Π-invariant measure with barycenter µ.
Kunita’s proof, however, does not establish this claim. Indeed, at the crucial point

1In fact, Kunita’s paper is written in the context of a continuous time model with white noise
observations. None of these specific features are used in the proofs, however.
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in the proof ([12], top of p. 384), Kunita implicitly takes for granted that the fol-
lowing exchange of intersection and supremum is permitted:

(1.2)
⋂
n≤0

(
FY
−∞,0 ∨ FX

−∞,n

) ?= FY
−∞,0 ∨

⋂
n≤0

FX
−∞,n P-a.s.

If this exchange were justified, then Kunita’s result would indeed follow immedi-
ately from Theorem 1.1. However, in general, such an exchange of intersection and
supremum is not permitted, as will be shown in section 1.1 below.

The goal of this paper is to settle, in the negative, a natural conjecture on the
validity of the identity (1.2). Before we can describe the conjecture, we must review
what is known about the validity of (1.2) in the filtering setting.

REMARK 1.4. Beyond the relevance of (1.2) to filtering theory, the problem
studied in this paper provides a case study on an enigmatic problem: when is
the exchange of countable intersection and supremum of σ-fields permitted? Such
problems arise in remarkably diverse areas of probability theory. The following
references provide some further context on this general problem.

1. Several distinguished mathematicians have given erroneous proofs related
to the exchange of intersection and supremum of σ-fields, including Kol-
mogorov (see [22], p. 837) and Wiener (see [15], pp. 91–93).

2. A simple counterexample to the validity of the exchange of intersection and
supremum due to Barlow and Perkins can be found in [31], p. 48. This ex-
ample is closely related to the example given in section 1.1 below. See also
[5], pp. 29–30 and the references therein.

3. The exchange of intersection and supremum appears in diverse probabilistic
settings: see [29], section 5 and the references therein for various exam-
ples and counterexamples. In particular, the innovations problem and several
variants of Tsirelson’s celebrated counterexample provide a rich setting in
which one can study the exchange of intersection and supremum problem;
see [32, 9, 13, 2] and the references therein. See also [27] for a different
connection to filtering theory.

4. Von Weizsäcker [29] gives a general necessary and sufficient condition for
validity of the exchange of intersection and supremum, which is however
often difficult to apply in practice. It is shown in [7] that the exchange of
intersection and supremum is always valid in a given probability space if
and only if its probability measure is purely atomic.

1.1. A simple counterexample. The gap in Kunita’s proof was discovered in
[1], where a simple counterexample to (1.2) was given. The following variant of
this example will be helpful in understanding our main result.
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Let (ξk)k∈Z be an i.i.d. sequence of (Bernoulli) random variables uniformly dis-
tributed in {0, 1}. Let E = {0, 1}×{0, 1} and F = {0, 1}, and define the stochas-
tic process (Xk, Yk)k∈Z taking values in E × F as follows:

Xn = (ξn−1, ξn), Yn = |ξn − ξn−1|.

It is evident that (Xk, Yk)k∈Z is a stationary hidden Markov model. Note that:

• Clearly ξ0 = (ξn−1 + Yn + · · ·+ Y0) mod 2 for any n ≤ 0. Therefore,

ξ0 is
⋂
n≤0

(
FY
−∞,0 ∨ FX

−∞,n

)
-measurable.

• On the other hand, as P[ξ0 = 0|FY
−∞,0] = 1/2 by direct computation,

ξ0 is not FY
−∞,0-measurable P-a.s.

• (Xk)k∈Z is purely nondeterministic by the Kolmogorov zero-one law.

Therefore, evidently the identity (1.2) does not hold in this example.

1.2. A positive result and a conjecture. In view of the counterexample above,
one might expect that the gap in Kunita’s proof cannot be resolved in general. How-
ever, it turns out that such counterexamples are extremely fragile. For example, let
(γk)k∈Z be an i.i.d. sequence of standard Gaussian random variables, and let us
modify the observation model in the above example to

Yn = |ξn − ξn−1|+ εγn.

Then it can be verified that for arbitrarily small ε > 0, the identity (1.2) holds. It is
only in the degenerate case ε = 0 that (1.2) fails. This suggests that the presence of
some amount of noise, however small, is sufficient in order to ensure the validity
of (1.2). This intuition can be made precise in a surprisingly general setting, which
is established by the following result due to the author [25]. Here the notion of
nondegeneracy formalizes the presence of observation noise.

DEFINITION 1.5. The hidden Markov model (Xk, Yk)k∈Z is said to possess
nondegenerate observations if there exist a σ-finite reference measure ϕ on F and
a strictly positive measurable function g : E × F → ]0,∞[ such that

Φ(x,A) =
∫

1A(y) g(x, y) ϕ(dy) for all x ∈ E, A ∈ B(F ).

THEOREM 1.6 ([25]). Given a stationary hidden Markov model (Xk, Yk)k∈Z
as defined in this section, with P -invariant measure P[X0 ∈ · ] := µ, assume that:
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1. The hidden process (Xk)k∈Z is absolutely regular:

(1.3) E
[
‖P[Xn ∈ · |X0]− µ‖TV

] n→∞−−−→ 0.

2. The observations are nondegenerate.

Then the identity (1.1) holds true.

This result resolves the validity of (1.1) in many cases of interest. Indeed, the
mixing assumption (1.3) holds in a very broad class of applications, and a well-
established theory provides a powerful set of tools to verify this assumption [19].
Nonetheless, the assumption (1.3) is strictly stronger than the assumption that the
hidden process is purely nondeterministic; the latter is equivalent to

E
[
|P[Xn ∈ A|X0]− µ(A)|

] n→∞−−−→ 0 for all A ∈ B(E)

(see [24], Proposition 3). If, as one might conjecture, nondegeneracy of the obser-
vations suffices to justify the exchange of intersection and supremum (1.2), then
Theorem 1.6 should already hold when the hidden process is only purely non-
deterministic, i.e., Kunita’s claim would hold true whenever the observations are
nondegenerate. This stronger result was conjectured in [25], pp. 1877–1878.

CONJECTURE 1.7. If the hidden process is purely nondeterministic and the
observations are nondegenerate, then (1.1) holds true.

Conjecture 1.7 seems tantalizingly close to Theorem 1.6, particularly if we
rephrase (1.3) in terms of tail σ-fields. Indeed, let Px be a version of the regu-
lar conditional probability PX0 = P[ · |X0]. Then, from the results of [25], for
example, one may read off the following equivalent formulation of (1.3):

There exists a set E0 ∈ B(E) such that µ(E0) = 1 and

for all A ∈
⋂

n≤0 FX
−∞,n and x, y ∈ E0 Px[A] = Py[A] ∈ {0, 1}.

On the other hand, clearly (Xk)k∈Z is purely nondeterministic if and only if

For any A ∈
⋂

n≤0 FX
−∞,n, there exists E0 ∈ B(E) (depending possibly

on A) such that µ(E0) = 1 and for all x, y ∈ E0 Px[A] = Py[A] ∈ {0, 1}.

Thus the difference between the assumptions is that in the latter, the set E0 may
depend on A, while in the former E0 does not depend on A.



6 RAMON VAN HANDEL

1.3. Main result. The main result of this paper is that Conjecture 1.7 is false.
We establish this by exhibiting a counterexample.

THEOREM 1.8. There exists a stationary hidden Markov model (Xk, Yk)k∈Z in
a Polish state space E×F such that the hidden process is purely nondeterministic
and the observations are nondegenerate, but nonetheless (1.1) fails to hold.

Moreover, this model may be constructed such that the transition kernel P of
the hidden process is Feller, and such that the observations are of standard additive
noise type Yn = h(Xn)+εγn where h : E → R3 is a bounded continuous function,
ε > 0 and (γk)k∈Z are standard Gaussian random variables in R3.

The counterexample to Conjecture 1.7, whose existence is guaranteed by this
result, must surely yield a nasty filtering problem! Yet, Theorem 1.8 indicates the
model need not even be too nasty: the example can be chosen to satisfy standard
regularity assumptions and using a perfectly ordinary observation model. It there-
fore seems doubtful that the general result of Theorem 1.6 can be substantially
weakened; absolute regularity (1.3) is evidently essential.

Let us briefly explain the intuition behind the counterexample. We aim to mimic
the noiseless counterexample in section 1.1. The idea is to construct a variant of that
model which has very long memory: we can then hope to average out the additional
observation noise (needed to make the observations nondegenerate), reverting es-
sentially to the noiseless case. On the other hand, we cannot give the process such
long memory that it ceases to be purely nondeterministic. The following construc-
tion strikes a balance between these competing goals. We reconsider the example
of section 1.1 not as a time series, but as a random scenery. We then construct
a stochastic process by running a random walk on the integers, and reporting at
each time the value of the scenery at the current location of the walk. The resulting
random walk in random scenery [8, 11] is purely nondeterministic, yet has a very
long memory due to the recurrence of the random walk. The latter is exploited by
a remarkable scenery reconstruction result of Matzinger and Rolles [16] which al-
lows us to average out the observation noise. Theorem 1.8 follows essentially by
combining the scenery reconstruction with the example of section 1.1, except that
we must work in a slightly larger state space for technical reasons.

REMARK 1.9. Random walks in random scenery are closely related to the
T, T−1-process, which was conjectured by Weiss ([30], p. 682) and later proved
by Kalikow [10] to be a natural example of a K-process that is not a B-process. In
the language of ergodic theory, a purely nondeterministic process is a K-process
[20] while a process that satisfies (1.1) is an FY

−∞,0-relative K-process [21]. Our
example may thus be interpreted as a K-process that is not K relative to a nonde-
generate observation process. The absolute regularity property (1.3) is equivalent
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to the weak Bernoulli property in ergodic theory (cf. [28]).

We end this section with a brief discussion of the practical implications of The-
orem 1.8. The mixing assumption (1.3) required by Theorem 1.6 states that the
law of the hidden process converges in the sense of total variation to the invari-
ant measure µ for almost every initial condition. This occurs in a wide variety of
applications [19], as long as the hidden state space E is finite dimensional. In in-
finite dimensions, however, most probability measures are mutually singular and
total variation convergence is rare. When the hidden process is defined by the so-
lution of a stochastic partial differential equation, for example, typically the best
we can hope for is weak convergence to the invariant measure. In this case (1.3)
fails, though the process is still purely nondeterministic. Our main result indicates
that nice ergodic properties of the nonlinear filter cannot be taken for granted in
the infinite dimensional setting. This is unfortunate, as infinite dimensional filter-
ing problems appear naturally in important applications such as weather prediction
and geophysical or oceanographic data assimilation (see, e.g., [14]), while ergodic-
ity of the nonlinear filter is essential to reliable performance of filtering algorithms
[26]. The current state of knowledge on the ergodic theory of infinite dimensional
filtering problems appears to be essentially nonexistent.

The remainder of this paper is organized as follows. In section 2 we introduce
the various stochastic processes needed to construct our counterexample. Sections
3 and 4 are devoted to the proof of Theorem 1.8. The appendix reviews the ergodic
theory of nonlinear filters (including a proof of Theorem 1.1).

2. Construction. In the following, we will work on the canonical probability
space (Ω,F,P) which supports the following independent random variables.

• (ηk)k∈Z, ξ0 are i.i.d. random variables, uniformly distributed in {0, 1, 2}.
• (δk)k∈Z are i.i.d. random variables, uniformly distributed in {−1, 1}.
• (γk)k∈Z are i.i.d. standard Gaussian random variables in R3.

Denote by {e(0), e(1), e(2)} ⊂ R3 the canonical basis in R3.
We now proceed to define various stochastic processes. Define recursively

ξn =

{
(ξn−1 + ηn) mod 3 for n > 0,
(ξn+1 − ηn+1) mod 3 for n < 0.

Note that (ξk)k∈Z is an i.i.d. sequence uniformly distributed in {0, 1, 2}, and

ηn = (ξn − ξn−1) mod 3.

Next, we define the simple random walk (Nk)k∈Z on Z as

Nn =

{ ∑n
k=1 δk for n ≥ 0,

−
∑0

k=n+1 δk for n < 0.
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We can now define the random walk in random scenery (Zk)k∈Z which takes values
in the set {−1, 1} × {0, 1, 2} × {0, 1, 2} := I as follows:

Zn = (Zn,0, Zn,1, Zn,2) = (δn+1, ξNn−1, ξNn).

It is not difficult to see that (Zn)n∈Z is a stationary process. We finally make the
process Markovian by defining the IZ+-valued process (Xn)n∈Z as

Xn = (Zk)k≥n (that is, Xn,k = Zn+k for k ∈ Z+),

and we define the R3-valued observation process (Yk)k∈Z as

Yn = h(Xn) + εγn = e(ηNn) + εγn,

where ε > 0 is a fixed constant and h : IZ+ → R3 is defined as

h(x) = e((x0,2 − x0,1) mod 3).

It is evident that the pair (Xn, Yn)n∈Z defines a stationary hidden Markov model
taking values in the Polish space IZ+ × R3 and with nondegenerate observations.

Let us define the σ-fields

FX
m,n = σ{Xk : k ∈ [m,n]}, FY

m,n = σ{Yk : k ∈ [m,n]},

for m,n ∈ Z, m ≤ n. The σ-fields FX
−∞,n, FX

m,∞, etc., are defined in the usual
fashion (for example, FX

−∞,n =
∨

m≤n FX
m,n). Our main result is now as follows.

THEOREM 2.1. For the hidden Markov model (Xk, Yk)k∈Z with nondegener-
ate observations, as defined in this section, the following hold:

1. The future tail σ-field

T :=
⋂
n≥0

FX
n,∞ is P-a.s. trivial.

2. We have the strict inclusion⋂
n≥0

(FY
0,∞ ∨ FX

n,∞) ) FY
0,∞ P-a.s.,

provided that ε > 0 is chosen sufficiently small.

The proof of this result, given in section 3 below, is based on mixing and recon-
struction results for random walks in random scenery [17, 16].

The model of Theorem 2.1 is time-reversed from the counterexample to be pro-
vided by Theorem 1.8. It is immediate from the Markov property, however, that the
time reversal of a stationary hidden Markov model yields again a stationary hidden
Markov model. Therefore, the following corollary is immediate:
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COROLLARY 2.2. For ε > 0 sufficiently small, the time-reversed model

(X̃k, Ỹk)k∈Z := (X−k, Y−k)k∈Z

is purely nondeterministic and has nondegenerate observations, but (1.1) fails.

This proves the first part of Theorem 1.8 and settles Conjecture 1.7. However,
when constructed in this manner, the transition kernel of (X̃k)k∈Z cannot be chosen
to satisfy the Feller property on IZ+ . Some further effort is therefore required to
complete the proof of Theorem 1.8, which we postpone to section 4.

3. Proof of Theorem 2.1.

3.1. First part. Consider the stochastic process ξ̃n := (ξn−1, ξn). It is easily
seen that this is a stationary, irreducible and aperiodic Markov chain taking values
in the space {0, 1, 2}×{0, 1, 2}, so that (ξ̃k)k∈Z is an ergodic process. The triviality
of T now follows from the Theorem in [17], p. 267 (this follows in particular from
equation (3) in [17] using [23], Theorem 7.9).

3.2. Second part. Consider the modified observation process (Y ′
k)k∈Z taking

values in {0, 1, 2}, defined as follows:

Y ′
n = argmax

i=0,1,2
Yn,i.

That is, Y ′
n is the coordinate index of the largest component of the vector Yn ∈ R3.

By symmetry, it is easily seen that for some δ > 0 depending on ε

P[Y ′
n = i|ηNn = j] =

δ

3
∀ i 6= j, P[Y ′

n = i|ηNn = i] = 1− 2δ

3
∀i,

where δ ↓ 0 as ε ↓ 0. The conditional law of Y ′
n can therefore be generated as

follows: draw a Bernoulli random variable with parameter δ; if it is zero, set Y ′
n =

ηNn , otherwise let Y ′
n be a random draw from the uniform distribution on {0, 1, 2}.

We can now apply the scenery reconstruction result from [16].

DEFINITION 3.1. Let x, y ∈ {0, 1, 2}Z. We write x ≈ y if there exist a ∈
{−1, 1} and b ∈ Z such that xn = yan+b for all n ∈ Z (that is, x ≈ y iff the
sequences x and y agree up to translation and/or reflection).

THEOREM 3.2 ([16]). There is a measurable map ι : {0, 1, 2}Z+ → {0, 1, 2}Z

such that P[ι((Y ′
k)k≥0) ≈ (ηk)k∈Z] = 1 provided ε > 0 is sufficiently small.
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From now on, let us fix ε > 0 sufficiently small and the map ι as in Theorem
3.2. By the definition of the equivalence relation ≈, there exist FY

0,∞ ∨ F
η
−∞,∞-

measurable random variables A and B, taking values in {−1, 1} and Z, respec-
tively, such that ι((Y ′

k)k≥0)n = ηAn+B P-a.s. for all n ∈ Z.

REMARK 3.3. Let us note that, even though by construction (ηAk+B)k∈Z is
a.s. FY

0,∞-measurable, it is not possible for the random variables A and B to be
FY

0,∞-measurable; see [11], Remark (ii). This will not be a problem for us.

The point of the above construction is the following claim: the random variable
ξB is a.s.

⋂
n(FY

0,∞ ∨ FX
n,∞)-measurable, but it is not a.s. FY

0,∞-measurable. This
clearly suffices to prove the result. It thus remains to establish the claim.

LEMMA 3.4. The random variable ξB is P-a.s.
⋂

n(FY
0,∞∨FX

n,∞)-measurable.

PROOF. Fix n ∈ Z. Define the random variables (τk)k∈Z as

τj = inf

{
k ≥ 0 :

k−1∑
i=0

Xn,i,0 = j

}
,

and define the random variables (ξ′k)k∈Z as

ξ′j = Xn,τj ,2 1τj<∞.

Then clearly (ξ′k)k∈Z is FX
n,∞-measurable and P[(ξ′k)k∈Z ≈ (ξk)k∈Z] = 1.

We now claim that we can “align” (ξ′k)k∈Z with (ηAk+B)k∈Z. Indeed, note that
for any b ∈ Z, we can estimate

P [ηk = ηk+b for all k ∈ Z] ≤ P [η0 = ηkb for all k ≥ 1] = 0,

P [ηk = η−k+b for all k ∈ Z] ≤
∞∏

k=b

P [ηk = η−k+b] = 0,

where we have used that (ηk)k∈Z are i.i.d. and nondeterministic. Therefore

P [there exist a ∈ {−1, 1}, b ∈ Z such that ηk = ηak+b for all k ∈ Z] = 0.

In particular, if we define (η′k)k∈Z as

η′j = (ξ′j − ξ′j−1) mod 3,

it follows that there must exist P-a.s. unique FY
0,∞ ∨ FX

n,∞-measurable random
variables A′ and B′, taking values in {−1, 1} and Z, respectively, such that

η′A′j+B′ = ηAj+B for all j ∈ Z P-a.s.
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It follows by uniqueness that

ξ′A′j+B′ = ξAj+B for all j ∈ Z P-a.s.

In particular, ξ′B′ = ξB P-a.s. But ξ′B′ is FY
0,∞∨FX

n,∞-measurable by construction.
Therefore, we have shown that ξB is P-a.s. FY

0,∞∨FX
n,∞-measurable. As the choice

of n was arbitrary, the proof is easily completed.

LEMMA 3.5. The random variable ξB is not P-a.s. FY
0,∞-measurable.

PROOF. Note that P-a.s.

P[ξB = i, B = j|Fη
−∞,∞ ∨ Fδ

−∞,∞ ∨ F
γ
−∞,∞]

= 1B=j P[ξj = i|Fη
−∞,∞ ∨ Fδ

−∞,∞ ∨ F
γ
−∞,∞]

= 1B=j {P[ξ0 = i|Fη
−∞,∞ ∨ Fδ

−∞,∞ ∨ F
γ
−∞,∞] ◦Θj}

= 1B=j P[ξ0 = i].

Here we have used that B is FY
0,∞ ∨ F

η
−∞,∞-measurable for the first equality,

stationarity of the law of (ξk, ηk, δk, γk)k∈Z for the second equality (Θ denotes the
canonical shift), and independence of ξ0 and (ηk, δk, γk)k∈Z for the third equality.
Summing over j, and conditioning on FY

0,∞, we obtain

P[ξB = i|FY
0,∞] = P[ξ0 = i] = 1/3 P-a.s.

Thus ξB is independent from FY
0,∞, hence not P-a.s. FY

0,∞-measurable.

REMARK 3.6. The additive noise model Yn = h(Xn) + εγn is inessential to
the proof; we could have just as easily started from the {0, 1, 2}-valued observation
model Y ′

n as in [16]. The only reason we have chosen to construct our example with
the additive noise model is to make the point that there is nothing special about the
choice of observations: one does not have to “cook up” a complicated observation
model to make the counterexample work. All the unpleasantness arises from the
ergodic theory of random walks in random scenery.

4. Proof of Theorem 1.8. For any x ∈ IZ+ , define

τj(x) = inf

{
k ≥ 0 :

k−1∑
i=0

xi,0 = j

}
.

Now define the space

E :=
{
x ∈ IZ+ : τj(x) < ∞ for all j ∈ Z

}
⊂ IZ+ .

We endow E with the topology of pointwise convergence (inherited from IZ+).
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LEMMA 4.1. E is Polish.

PROOF. For x, x′ ∈ E, define the metric

d(x, x′) :=
∞∑

k=0

2−k 1xk 6=x′
k

+
∞∑

j=−∞
2−|j| {|τj(x)− τj(x′)| ∧ 1}.

It suffices to prove that d metrizes the topology of pointwise convergence in E
(which is certainly separable) and that (E, d) is a complete metric space.

We first prove that d metrizes the topology of pointwise convergence. Clearly
d(xn, x) → 0 as n → ∞ implies that xn → x pointwise. Conversely, suppose
that xn → x as n → ∞ pointwise. It suffices to show that τj(xn) → τj(x) as
n → ∞ for all j ∈ Z. But as τj(x) < ∞ by assumption (as x ∈ E), it follows
that τj(xn) = τj(x) whenever xn,k = xk for all k ≤ τj(x), which is the case for n
sufficiently large by pointwise convergence. This establishes the claim.

It remains to show that (E, d) is complete. To this end, let (xn)n∈N be a Cauchy
sequence for the metric d. Then it is clearly Cauchy for

d̃(x, x′) :=
∞∑

k=0

2−k 1xk 6=x′
k
,

which defines a complete metric for the topology of pointwise convergence on
IZ+ ⊃ E. Therefore, there exists x ∈ IZ+ such that xn → x as n →∞ pointwise.
It suffices to show that x ∈ E. Indeed, when this is the case, it follows immedi-
ately that d(xn, x) → 0 as n → ∞ (as we have shown that d metrizes pointwise
convergence in E), thus proving completeness of (E, d).

To complete the proof, suppose that x 6∈ E. Then there exists j ∈ Z such that
τj(x) = ∞. In particular, if xn,k = xk for all k ≤ N < ∞, then τj(xn) > N . As
this is the case for n sufficiently large by pointwise convergence, it follows that

sup
m≥n

d(xm, xn) ≥ 2−|j| sup
m≥n

|τj(xm)− τj(xn)| ∧ 1 = 2−|j| for all n ≥ 1.

This contradicts the Cauchy property of (xn)n∈N.

Denote by P[X0 ∈ · ] := µ the invariant measure of the IZ+-valued Markov
process (Xk)k∈Z defined in section 2. It is clear that E is measurable as a subset of
IZ+ and that µ(E) = 1. We are going to construct a Feller transition kernel P̃ from
E to E with stationary measure µ (restricted to E), such that the corresponding
stationary E-valued Markov process coincides a.s. with the stationary IZ+-valued
Markov process (X̃k)k∈Z defined in section 2.
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LEMMA 4.2. Define the transition kernel P̃ : E ×B(E) → [0, 1] as follows:

P̃ (x, {T1(x)}) = P̃ (x, {T−1(x)}) =
1
2
,

where Ta : E → E, a ∈ {−1, 1} are defined as

Ta(x) = [(a, xτ−a(x),1, xτ−a(x),2), x].

Then the law under P of the process (X̃k)k∈Z defined in section 2 is that of a sta-
tionary Markov process taking values in E with transition kernel P̃ and invariant
measure µ. Moreover, P̃ satisfies the Feller property.

PROOF. It follows along the lines of the proof of Lemma 4.1 that the functions
T1 and T−1 are continuous. Therefore, the Feller property of P̃ is immediate.

To complete the proof, it suffices (as clearly X̃n ∈ E P-a.s. for all n ∈ Z and
as (X̃k)k∈Z is a stationary Markov process) to show that

P[X̃1 ∈ A|X̃0] = P̃ (X̃0, A) P-a.s. for all A ∈ B(E).

To this end, note that

X̃1 = [(δ0, ξ−δ0−1, ξ−δ0), X̃0] = [(δ0, X̃0,τ−δ0
(X̃0),1, X̃0,τ−δ0

(X̃0),2), X̃0] P-a.s.

Moreover, as X̃0 is F
ξ
−∞,∞∨Fδ

1,∞-measurable, it follows from the construction in
section 2 that δ0 is independent of X̃0. The result follows directly.

PROOF OF THEOREM 1.8. Construct the canonical E × R3-valued stationary
hidden Markov model (X ′

k, Y
′
k)k∈Z such that the hidden process (X ′

k)k∈Z has tran-
sition kernel P̃ and invariant measure X ′

0 ∼ µ, and with the observation model
Y ′

n = h(X ′
n) + εγn where (γk)k∈Z is an i.i.d. sequence of standard Gaussian ran-

dom variables in R3 independent of (X ′
k)k∈Z. Clearly E and R3 are Polish by

Lemma 4.1, the observations are nondegenerate, h : E → R3 (defined in section
2) is bounded and continuous, and P̃ is Feller by Lemma 4.2. Moreover, the law of
the model (X ′

k, Y
′
k)k∈Z coincides with that of (X̃k, Ỹk)k∈Z as defined in section 2.

Therefore, by Corollary 2.2, (X ′
k)k∈Z is purely nondeterministic but (1.1) fails for

this model when ε > 0 is chosen sufficiently small.

APPENDIX A: ERGODIC THEORY OF NONLINEAR FILTERS

The goal of the appendix is to collect a few basic results on the ergodic theory of
nonlinear filters. Similar results appear in various forms in the literature, see, for ex-
ample, [3, 6] and the references therein. However, all known proofs require various
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simplifying assumptions, such as the Feller property or irreducibility of the hid-
den process, nondegenerate observations, etc. As a general result does not appear
to be readily available in the literature, we provide here a largely self-contained
treatment culminating in the proof of Theorem 1.1.

Let us note that analogous results can be obtained for continuous time, either by
direct arguments (cf. [33]) or by reduction to discrete time (as in [25]).

A.1. Markov property of the filter. As in the introduction, we let E and F be
Polish spaces, let P : E ×B(E) → [0, 1] and Φ : E ×B(F ) → [0, 1] be the tran-
sition kernels, and let µ : B(E) → [0, 1] be the P -invariant measure defining the
law of the stationary hidden Markov model (Xk, Yk)k∈Z. We denote by P(G) the
space of probability measures on the Polish space G, endowed with the topology
of weak convergence of probability measures.

LEMMA A.1 ([18], Lemma 1). For ν ∈ P(E), define the probability measure

Pν(A) =
∫

1A(x, y) ν(dx′) P (x′, dx) Φ(x, dy) for all A ∈ B(E × F ).

Denote by X : E×F → E and Y : E×F → F the canonical projections. There
exists a measurable map Π : P(E)× F → P(E) such that Π(ν, Y ) is a version of
the regular conditional probability Pν(X ∈ · |Y ) for every ν ∈ P(E).

We now define the transition kernel Π : P(E)×B(P(E)) → [0, 1] as follows:

Π(ν, A) =
∫

1A(Π(ν, y)) ν(dx′) P (x′, dx) Φ(x, dy).

We claim that the nonlinear filter (πk)k≥0 is a P(E)-valued Markov process with
transition kernel Π. To prove this we will need the following result on conditioning
under a regular conditional probability due to von Weizsäcker.

LEMMA A.2 ([29]). Let G, G′ and H be Polish spaces, and denote by g, g′ and
h the canonical projections from G×G′×H on G, G′ and H , respectively. Let Q
be a probability measure on G×G′×H , and let q·,· : G×G′×B(H) → [0, 1] and
q· : G × B(G′ ×H) → [0, 1] be versions of the regular conditional probabilities
Q[h ∈ · |g, g′] and Q[(g′, h) ∈ · |g], respectively. Then for Q-a.e. x ∈ G, the
kernel qx,g′ [ · ] is a version of the regular conditional probability qx[h ∈ · |g′].

PROPOSITION A.3. For n ≥ 0, let the nonlinear filter πn be a version of the
regular conditional probability P[Xn ∈ · |Y1, . . . , Yn]. Then (πk)k≥0 is a P(E)-
valued Markov process with transition kernel Π and initial measure π0 ∼ δµ.
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PROOF. Fix n ≥ 1. It is easily seen that for any B ∈ B(E × F )

P[(Xn, Yn) ∈ B|Y1, . . . , Yn−1] =
∫

1A(x, y) πn−1(dx′) P (x′, dx) Φ(x, dy).

Using Lemmas A.2 and A.1 and uniqueness of regular conditional probabilities,
we find the recursive formula πn = Π(πn−1, Yn) P-a.s. It follows easily that

P[πn ∈ A|Y1, . . . , Yn−1] = Π(πn−1, A) P-a.s. for all A ∈ B(P(E)),

completing the proof.

We now establish the two elementary facts stated in the introduction.

LEMMA A.4. Let m ∈ P(P(E)) be any Π-invariant probability measure. Then
the barycenter of m is a P -invariant probability measure.

PROOF. Let m ∈ P(E) be the barycenter of m. By definition,

m(A) =
∫

ν(A) m(dν) =
∫

ν(A) Π(ν ′, dν) m(dν ′) for A ∈ B(E).

But note that
∫

ν(A) Π(ν ′, dν) = EPν′ [Pν′(X ∈ A|Y )] =
∫

P (x,A) ν ′(dx) by
the definition of Π. It follows directly that mP = m, that is, m is P -invariant.

LEMMA A.5. There is at least one Π-invariant measure with barycenter µ.

PROOF. For n ∈ Z, let π̃n be a version of the regular conditional probability
P[Xn ∈ · |FY

−∞,n]. Proceeding exactly as in the proof of Proposition A.3, we find
that (π̃k)k∈Z is a P(E)-valued Markov process with transition kernel Π. But as the
underlying hidden Markov model (Xk, Yk)k∈Z is stationary, clearly (π̃k)k∈Z is also
stationary. Therefore, the law of π̃0 is a Π-invariant measure, and its barycenter is
µ by the tower property of the conditional expectation.

A.2. Proof of Theorem 1.1: sufficiency. The proof is essentially contained in
Kunita [12], though we are careful here not to exploit any unnecessary assump-
tions. The idea is to introduce a suitable randomization, which is most conve-
niently done in a canonical probability model. To this end, define the Polish space
Ω0 = P(E)×E× (E×F )N with the canonical projections m0 : Ω0 → P(E) and
(with a slight abuse of notation) X0 : Ω0 → E, (Xk, Yk)k≥1 : Ω0 → (E × F )N.
Given m ∈ P(P(E)), we define a probability measure Pm on Ω0 with the finite
dimensional distributions

Pm((m0, X0, . . . , Xn, Y1, . . . , Yn) ∈ A) =∫
1A(ν, x0, . . . , xn, y1, . . . , yn) ν(dx0) P (x0, dx1) Φ(x1, dy1) · · ·

P (xn−1, dxn) Φ(xn, dyn) m(dν).
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We now define for n ≥ 0 three distinguished nonlinear filters:

πmin
n := Pm[Xn ∈ · |Y1, . . . , Yn],

πm
n := Pm[Xn ∈ · |m0, Y1, . . . , Yn],

πmax
n := Pm[Xn ∈ · |m0, X0, Y1, . . . , Yn].

We now have the following easy result. Here δµ, εµ ∈ P(P(E)) are defined by
δµ(A) = 1µ∈A (as usual) and εµ(A) =

∫
1δx∈A µ(dx).

LEMMA A.6. Let m ∈ P(P(E)) be any probability measure with barycen-
ter µ. Then (πmin

n )n≥0, (πm
n )n≥0, (πmax

n )n≥0 are P(E)-valued Markov processes
under Pm with transition kernel Π and initial measures δµ, m, εµ, respectively.

PROOF. The proof is identical to that of Proposition A.3.

The following result completes the proof of sufficiency.

PROPOSITION A.7. Let p ∈ N, let fi : E → R, i = 1, . . . , p be bounded
measurable functions, and let κ : Rp → R be convex. Define the bounded measur-
able function F : P(E) → R as F (ν) = κ (

∫
f1(x) ν(dx), . . . ,

∫
fp(x) ν(dx)).

Finally, let m ∈ P(P(E)) be any Π-invariant measure with barycenter µ. Then

E
[
κ

(
E[f1(X0)|FY

−∞,0], . . . ,E[fp(X0)|FY
−∞,0]

)]
≤

∫
F (ν) m(dν)

≤ E
[
κ

(
E[f1(X0)|G−∞,0], . . . ,E[fp(X0)|G−∞,0]

)]
,

where G−∞,0 :=
⋂

n(FY
−∞,0 ∨ FX

−∞,n). In particular, if (1.1) holds, m coincides
with the distinguished Π-invariant measure defined in the proof of Lemma A.5.

PROOF. Note that as κ is convex, it is continuous, hence F is bounded and
measurable. It is an immediate consequence of Jensen’s inequality that

Em[F (πmin
n )] ≤ Em[F (πm

n )] =
∫

F (ν) m(dν) ≤ Em[F (πmax
n )]

for every n ≥ 0, where we have used Lemma A.6 and the Π-invariance of m to
obtain the middle equality. Using Lemma A.6 and the stationarity of (Xk, Yk)k∈Z
under P, it is also easily seen that the laws of πmin

n (f), πmax
n (f) under Pm coincide

with the laws of E[f(X0)|Y−n+1, . . . , Y0], E[f(X0)|X−n, Y−n+1, . . . , Y0] under
P, respectively. We therefore have for every n ≥ 0

E
[
κ

(
E[f1(X0)|FY

−n+1,0], . . . ,E[fp(X0)|FY
−n+1,0]

)]
≤

∫
F (ν) m(dν)

≤ E
[
κ

(
E[f1(X0)|G−n,0], . . . ,E[fp(X0)|G−n,0]

)]
,



EXCHANGE OF INTERSECTION AND SUPREMUM 17

where G−n,0 := FY
−∞,0 ∨ FX

−∞,−n and we have used the fact that

E[f(X0)|X−n, Y−n+1, . . . , Y0] = E[f(X0)|G−n,0] P-a.s.

as FX
−n+1,0 ∨FY

−n+1,0 is conditionally independent of FX
−∞,−n−1 ∨FY

−∞,−n given
X−n. But as κ is continuous, the equation display in the statement of the result
follows by letting n →∞ using the martingale convergence theorem.

Now suppose that (1.1) holds, and denote by m0 be the distinguished Π-invariant
measure obtained in the proof of Lemma A.5. Then we have evidently shown
that

∫
F (ν) m(dν) =

∫
F (ν) m0(dν) for all functions F of the form F (ν) =

κ (
∫

f1(x) ν(dx), . . . ,
∫

fp(x) ν(dx)) for any p, bounded measurable f1, . . . , fp

and convex κ. We claim that this class of functions is measure-determining, so we
can conclude that m = m0. To establish the claim, first note that by the Stone-
Weierstrass theorem, any continuous function on Rp can be approximated uni-
formly on any compact set by the difference of convex functions. As f1, . . . , fp

are bounded (hence take values in a compact subset of Rp), it therefore suffices
to assume that κ is continuous rather than convex. Next, note that the indicator
function 1A of any open subset A of Rp can be obtained as the increasing limit
of nonnegative continuous functions. It therefore suffices to assume that κ is the
indicator of an open subset of Rp. But any probability measure on a Polish space
is regular, so it suffices to assume that κ is the indicator function of a Borel subset
of Rp. The proof is completed by an application of the Dynkin system lemma.

A.3. Proof of Theorem 1.1: necessity. We will in fact prove necessity under
a weaker assumption than stated in the theorem: the key assumption is

(A.1)
⋂
n≤0

(
FY
−∞,k ∨FX

−∞,n

)
= FY

1,k ∨
⋂
n≤0

(
FY
−∞,0∨FX

−∞,n

)
P-a.s. ∀ k ∈ N.

The assumption in the theorem that Φ possesses a transition density only enters
the proof inasmuch as it guarantees the validity (A.1). Let us note that the assump-
tion of the theorem is itself weaker than nondegeneracy of the observations, as the
transition density is not required to be strictly positive here.

LEMMA A.8. Suppose there exists a σ-finite reference measure ϕ on F and a
transition density g : E×F → [0,∞[ such that Φ(x,A) =

∫
1A(y) g(x, y) ϕ(dy)

for all x ∈ E, A ∈ B(F ). Then the identity (A.1) holds true.

PROOF. It is easily seen that the assumption guarantees the existence of a prob-
ability measure Q such that P � Q and FY

1,k is independent of FX
−∞,0 ∨ FY

−∞,0

under Q. Thus the identity in (A.1) holds Q-a.s., and therefore P-a.s.

The proof is based on the following result.
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LEMMA A.9. Suppose there exists a unique Π-invariant measure with barycen-
ter µ and that assumption (A.1) holds. Then we have for every A ∈ B(E)

P
[
X0 ∈ A

∣∣⋂
n

(
FY
−∞,0 ∨ FX

−∞,n

)]
= P

[
X0 ∈ A

∣∣FY
−∞,0

]
P-a.s.

PROOF. Define the regular conditional probabilities π0
k = P[Xk ∈ · |FY

−∞,k]
and π1

k = P[Xk ∈ · |
⋂

n(FY
−∞,k ∨ FX

−∞,n)], and denote by m0,m1 ∈ P(P(E))
the laws of π0

0 and π1
0 , respectively. Then m0 is the Π-invariant measure defined in

the proof of Lemma A.5. We claim that m1 is also Π-invariant. Indeed, this follows
as a variant of Lemma A.2 (pp. 95–96 in [29]) and the assumption (A.1) imply
that π1

k = Π(π1
k−1, Yk) P-a.s., so that (π1

k)k∈Z is Markov with transition kernel Π,
while (π1

k)k∈Z is easily seen to be a stationary process.
Clearly m0 and m1 both have barycenter µ, so by assumption m0 = m1. Thus

E[(π1
k(A)− π0

k(A))2] = E[(π1
k(A))2]−E[(π0

k(A))2] = m1(FA)−m0(FA) = 0

for every A ∈ B(E), where we defined FA : ν 7→ (ν(A))2. It follows that π1
0(A) =

π0
0(A) P-a.s. for every A ∈ B(E), which completes the proof.

To complete the proof, we require the following easy variant of Lemma A.1.

LEMMA A.10. For ν ∈ P(E) and k ∈ N, define the probability measure

P k
ν (A) =

∫
1A(x0, y1, . . . , yk) ν(dx0) P (x0, dx1) Φ(x1, dy1) · · ·

P (xk−1, dxk) Φ(xk, dyk) for A ∈ B(E × F k).

Denote by X : E × F k → E and Y k : E × F k → F k the canonical projections.
There exists a measurable map Σk : P(E)×F k → P(E) such that Σk(ν, Y k) is a
version of the regular conditional probability P k

ν (X ∈ · |Y k) for every ν ∈ P(E).

We now complete the proof.

PROPOSITION A.11. Suppose there exists a unique Π-invariant measure with
barycenter µ and that assumption (A.1) holds. Then (1.1) holds true.

PROOF. As
⋃

k≤0 L1(FX
k,0 ∨ FY

k,0,P) is dense in L1(FX
−∞,0 ∨ FY

−∞,0,P), it
suffices to show that for every k ≤ 0 and Z ∈ L1(FX

k,0 ∨ FY
k,0,P)

E
[
Z

∣∣⋂
n

(
FY
−∞,0 ∨ FX

−∞,n

)]
= E

[
Z

∣∣FY
−∞,0

]
P-a.s.

However, for Z ∈ L1(FX
k,0 ∨ FY

k,0,P), we have by the Markov property

E
[
Z

∣∣⋂
n

(
FY
−∞,0 ∨ FX

−∞,n

)]
= E

[
E[Z|σ{Xk} ∨ FY

k,0]
∣∣⋂

n

(
FY
−∞,0 ∨ FX

−∞,n

)]
.
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It therefore suffices to consider Z ∈ L1(σ{Xk} ∨ FY
k,0,P). But note that the class

of random variables {ZXZY : ZX ∈ L∞(σ{Xk},P), ZY ∈ L∞(FY
k,0,P)} is

total in L1(σ{Xk} ∨ FY
k,0,P). Therefore, it suffices to show that

P
[
Xk ∈ A

∣∣⋂
n

(
FY
−∞,0 ∨ FX

−∞,n

)]
= P

[
Xk ∈ A

∣∣FY
−∞,0

]
P-a.s.

for all k ≤ 0 and A ∈ B(E). For k = 0, this follows directly from Lemma A.9.
For k < 0, we proceed as follows. Define π0

k and π1
k as in the proof of Lemma

A.9. It is easily established using Lemma A.2 that

P
[
Xk ∈ ·

∣∣FY
−∞,0

]
= Σk(π0

k, Yk+1, . . . , Y0) P-a.s.

Similarly, a variant of Lemma A.2 (pp. 95–96 in [29]) and (A.1) imply

P
[
Xk ∈ ·

∣∣⋂
n

(
FY
−∞,0 ∨ FX

−∞,n

)]
= Σk(π1

k, Yk+1, . . . , Y0) P-a.s.

But by Lemma A.9, applying the Dynkin system lemma with a countable gener-
ating system, and using that (Xk, Yk)k∈Z is stationary under P, it follows directly
that π0

k = π1
k P-a.s. This completes the proof.
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[30] WEISS, B. (1972). The isomorphism problem in ergodic theory. Bull. Amer. Math. Soc. 78,

668–684.
[31] WILLIAMS, D. (1991). Probability with martingales. Cambridge University Press.
[32] YANO, K. AND YOR, M. (2011). Around Tsirelson’s equation, or: the evolution process may

not explain everything. preprint, arxiv:0906.3442.
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