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Sets and Functions

This introductory chapter is devoted to general notions regarding sets, functions, se-
quences, and series. The aim is to introduce and review the basic notation, terminology,
conventions, and elementary facts.

1 Sets

A setis a collection of some objects. Given a set, the objects that form it are called its
elements. Given a setA, we writex ∈ A to mean thatx is an element ofA. To say that
x ∈ A, we also use phrases likex is in A, x is a member ofA, x belongs toA, andA
includesx.

To specify a set, one can either write down all its elements inside curly brackets (if
this is feasible), or indicate the properties that distinguish its elements. For example,
A = {a, b, c} is the set whose elements area, b, andc, andB = {x : x > 2.7} is the
set of all numbers exceeding2.7. The following are some special sets:

∅: Theempty set. It has no elements.

N = {1, 2, 3, . . .}: Set ofnatural numbers.

Z = {0, 1,−1, 2,−2, . . .}: Set ofintegers.

Z+ = {0, 1, 2, . . .}: Set ofpositive integers.

Q = {m
n : m ∈ Z, n ∈ N}: Set ofrationals.

R = (−∞,∞) = {x : −∞ < x < +∞}: Set ofreals.

[a, b] = {x ∈ R : a ≤ x ≤ b}: Closed intervals.

(a, b) = {x ∈ R : a < x < b}: Open intervals.

R+ = [0,∞) = {x ∈ R : x ≥ 0}: Set ofpositive reals.

1



2 SETS AND FUNCTIONS

Subsets

A setA is said to be asubsetof a setB if every element ofA is an element ofB. We
write A ⊂ B or B ⊃ A to indicate it and use expressions likeA is contained inB,
B containsA, to the same effect. The setsA andB are the same, and then we write
A = B, if and only if A ⊂ B andA ⊃ B. We writeA 6= B whenA andB are not the
same. The setA is called aproper subsetof B if A is a subset ofB andA andB are
not the same.

The empty set is a subset of every set. This is a point of logic: letA be a set;
the claim is that∅ ⊂ A, that is, that every element of∅ is also an element ofA,
or equivalently, there is no element of∅ that does not belong toA. But the last is
obviously true simply because∅ has no elements.

Set Operations

LetA andB be sets. Theirunion, denoted byA∪B, is the set consisting of all elements
that belong to eitherA or B (or both). Theirintersection, denoted byA ∩ B, is the
set of all elements that belong to bothA andB. Thecomplementof A in B, denoted
by B \ A, is the set of all elements ofB that are not inA. Sometimes, whenB is
understood from context,B \ A is also called the complement ofA and is denoted by
Ac. Regarding these operations, the following hold:

Commutative laws:

A ∪B = B ∪A,

A ∩B = B ∩A.

Associative laws:

(A ∪B) ∪ C = A ∪ (B ∪ C),
(A ∩B) ∩ C = A ∩ (B ∩ C).

Distributive laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

The associative laws show thatA∪B∪C andA∩B∩C have unambiguous meanings.
Definitions of unions and intersections can be extended to arbitrary collections of

sets. LetI be a set. For eachi ∈ I, let Ai be a set. Theunionof the setsAi, i ∈ I, is
the setA such thatx ∈ A if and only if x ∈ Ai for somei in I. The following notations
are used to denote the union and intersection respectively:⋃

i∈I

Ai,
⋂
i∈I

Ai.
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WhenI = N = {1, 2, 3, . . .}, it is customary to write

∞⋃
i=1

Ai,
∞⋂

i=1

Ai.

All of these notations follow the conventions for sums of numbers. For instance,

n⋃
i=1

Ai = A1 ∪ · · · ∪An,
13⋂

i=5

Ai = A5 ∩A6 ∩ · · · ∩A13

stand, respectively, for the union overI = {1, . . . , n} and the intersection overI =
{5, 6, . . . , 13}.

Disjoint Sets

Two sets are said to bedisjoint if their intersection is empty; that is, if they have no
elements in common. A collection{Ai : i ∈ I} of sets is said to bedisjointedif Ai

andAj are disjoint for alli andj in I with i 6= j.

Products of Sets

Let A andB be sets. Theirproduct, denoted byA×B, is the set of all pairs(x, y) with
x in A andy in B. It is also called therectanglewith sidesA andB.

If A1, . . . , An are sets, then their productA1 × · · · × An is the set of all n-tuples
(x1, . . . , xn) wherex1 ∈ A1, . . . , xn ∈ An. This product is called, variously, a rect-
angle, or a box, or an n-dimensional box. IfA1 = · · · = An = A, thenA1 × · · · ×An

is denoted byAn. Thus,R2 is the plane,R3 is the three-dimensional space,R2
+ is the

positive quadrant of the plane, etc.

Exercises:
1.1 Let E be a set. Show the following for subsetsA,B,C, andAi of E.

Here, all complements are with respect toE; for instance,Ac = E \A.

1. (Ac)c = A

2. B \A = B ∩Ac

3. (B \A) ∩ C = (B ∩ C) \ (A ∩ C)
4. (A ∪B)c = Ac ∩Bc

5. (A ∩B)c = Ac ∪Bc

6. (
⋃

i∈I Ai)c =
⋂

i∈I Ac
i

7. (
⋂

i∈I Ai)c =
⋃

i∈I Ac
i

1.2 Leta andb be real numbers witha < b. Find
∞⋃

n=1

[a +
1
n

, b− 1
n

],
∞⋂

n=1

[a− 1
n

, b +
1
n

]
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1.3 Describe the following sets in words and pictures:

1. A = {x ∈ R2 : x2
1 + x2

2 < 1}
2. B = {x ∈ R2 : x2

1 + x2
2 ≤ 1}

3. C = B \A

4. D = C ×B

5. S = C × C

1.4 LetAn be the set of points(x, y) ∈ R2 lying on the curvey = 1/xn,
0 < x < ∞. What is

⋂
n≥1 An?

2 Functions and Sequences

Let E and F be sets. With each elementx of E, let there be associated a unique
elementf(x) of F . Thenf is called afunctionfrom E into F , andf is said tomapE
into F . We writef : E 7→ F to indicate it.

Let f be a function fromE into F . For x in E, the pointf(x) in F is called the
imageof x or the value off atx. Similarly, forA ⊂ E, the set

{y ∈ F : y = f(x) for somex ∈ A}

is called theimageof A. In particular, the image ofE is called therangeof f . Moving
in the opposite direction, forB ⊂ F ,

f−1(B) = {x ∈ E : f(x) ∈ B}2.1

is called theinverse imageof B underf . Obviously, the inverse ofF is E.
Terms like mapping, operator, transformation are synonyms for the term “function”

with varying shades of meaning depending on the context and on the setsE andF . We
shall become familiar with them in time. Sometimes, we writex 7→ f(x) to indicate
the mappingf ; for instance, the mappingx 7→ x3 + 5 from R into R is the function
f : R 7→ R defined byf(x) = x3 + 5.

Injections, Surjections, Bijections

Let f be a function fromE into F . It is called aninjection, or is said to beinjective, or
is said to beone-to-one, if distinct points have distinct images (that is, ifx 6= y implies
f(x) 6= f(y)). It is called asurjection, or is said to besurjective, if its range isF ,
in which casef is said to be fromE ontoF . It is called abijection, or is said to be
bijective, if it is both injective and surjective.

These terms are relative toE andF . For examples,x 7→ ex is an injection fromR
into R, but is a bijection fromR into (0,∞). The functionx 7→ sinx from R into R is
neither injective nor surjective, but it is a surjection fromR onto[−1, 1].
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Sequences

A sequenceis a function fromN into some set. Iff is a sequence, it is custom-
ary to denotef(n) by something likexn and write(xn) or (x1, x2, . . .) for the se-
quence (instead off ). Then, thexn are called thetermsof the sequence. For instance,
(1, 3, 4, 7, 11, . . .) is a sequence whose first, second, etc. terms arex1 = 1, x2 = 3, ...
.

If A is a set and every term of the sequence(xn) belongs toA, then(xn) is said to
be a sequence inA or a sequence of elements ofA, and we write(xn) ⊂ A to indicate
this.

A sequence(xn) is said to be asubsequenceof (yn) if there exist integers1 ≤
k1 < k2 < k3 < · · · such that

xn = ykn

for eachn. For instance, the sequence(1, 1/2, 1/4, 1/8, . . .) is a subsequence of
(1, 1/2, 1/3, 1/4, 1/5, . . .).

Exercises:

2.1 Letf be a mapping fromE into F . Show that

1. f−1(∅) = ∅,
2. f−1(F ) = E,

3. f−1(B \ C) = f−1(B) \ f−1(C),

4. f−1(
⋃

i∈I Bi) =
⋃

i∈I f−1(Bi),

5. f−1(
⋂

i∈I Bi) =
⋂

i∈I f−1(Bi),

for all subsetsB,C,Bi of F .

2.2 Show thatx 7→ e−x is a bijection fromR+ onto (0, 1]. Show thatx 7→
log x is a bijection from(0,∞) onto R. (Incidentally,log x is the loga-
rithm of x to the basee, which is nowadays called the natural logarithm.
We call it the logarithm. Let others call their logarithms “unnatural.”)

2.3 Letf be defined by the arrows below:

1 2 3 4 5 6 7 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓
0 −1 1 −2 2 −3 3 · · ·

This defines a bijection fromN ontoZ. Using this, construct a bijection
from Z ontoN.

2.4 Letf : N×N 7→ N be defined by the table below wheref(i, j) is the entry
in the ith row and thejth column. Use this and the preceding exercise to
construct a bijection fromZ× Z ontoN.
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... j 1 2 3 4 5 6 · · ·

i
...

1 1 3 6 10 15 21
2 2 5 9 14 20
3 4 8 13 19
4 7 12 18
5 11 17
6 16
...

2.5 Functional Inverses.Let f be a bijection fromE ontoF . Then, for each
y in F there is a uniquex in E such thatf(x) = y. In other words, in
the notation of (2.1),f−1({y}) = {x} for eachy in F and some unique
x in E. In this case, we drop some brackets and writef−1(y) = x. The
resulting functionf−1 is a bijection fromF ontoE; it is called the func-
tional inverse off . This particular usage should not be confused with the
general notation off−1. (Note that (2.1) defines a functionf−1 form F
into E , whereF is the collection of all subsets ofF andE is the collection
of all subsets ofE.)

3 Countability

Two setsA andB are said to have the same cardinality, and then we writeA ∼ B, if
there exists a bijection fromA ontoB. Obviously, having the same cardinality is an
equivalence relation; it is

1. reflexive:A ∼ A,

2. symmetric:A ∼ B ⇒ B ∼ A,

3. transitive:A ∼ B andB ∼ C ⇒ A ∼ C.

A set is said to befinite if it is empty or has the same cardinality as{1, 2, . . . , n} for
somen in N; in the former case it has0 elements, in the latter exactlyn. It is said to
becountableif it is finite or has the same cardinality asN; in the latter case it is said to
have a countable infinity of elements.

In particular,N is countable. So areZ, N × N in view of exercises 2.3 and 2.4.
Note that an infinite set can have the same cardinality as one of its proper subsets. For
instance,Z ∼ N, R+ ∼ (0, 1], R ∼ R+ ∼ (0, 1); see exercise 2.2 for the latter.
Incidentally,R+, R, etc. are uncountable, as we shall show shortly.

A set is countable if and only if it can be injected intoN, or equivalently, if and
only if there is a surjection fromN onto it. Thus, a setA is countable if and only if
there is a sequence(xn) whose range isA. The following lemma follows easily from
these remarks.



3. COUNTABILITY 7

3.1 LEMMA. If A can be injected intoB andB is countable, thenA is countable. If
A is countable and there is a surjection fromA ontoB, thenB is countable.

3.2 THEOREM.The product of two countable sets is countable.

PROOF. LetA andB be countable. If one of them is empty, thenA×B is empty and
there is nothing to prove. Suppose that neither is empty. Then, there exist injections
f : A 7→ N andg : B 7→ N. For each pair(x, y) in A×B, let h(x, y) = (f(x), g(y));
thenh is an injection fromA×B into N×N. SinceN×N is countable (see Exercise
(2.4)), this implies via the preceding lemma thatA×B is countable 2

3.3 COROLLARY.The set of all rational numbers is countable.

PROOF. Recall that the setQ of all rationals consists of ratiosm/n with m ∈ Z and
n ∈ N. Thus,f(m,n) = m/n defines a surjection fromZ×N ontoQ. SinceZ andN
are countable, so isZ×N by the preceding theorem. Hence,Q is countable by Lemma
3.1. 2

3.4 THEOREM.The union of a countable collection of countable sets is countable.

PROOF. LetI be a countable set, and letAi be a countable set for eachi in I. The
claim is thatA =

⋃
i∈I Ai is countable. Now, there is a surjectionfi : N 7→ Ai for

eachi, and there is a surjectiong : N 7→ I; these follow from the countability ofI and
theAi. Note that, then,h(m,n) = fg(m)(n) defines a surjectionh from N × N onto
A. SinceN× N is countable, this implies via Lemma 3.1 thatA is countable. 2

The following theorem exhibits an uncountable set. As a corollary, we show thatR
is uncountable.

3.5 THEOREM.LetE be the set of all sequences whose terms are the digits0 and1.
Then,E is uncountable.

PROOF. LetA be a countable subset ofE. Let x1, x2, . . . be an enumeration of the
elements ofA, that is,A is the range of(xn). Note that eachxn is a sequence of zeros
and ones, sayxn = (xn,1, xn,2, . . .) where each termxn,m is either0 or 1. We define
a new sequencey = (yn) by lettingyn = 1− xn,n. The sequencey differs from every
one of the sequencesx1, x2, . . . in at least one position. Thus,y is not inA but is inE.

We have shown that ifA ⊂ E and is countable, then there is ay ∈ E such that
y 6∈ A. If E were countable, the preceding would hold forA = E, which would be
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absurd. Hence,E must be uncountable. 2

3.6 COROLLARY.The set of all real numbers is uncountable.

PROOF. It is enough to show that the interval[0, 1) is uncountable. For eachx ∈ [0, 1),
let 0.x1x2x3 · · · be the binary expansion ofx (in casex is dyadic, sayx = k/2n for
somek andn in N, there are two such possible binary expansions, in which case we
take the expansion with infinitely many zeros), and we identify the binary expansion
with the sequence(x1, x2, . . .) in the setE of the preceding theorem. Thus, to each
x in [0, 1) there corresponds a unique elementf(x) of E. In fact, f is a surjection
onto the setE \ D whereD denotes the set of all sequences of zeros and ones that
are eventually all ones. It is easy to show thatD is countable and hence thatE \D is
uncountable. From this it follows that[0, 1) is uncountable. 2

Exercises:
3.1 Dyadics.A number is said to be dyadic if it has the formk/2n for some in-

tegersk andn in Z+. Show that the set of all dyadic numbers is countable.
Of course, every dyadic number is rational.

3.2 LetD denote the set of all sequences of zeros and ones that are eventually
all ones. Show thatD is countable.

3.3 Suppose thatA is uncountable and thatB is countable. Show thatA \ B
is uncountable.

3.4 Letx be a real number. For eachn ∈ Z+, let xn be the smallest dyadic
number of the formk/2n that exceedsx. Show thatx0 ≥ x1 ≥ x2 ≥ · · ·
and thatxn > x for eachn. Show that, for everyε > 0, there is annε such
thatxn − x < ε for all n ≥ nε.

4 On the Real Line

The object is to review some facts and establish some terminology regarding the set
R of all real numbers and the setR̄ = [−∞,+∞] of all extended real numbers. The
extended real number systemconsists ofR and two extra symbols,−∞ and∞. The
relation< is extended tōR by postulating that−∞ < x < +∞ for every real number
x. The arithmetic operations are extended toR̄ as follows: for eachx ∈ R,

x +∞ = x− (−∞) = ∞
x + (−∞) = x−∞ = −∞

x · ∞ =
{

∞ if x > 0
−∞ if x < 0
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x · (−∞) = (−x) · ∞
x/∞ = x/(−∞) = 0

∞+∞ = ∞
(−∞) + (−∞) = −∞

∞ ·∞ = (−∞) · (−∞) = ∞
∞ · (−∞) = −∞.

The operations0 · (±∞), (−∞)− (−∞), +∞/+∞, and−∞/−∞ are undefined.

Positive and Negative

We callx in R̄ positiveif x ≥ 0 andstrictly positiveif x > 0. By symmetry, then,x
is negativeif x ≤ 0 and strictly negative ifx < 0. A function f : E 7→ R̄ is said to
bepositiveif f(x) ≥ 0 for all x in E andstrictly positiveif f(x) > 0 for all x in E.
Negative and strictly negative functions are defined similarly. This usage is in accord
with modern tendencies, though at variance with common usage1.

Increasing, Decreasing

A function f : R̄ 7→ R̄ is said to beincreasingif f(x) ≤ f(y) wheneverx ≤ y. It is
said to bestrictly increasingif f(x) < f(y) wheneverx < y. Decreasing and strictly
decreasing functions are defined similarly by reversing the inequalities.

These notions carry over to functionsf : E 7→ R̄ with E ⊂ R̄. In particular, since a
sequence is a function onN, these notions apply to sequences inR̄. Thus, for example,
(xn) ⊂ R̄ is increasing ifx1 ≤ x2 ≤ · · · and is strictly decreasing ifx1 > x2 > · · ·.

Bounds

LetA ⊂ R̄. A real numberb is called anupper boundfor A provided thatA ⊂ [−∞, b],
and thenA is said to bebounded aboveby b. Lower bounds and being bounded below
are defined similarly. The setA is said to beboundedif it is bounded above and below;
that is, ifA ⊂ [a, b] for some real interval[a, b].

These notions carry over to functions and sequences as follows. Givenf : E 7→ R̄,
the functionf is said to be bounded above, below, etc. according as its range is bounded
above, below, etc. Thus, for instance,f is bounded if there exist real numbersa ≤ b
such thata ≤ f(x) ≤ b for all x in E.

Supremum and Infimum

If A ⊂ R̄ is bounded above, then it has a least upper bound, that is, an upper boundb
such that no number less thanb is an upper bound; we call that least upper bound the
supremumof A. If A is not bounded above, we define the supremum to be+∞. The

1Often used concepts should have the simpler names. Mindbending double negatives should be avoided,
and as much as possible, the mathematical usage should not conflict with the ordinary language.
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infimumof A is defined similarly; it is−∞ if A has no lower bound and is the greatest
lower bound otherwise. We let

inf A, supA

denote the infimum and supremum ofA, respectively. For example,

inf{1, 1/2, 1/3, . . .} = 0, sup{1, 1/2, 1/3, . . .} = 1,

inf(a, b] = inf[a, b] = a, sup(a, b) = sup(a, b] = b.

In particular,inf ∅ = +∞ andsup ∅ = −∞. If A is finite, theninf A is the smallest
element ofA, andsupA is the largest. Even whenA in infinite, it is possible thatinf A
is an element ofA, in which case it is called theminimumof A. Similarly, if supA is
an element ofA, then it is also called themaximumof A.

If f : E 7→ R̄, it is customary to write

inf
x∈D

f(x) = inf{f(x) : x ∈ D}

and call it the infimum (or maximum) off overD ⊂ E, and similarly with the supre-
mum. In the case of sequences(xn) ⊂ R̄,

inf xn, supxn

denote, respectively, the infimum and supremum of the range of(xn). Other such
notations are generally self-explanatory; for example,

inf
n≥k

xn = inf{xk, xk+1, . . .}, sup
k≥1

xnk = sup{xn1, xn2, . . .}.

Limits

If (xn) is an increasing sequence inR̄, thensupxn is also called thelimit of (xn) and
is denoted bylimxn. If it is a decreasing sequence, theninf xn is called the limit of
(xn) and again denoted bylim xn.

Let (xn) ⊂ R̄ be an arbitrary sequence. Then

xm = inf
n≥m

xn, x̄m = sup
n≥m

xn, m ∈ N,4.1

define two sequences;(xn) is increasing, and(x̄n) is decreasing. Their limits are called
the limit inferior and thelimit superior, respectively, of the sequence(xn):

lim inf xn = lim xn = sup
m

inf
n≥m

xn,4.2

lim sup xn = lim x̄n = inf
m

sup
n≥m

xn,4.3

Figure 1 is worthy of careful study. Note that, in general,

−∞ ≤ lim inf xn ≤ lim supxn ≤ +∞.4.4

If lim inf xn = lim sup xn, then the common value is called thelimit of (xn) and is
denoted bylim xn. Otherwise, if limits inferior and superior are not equal, the sequence
(xn) does not have a limit.
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Figure 1: Lim Sup and Lim Inf. The pairs(n, xn) are connected by the solid lines for
clarity. The pairs(n, xn) form the lower dotted line and(n, x̄n) the upper dotted line.

Convergence of Sequences

A sequence(xn) of real numbers is said to beconvergentif lim xn exists and is a real
number.

An examination of Figure 1 shows that this is equivalent to the classical definition
of convergence:(xn) converges tox if for every ε > 0, there is annε such that
|xn−x| < ε for all n ≥ nε. The phrase “there isnε ... for alln ≥ nε” can be expressed
in more geometric terms by phrases like “the number of terms outside(x− ε, x + ε) is
finite,” or “all but finitely many terms are in(x− ε, x + ε),” or “ |xn − x| < ε for all n
large enough.”

The following is a summary of the relations between convergence and algebraic
operations. The proof will be omitted.

4.5 THEOREM.Let (xn) and (yn) be convergent sequences with limitsx andy re-
spectively. Then,

1. lim cxn = cx,

2. lim(xn + yn) = x + y,

3. lim xnyn = xy,

4. lim xn/yn = x/y provided thatyn, y 6= 0.

In practice, we do not have the sequence laid out before us. Instead, some rule is
given for generating the sequence and the object is to show that the resulting sequence
will converge. For instance, a function may be specified somehow and a procedure
described to find its maximum; starting from some point, the procedure will give the
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successive pointsx1, x2, . . . which are meant to form the sequence that converges to
the pointx where the maximum is achieved.

Often, to find the limit of(xn), one starts with a search for sequences that bound
(xn) from above and below and whose limits can be computed easily: suppose that

yn ≤ xn ≤ zn for all n, lim yn = lim zn,

then lim xn exists and is equal to the limit of the other two. The art involved is in
finding such sequences(yn) and(zn).

4.6 EXAMPLE. This example illustrates the technique mentioned above. We want to
show that(n1/n) converges. Note thatn1/n ≥ 1 always, and putxn = n1/n − 1, and
consider the sequnce(xn). Now, (1 + xn)n = n, and by the binomial theorem

(a + b)n = an + nan−1b +
n(n− 1)

2
an−2b2 + · · ·+ bn

≥ n(n− 1)
2

an−2b2

for a, b ≥ 0 andn ≥ 2. So,

n = (1 + xn)n ≥ n(n− 1)
2

x2
n,

or

0 ≤ xn ≤
√

2
n− 1

.

It follows thatlim xn = 0, and hence

limn1/n = 1.

Exercises:
4.1 Show that ifA ⊃ B theninf A ≤ inf B ≤ supB ≤ supA. Use this to

show that, ifA1 ⊃ A2 ⊃ · · ·, then

inf A1 ≤ inf A2 ≤ · · · ≤ inf An ≤ · · · ≤

≤ supAn ≤ · · · ≤ supA2 ≤ supA1.

Use this to show that(xn) is increasing,(x̄n) is decreasing, andlimxn ≤
lim x̄n (see (4.1) – (4.3) for definitions).

4.2 Show thatsup(−xn) = − inf xn for any sequence(xn) in R̄. Conclude
thatlim sup(−xn) = − lim inf xn.
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4.3 Cauchy Criterion. Sequence(xn) is convergent if and only if for every
ε > 0 there is annε such that|xm − xn| ≤ ε for all m ≥ n ≥ nε. Prove
this by examining Figure 1 on the definition of the limit.

4.4 Monotone Sequences.If (xn) is increasing, thenlim xn exists (but could
be +∞). Thus, such a sequence converges if and only if it is bounded
above. Show this. State the version of this for decreasing sequences.

4.5 Iterative Sequences.Often,xn+1 is obtained fromxn via some rule, that
is, xn+1 = f(xn) for some functionf . If (xn) is so obtained from some
function f , it is said to be iterative. If(xn) is such andf is continuous
and lim xn = x exists, thenx = f(x). This works well for identifying
the limit especially whenf is simple andx = f(x) has only one solution.
In general, with complicated functionsf , the reverse is true: To findx
satisfyingx = f(x), one starts at some pointx0, computesx1 = f(x0),
x2 = f(x1), ..., and tries to show thatx = lim xn exists and satisfies
x = f(x).

4.6 Domination.A sequence(xn) is said to be dominated by a sequence(yn)
if xn ≤ yn for eachn. Show that, if so

1. inf xn ≤ inf yn,

2. supxn ≤ sup yn,

3. lim inf xn ≤ lim inf yn,

4. lim sup xn ≤ lim sup yn.

In particular, if the limits exist,limxn ≤ lim yn.

Incidentally, (xn) defined by (4.1) is the maximal increasing sequence
dominated by(xn), and(x̄n) is the minimal decreasing sequence domi-
nating(xn).

4.7 Comparisons.Let (xn) be a positive sequence. Then,(xn) converges to
0 if and only if it is dominated by a sequence(yn) with lim sup yn = 0.
Show this.

Favorite sequences(yn) used in this role are given byyn = 1/n, yn = rn

for some fixed numberr ∈ (0, 1), andyn = nprn with p ∈ (−∞,+∞)
andr ∈ (0, 1).

4.8 Existence of Least Upper Bounds.Let A be a nonempty subset ofR and
let B = {b : b is an upper bound ofA}. Assuming thatB is nonempty,
show thatB has a minimum element.
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5 Series

Given a sequence(xn) ⊂ R, the sequence(sn) defined by

sn =
n∑

i=1

xi5.1

is called the sequence of partial sums of(xn), and the symbolic expression∑
xn5.2

is called theseriesassociated with(xn). The series is said toconvergeto s, and then
we write

∞∑
1

xn = s5.3

if and only if the sequence(sn) converges tos.
Sometimes, we writex1 +x2 + · · · for the series (5.2). Sometimes, for convenience

of notation, we shall consider series of the form
∑∞

0 or
∑∞

m , depending on the index
set. Here are a few examples:

∞∑
n=0

xn =
1

1− x
for x ∈ (−1, 1),

∞∑
n=0

xn

n!
= ex for x ∈ R,

∞∑
n=1

1
n2

=
π2

6
,

∞∑
n=m

xn =
xm

1− x
for x ∈ (−1, 1).

The following result is obtained by applying the Cauchy Criterion (Exercise 4.3) to
the sequence of partial sums.

5.4 THEOREM.The series
∑

xn converges if and only if for everyε > 0 there is an
nε such that

|
m∑

i=n

xi| ≤ ε5.5

for all m ≥ n ≥ nε.

In particular, takingm = n in (5.5) we obtain|xn| ≤ ε. Thus we have obtained the
following:

5.6 COROLLARY.If
∑

xn converges, thenlimxn = 0.
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The converse is not true. For example,lim 1/n = 0 but
∑

1/n is divergent. In
the case of series with positive terms, partial sums form an increasing sequence, and
hence, the following holds (see Exercise 4.4):

5.7 PROPOSITION.Suppose that thexn are positive. Then
∑

xn converges if and
only if the sequence of partial sums is bounded.

In many cases, we encounter series whose terms are positive and decreasing. The
following theorem due to Cauchy is helpful in such cases, especially if the terms in-
volve powers. Note the way a rather thin sequence determines the convergence or
divergence of the whole series.

5.8 THEOREM.Suppose that(xn) is decreasing and positive. Then
∑

xn converges
if and only if the series

x1 + 2x2 + 4x4 + 8x8 + · · ·

converges.

PROOF. Letsn = x1 + · · ·+ xn as usual and puttk = x1 + 2x2 + · · ·+ 2kx2k . Now,
for n ≤ 2k, sincex1 ≥ x2 ≥ · · · ≥ 0,

sn ≤ x1 + (x2 + x3) + (x4 + · · ·x7) + · · ·+ (x2k + · · ·+ x2k+1−1)
≤ x1 + 2x2 + 4x4 + · · ·+ 2kx2k

= tk,

and forn ≥ 2k,

sn ≥ x1 + x2 + (x3 + x4) + (x5 + · · ·x8) + · · ·+ (x2k−1+1 + · · ·+ x2k)

≥ 1
2
x1 + x2 + 2x4 + · · ·+ 2k−1x2k

=
1
2
tk.

Thus, the sequences(sn) and(tn) are either both bounded or both unbounded, which
completes the proof via Proposition 5.7 2

5.9 EXAMPLE.
∑

1/np converges ifp > 1 and diverges ifp ≤ 1. For p ≤ 0, the
claim is trivial to see. Forp > 0, the termsxn = 1/np form a decreasing positive
sequnce, and thus, the preceding theorem applies. Now,

∞∑
k=0

2kx2k =
∑

(21−p)k,

which converges if21−p < 1 and diverges otherwise. Since21−p < 1 if and only if
p > 1, we are done.
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5.10 EXAMPLE. The series
∞∑
2

1
n(log n)p

converges ifp ∈ (1,∞) and diverges otherwise. Here we start the series withn = 2
sincelog 1 = 0. Since the logarithm function is monotone increasing, Theorem 5.8
applies. Now,xn = 1/n(log n)p and so

∞∑
k=1

2kx2k =
∞∑
1

2k 1
2k(log 2k)p

=
1

(log 2)p

∞∑
1

1
kp

,

which converges if and only ifp > 1 in view of the preceding example.

Ratio Test, Root Test

The ratio test ties the convergence of
∑

xn to the behavior of the ratiosxn+1/xn for
largen; it is highly useful.

5.11 THEOREM.

1. If lim sup |xn+1/xn| < 1, then
∑

xn converges.

2. If lim inf |xn+1/xn| > 1, then
∑

xn diverges.

PROOF. (1) Iflim sup |xn+1/xn| < 1, then there is a numberr ∈ [0, 1) and an integer
n0 such that|xn+1/xn| ≤ r for all n ≥ n0. Thus|xn0+k| ≤ |xn0 |rk for all k ≥ 0, and
therefore, form > n > n0,

|
m∑

i=n

xi| ≤
∞∑

i=n

|xi| ≤ |xn0 |
∞∑

i=n

ri−n0 = |xn0 |
rn−n0

1− r
.

Given ε > 0 choosenε so that|xn0 |rnε−n0/(1 − r) < ε. Then Cauchy’s criterion
works with thisnε and

∑
xn converges.

(2) If lim inf |xn+1/xn| > 1 then there is an integern0 such that|xn+1| ≥ |xn|
for all n ≥ n0. Hence,|xn| ≥ |xn0 | for all n ≥ n0 which shows that(xn) does not
converge to0 as it must in order for

∑
xn to converge (see Corollary 5.6). 2

The preceding test gives no information in cases where

lim inf |xn+1/xn| ≤ 1 ≤ lim sup |xn+1/xn|.
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For instance, for the two series
∑

1/n and
∑

1/n2, both thelim inf and thelim sup
are equal to1, but the first series diverges whereas the second converges. Also, the
series

1
2

+
1
3

+
1
22

+
1
32

+
1
23

+
1
33

+
1
24

+
1
34

+ · · ·5.12

obviously converges to3/2; yet, the ratio test is miserably inconclusive:

lim inf
xn+1

xn
= lim

(
2
3

)n

= 0

lim sup
xn+1

xn
= lim

(
3
2

)n

= ∞.

The following test, called theroot test, is a stronger test — if the ratio test works, so
does the root test. But the root test works in some situations where the ratio test fails;
for example, the root test works for the series (5.12).

5.13 THEOREM.Let a = lim sup |xn|1/n. Then
∑

xn converges ifa < 1, and
diverges ifa > 1.

PROOF. Suppose thata < 1. Then, there is ab ∈ (a, 1) such that|xn|1/n ≤ b for all
n ≥ n0, wheren0 is some integer. Then,|xn| ≤ bn for all n ≥ n0, and comparing∑

xn with the geometric series
∑

bn shows that
∑

xn converges.
Suppose thata > 1. Then, a subsequence of|xn| must converge toa > 1, which

means that|xn| ≥ 1 for infinitely manyn. So, (xn) does not converge to zero, and
hence,

∑
xn cannot converge. 2

Power Series

Given a sequence(cn) of complex numbers, the series

∞∑
0

cnzn5.14

is called apower series. The numbersc0, c1, . . . are called the coefficients of the power
series; herez is a complex number.

In general, the series will converge or diverge, depending on the choice ofz. As
the following theorem shows, there is a numberr ∈ [0,∞], called the radius of conver-
gence, such that the series converges if|z| < r and diverges if|z| > r. The behavior
for |z| = r is much more complicated and cannot be described easily.

5.15 THEOREM.Leta = lim sup |cn|1/n andr = 1/a.

1. If |z| < r, then
∑

cnzn converges.
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2. If |z| > r, then
∑

cnzn diverges.

PROOF. Putxn = cnzn and apply the root test with

lim sup |xn|1/n = |z| lim sup |cn|1/n = a|z| = |z|
r

.

2

5.16 EXAMPLE.

1.
∑

zn/n! = ez andr = ∞.

2.
∑

zn converges for|z| < 1 and diverges for|z| ≥ 1; r = 1.

3.
∑

zn/n2 converges for|z| ≤ 1 and diverges for|z| > 1; r = 1.

4.
∑

zn/n converges for|z| < 1 and diverges for|z| > 1; r = 1; for z = 1 the
series diverges, but for|z| = 1 butz 6= 1 it converges.

Absolute Convergence

The series
∑

xn is said toconverge absolutelyif
∑
|xn| is convergent. If thexn are

all positive numbers, then absolute convergence is the same as convergence. Using
Cauchy’s criterion (see Theorem 5.4) on both sides of

|
m∑

i=n

xi| ≤
m∑

i=n

|xi|

shows that if
∑

xn converges absolutely then it converges. But the converse is not true:
for example, ∑

(−1)n/n

converges but is not absolutely convergent.
The comparison tests above, as well as the root and ratio tests, are in fact tests for

absolute convergence. If a series is not absolutely convergent, one has to study the
sequence of partial sums to determine whether the series converges at all.
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Rearrangements

Let (k1, k2, . . .) be a sequence in which every integern ≥ 1 appears once and only
once, that is,n 7→ kn is a bijection fromN ontoN. If

yn = xkn
, n ∈ N,

for such a sequence(kn), then we say that(yn) is a rearrangement of(xn).
Let (yn) be a rearrangement of(xn). In general, the series

∑
yn and

∑
xn are

quite different. However, if
∑

xn is absolutely convergent, then so is
∑

yn and it
converges to the same number as does

∑
xn. The converse is also true: if every rear-

rangement of the series
∑

xn converges, then the series
∑

xn is absolutely convergent
and all its rearrangements converge (to the same sum).

On the other hand, if
∑

xn is not absolutely convergent, its various rearrangements
may converge or diverge, and in the case of convergence, the sum generally depends
on the rearrangement chosen. For instance,

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+

1
7
− · · ·

is convergent, but not absolutely so. Its rearrangement

1 +
1
3
− 1

2
+

1
5

+
1
7
− 1

4
+

1
9

+ · · ·

(with + + − + + − + + − pattern) is again convergent, but not to the same sum. In
fact, the following theorem due to Riemann shows that one can create rearrangements
that are as bizarre as one wants.

5.17 THEOREM.Let
∑

xn be convergent but not absolutely. Then, for any two
numbersa ≤ b in R̄ there is a rearrangement

∑
yn of

∑
xn such that

lim inf
n∑
1

yi = a, lim sup
n∑
1

yi = b.

We omit the proof. Note that, in particular, takinga = b we can find a rearrangement∑
yn with suma, no matter whata is.

Exercises:
5.1 Determine the convergence or divergence of the following:

1.
∑

(
√

n + 1−
√

n)

2.
∑

(
√

n + 1−
√

n)/n

3.
∑

(sinn)/(n
√

n)

4.
∑

(−1)nn/(n2 + 1).

In case of convergence, indicate whether it is absolute convergence.
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5.2 Show that if
∑

xn converges then so does
∑√

xn/n .

5.3 Show that if
∑

xn converges and(yn) is bounded and monotone (either
increasing or decreasing), then

∑
xnyn converges.

5.4 Find the radius of convergence of each of the following power series:

1.
∑

n2zn,

2.
∑

2nzn/n!,

3.
∑

2nzn/n2,

4.
∑

n3zn/3n.

5.5 Suppose thatf(z) =
∑

cnzn. Express the sum of the even terms,
∑

c2nz2n,
and the sum of the odd terms,

∑
c2n+1z

2n+1, in terms off .

5.6 Suppose thatf(z) =
∑

cnzn. Express
∑

c3nz3n in terms off .

5.7 Rearrangements.Let
∑

xn be a series that converges absolutely. Prove
that every rearrangement of

∑
xn converges, and that they all converge to

the same sum.

5.8 Riemann’s Theorem.Prove Riemann’s theorem 5.17 by filling in the de-
tails in the following outline:

1. Let(x+
n ) denote the subsequence consisting of the positive elements

of (xn) and let(x−n ) denote the subsequence of negative elements of
(xn). Both of these sequences must be infinite.

2. Both sequences(x+
n ) and(x−n ) converge to zero.

3. Both series
∑

x+
n and

∑
x−n diverge.

4. Suppose thata, b ∈ R and define a rearrangement as follows: start
with the positive elements and choose elements from this set until
the partial sum exceedsb. Then, choose elements from the set of
negative elements until the partial sum is less thana. Then, choose
elements from the set of positive elements until the partial sum ex-
ceedsb. Continue this proceedure of alternating between elements
of the positive and negative sets indefinitely.

5. Prove that the procedure described above can be continued ad infini-
tum.

6. Prove that this rearrangement has the properties stated in Riemann’s
theorem.

7. Extend the above arguments to the case wherea, b = ±∞.

5.9 Poisson distribution.Let pn = e−λλn/n! whereλ is a positive real. Show
that

1. pn > 0,
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2.
∑∞

n=0 pn = 1,

3.
∑∞

n=0 npn = λ.

5.10 Borel Summability.Consider a series
∑∞

n=0 xn with partial sumssn =∑n
i=0 xi. We say that the series isBorel summableif

lim
λ→∞

∞∑
n=0

snpn

converges, wherepn are the Poisson probabilities defined in Exercise 5.9.
For what values ofz is the geometric series

∑∞
n=0 zn Borel summable?
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Metric Spaces

Basic questions of analysis on the real line are tied to the notions of closeness and
distances between points. The same issue of closeness comes up in more complicated
settings, for instance, like when we try to approximate a function by a simpler function.
Our aim is to introduce the idea of distance in general, so that we can talk of the distance
between two functions with the same conceptual ease as when we talk of the distance
between two points in the plane. After that, we discuss the main issues: convergence,
continuity, approximations. All along, there will be examples of different spaces and
different ways of measuring distances.

6 Euclidean Spaces

This section is to review the spaceRn together with its Euclidean distance. Recall that
each element ofRn is ann-tuplex = (x1, . . . , xn), where thexi are real numbers. The
elements ofRn are calledpointsor vectors, and we are familiar with the operations like
addition of vectors and multiplication by scalars.

Inner Product and Norm

Forx andy in Rn, their inner productx · y is the number

x · y =
n∑
1

xiyi.6.1

If we regardx andy as column vectors, thenx · y = xT y. Forx in Rn, thenormof x
is defined to be the positive number

‖x‖ =
√

x · x =
√∑n

1 x2
i .6.2

The norm satisfies the following:

‖x‖ ≥ 0 for everyx in Rn,6.3

‖x‖ = 0 if and only if x = 0,6.4

‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x andy in Rn.6.5

23
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Of these, 6.3 and 6.4 are obvious, and 6.5 is immediate from the following, which is
called theSchwartz inequality.

6.6 PROPOSITION.|x · y| ≤ ‖x‖‖y‖ for all x andy in Rn.

PROOF. Consider the function

f(λ) = ‖λy − x‖2

= λ2‖y‖2 − 2λ(x · y) + ‖x‖2.

This function is clearly positive and quadratic and its minimum occurs at

λ =
x · y
‖y‖2

.

For this value ofλ we have

0 ≤ f(
x · y
‖y‖2

) = − (x · y)2

‖y‖2
+ ‖x‖2

from which Schwartz’s inequality follows immediately. 2

Euclidean Distance

Forx andy in Rn, theEuclidean distancebetweenx andy is defined to be the number
‖x− y‖. It follows from the properties given above that, for allx, y, z in Rn,

1. ‖x− y‖ ≥ 0,

2. ‖x− y‖ = ‖y − x‖,

3. ‖x− y‖ = 0 if and only if x = y,

4. ‖x− y‖+ ‖y − z‖ ≥ ‖x− z‖ .

The last is called thetriangle inequality: on R2, if the pointsx, y, z are the vertices of
a triangle, this is simply the well-known fact that the sum of the lengths of two sides is
greater than or equal to the length of the third side.

The setRn together with the Euclidean distance is calledn-dimensional Euclidean
space. The Euclidean spaces are important examples of metric spaces.

Exercises:
6.1 Show that the mapping(x, y) 7→ x · y from Rn × Rn into R is a linear

transformation inx and is a linear transformation iny (and therefore is
said to be bilinear). Conclude that

(x + y) · (x + y) = x · x + 2x · y + y · y.

Use this and the Schwartz inequality to prove (6.5).
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6.2 Show that‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2. Interpret this in
geometric terms, onR2, as a statement about parallelograms.

6.3 Pointsx andy are said to beorthogonal if x · y = 0. Show that this
is equivalent to saying that the lines connecting the origin tox andy are
perpendicular. In general, lettingα be the angle between the lines through
x andy, we havex · y = ‖x‖‖y‖ cos α.

7 Metric Spaces

Let E be a set. AmetriconE is a functiond : E×E 7→ R+ that satisfies the following
for all x, y, z in E:

1. d(x, y) = d(y, x),

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) + d(y, z) ≥ d(x, z).

A metric spaceis a pair(E, d) whereE is a set andd is a metric onE. In this context,
we think of E as a space, call the elements ofE points, and refer tod(x, y) as the
distance fromx to y.

EXAMPLES.

7.1 Euclidean spaces.ConsiderRn with the Euclidean distanced(x, y) = ‖x − y‖
on it. It follows from (1)–(4) thatd is a metric onRn. Thus,(Rn, d) is a metric space
and is calledn-dimensional Euclidean space.

7.2 Manhattan metric.OnRn define a metricd by

d(x, y) =
n∑
1

|xi − yi|.

This d is called the Manhattan metric, orl1-metric, onRn, and(Rn, d) is a metric
space again. Note that forn > 1 this metric is different from the Euclidean metric of
the preceding example.

7.3 SpaceC. Let C denote the set of all continuous functions from the interval[0, 1]
into R. Forx andy in C, let

d(x, y) = sup
0≤t≤1

|x(t)− y(t)|.
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It is clear thatd(x, y) is a positive real number, thatd(x, y) = d(y, x), and that
d(x, y) = 0 if and only if x = y. As for the triangle inequality, we note that

|x(t)− z(t)| ≤ |x(t)− y(t)|+ |y(t)− z(t)| ≤ d(x, y) + d(y, z)

for every t in [0, 1], from which we haved(x, y) + d(y, z) ≥ d(x, z). Thus,d is a
metric onC, and(C, d) is a metric space. This metric space is important in analysis.

Usage

In the literature, it is common practice to callE a metric space if(E, d) is a metric
space for some metricd. If there is only one metric under consideration, this is harmless
and saves time. For instance, the phrase “Euclidean spaceRn” refers to(Rn, d) where
d is the Euclidean metric. For a while at least, we shall indicate the metric involved in
each case in order to avoid all possible confusion.

Distances from Points to Sets and from Sets to Sets

Let (E, d) be a metric space. Forx in E andA ⊂ E, let

d(x, A) = inf{d(x, y) : y ∈ A};7.4

this is called the distance from the pointx to the setA. For A ⊂ E andB ⊂ E, the
distance fromA to B is defined by

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.7.5

Thediameterof a setA ⊂ E is defined to be

diamA = sup{d(x, y) : x ∈ A, y ∈ A}.7.6

A set is said to beboundedif its diameter is finite.

Balls

Let (E, d) be a metric space. Forx in E andr in (0,∞),

B(x, r) = {y ∈ E : d(x, y) < r}7.7

is called theopen ballwith centerx andradiusr, and

B̄(x, r) = {y ∈ E : d(x, y) ≤ r}7.8

is the correspondingclosed ball.
For example, ifE = R3 andd is the usual Euclidean metric, thenB(x, r) becomes

the set of all points inside the sphere with centerx and radiusr, andB̄(x, r) is the set
of all points inside or on that sphere.

Exercises and Complements:
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7.1 Discrete metric.Let E be an arbitrary set. Define

d(x, y) =
[

1 if x 6= y,
0 if x = y.

Show that thisd is a metric onE. It is called the discrete metric onE.

7.2 Metrics onRn. For each numberp ≥ 1,

dp(x, y) = (
n∑
1

|xi − yi|p)1/p

defines a metricdp onRn. Note thatd1 is the Manhatten metric, andd2 is
the Euclidean metric. Finally,

d∞(x, y) = sup
1≤i≤n

|xi − yi|

is again a metric onRn. Show this.

7.3 Equivalent Metrics. Two metricsd and d′ are equivalent if there exist
strictly positive constantsc1 andc2 such that for allx, y:

c1d
′(x, y) ≤ d(x, y) ≤ c2d

′(x, y).

Show thatd1, d2, andd∞ are all equivalent to each other.

7.4 Weighted Metrics onRn. The metrics introduced in the preceding exercise
treat all components ofx−y equally. This is reasonable ifRn is thought of
geometrically and the selection of a coordinate system is unimportant. On
the other hand, ifx = (x1, . . . , xn) stands for a shopping list that requires
buying x1 units of product one, andx2 units of product two, and so on,
then it would make much better sense to define the distance between two
shopping listsx andy by

d(x, y) =
n∑
1

wi|xi − yi|

wherex1, . . . , wn are fixed, strictly positive numbers, withwi being the
value of one unit of producti. Show that thisd is indeed a metric. More
generally, paralleling the metrics introduced in the previous exercise,

dp(x, y) = (
n∑
i

wi|xi − yi|p)1/p, x, y ∈ Rn,

is a metric onRn for eachp ≥ 1 and each fixed, strictly positive vectorw
(the latter meansw1 > 0, . . . , wn > 0).
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7.5 l2-Spaces.Instead ofRn, now consider the spaceR∞ of all infinite se-
quences inR, that is, eachx in R∞ is a sequencex = (x1, x2, . . .) of real
numbers. In analogy with thed2 metrics introduced onRn in Exercises
7.2 and 7.4, we define

d2(x, y) = (
∞∑
1

|xi − yi|2)1/2.

Thisd2 satisfies all the conditions for a metric except thatd2(x, y) can be
∞ for somex andy. To remedy the latter, we letE be the set of allx in
R∞ with

∞∑
1

x2
i < ∞.

Then, by an easy generalization of the Schwartz inequality, it follows that
d2(x, y) < ∞ for all x andy in E. Thus,(E, d2) is a metric space. It is
generally denoted byl2.

7.6 Metrics onC. Consider the setC of all continuous functions from[0, 1]
into R. The interval[0, 1] can be replaced by any bounded interval[a, b],
in which case one writesC([a, b]). A number of metrics can be defined
on C in analogy with those in Exercise 7.2. The analogy is provided by
the following observation: everyx in Rn can be thought of as a function
x from { 1

n , 2
n , . . . , n

n} into R, namely, the functionx with x(t) = xi for
t = i/n. Thus, replacing the set{ 1

n
2
n , . . . , n

n} with the interval[0, 1] and
replacing the summation by integration, we obtain

dp(x, y) = (
∫ 1

0

|x(t)− y(t)|pdt)1/p

for all x andy in C. Since any continuous function on[0, 1] is bounded,
the integral here is finite and it is easy to check the conditions for thisdp to
be a metric, except perhaps for the triangle inequality. So, for eachp ≥ 1,
this dp is a metric onC. Incidentally, the metric of Example 7.3 can be
denoted byd∞ in analogy withd∞ in Exercise 7.2.

7.7 Open Balls.Let E = R2. Describe the open ballB(x, r), for fixedx and
r, under each of the following metrics:

1. d2 of Exercise 7.2.

2. d1 of Exercise 7.2.

3. d∞ of Exercise 7.2.

4. d2 of Exercise 7.4 withw1 = 1 andw2 = 5.

7.8 Open Balls inC. For the metric space of Example 7.3, describeB(x, r)
for a fixed functionx and fixed numberr > 0. Draw pictures!
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7.9 Product Spaces.Let (E1, d1) and(E2, d2) be arbitrary metric spaces. Let
E = E1 × E2 and define, forx = (x1, x2) in E andy = (y1, y2) in E,

d(x, y) = [d1(x1, y1)2 + d2(x2, y2)2]1/2.

Show thatd is a metric onE. The metric space(E, d) is called the product
of the metric spaces(E1, d1) and(E2, d2).

8 Open and Closed Sets

Let (E, d) be a metric space. All points mentioned below are points ofE, all sets are
subsets ofE. Recall the definition 7.7 of the open ballB(x, r) with centerx and radius
r.

8.1 DEFINITION. A setA is said to beopenif for everyx in A there is anr > 0 such
thatB(x, r) ⊂ A. A set is said to beclosedif its complement is open.

For example, ifE = R with the usual distance, the intervals(a, b), (−∞, b), (a,∞)
are open, the intervals[a, b], (−∞, b], [a,∞) are closed, and the interval(a, b] is neither
open nor closed.

8.2 PROPOSITION.Every open ball is open.

PROOF. Fixx andr. To show thatB(x, r) is open, we need to show that for everyy in
B(x, r) there is aq > 0 such thatB(y, q) ⊂ B(x, r). This is accomplished by picking
q = r − d(x, y). Sincey is in B(x, r), we haved(x, y) < r and, hence,q > 0. And,
every point ofB(y, q) is a point ofB(x, r), becausez ∈ B(y, q) meansd(z, y) < q
which implies that

d(z, x) ≤ d(z, y) + d(y, x) < q + d(y, x) = r.

2

8.3 THEOREM.The sets∅ and E are open. The intersection of a finite number of
open sets is open. The union of an arbitrary collection of open sets is open.

PROOF. The first assertion is trivial from the definition.
We prove the second assertion for the intersection of two open sets. The general

case follows from the repeated aplication of the case for two. LetA andB be open.
Let x ∈ A ∩ B. SinceA is open andx is in A, there isp > 0 such thatB(x, p) ⊂ A.
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Similarly, there is aq > 0 such thatB(x, q) ⊂ B. Let r = p∧q, the smaller ofp andq.
Then,B(x, r) ⊂ B(x, p) ⊂ A andB(x, r) ⊂ B(x, q) ⊂ B. Hence,B(x, r) ⊂ A∩B.
So,A ∩B is open.

For the last assertion, let{Ai : i ∈ I} be an arbitrary collection of open sets. We
want to show thatA = ∪iAi is open. Letx be inA. Then,x ∈ Ai for somei ∈ I.
SinceAi is open, there is anr > 0 such thatB(x, r) ⊂ A. SinceAi ⊂ A, this shows
thatB(x, r) ⊂ A. So,A is open. 2

The following characterization is immediate from the preceding theorem together
with Proposition 8.2.

8.4 PROPOSITION.A set is open if and only if it is the union of a collection of open
balls.

PROOF. IfA is the union of a collection of open balls, thenA must be open in view
of 8.2 and 8.3. To show the converse, letA be open. Then, for everyx in A, there is
an open ballAx = B(x, r(x)) contained inA. Obviously, the union of all theseAx is
exactlyA. 2

Closed Sets

Recall that a subset ofE is closed if and only if its complement is open. Thus, the fol-
lowing theorem is immediate from Theorem 8.3 above and the fact that the complement
of a union is the intersection of complements and vice versa.

8.5 THEOREM.The sets∅ andE are closed. The union of finitely many closed sets is
closed. The intersection of an arbitrary collection of closed sets is closed.

Every closed ball is closed. This last observation can be proved along the lines of
8.2: if y ∈ E \ B̄(x, r) thend(y, x) > r, and pickingp = d(x, y)− r > 0 we see that
B(y, p) ⊂ E \ B̄(x, r), which proves thatE \ B̄(x, r) is open. In particular, for each
x in E, the singleton{x} is closed. It follows from this and the preceding theorem that
every finite set is closed.

Interior, Closure, and Boundary

Let A be a subset ofE. The collection of all closed sets containingA is not empty
(sinceE belongs to that collection.) The intersection̄A of that collection is a closed
set by the last theorem. Clearly,̄A is the smallest closed set that containsA, that is, if
B ⊃ A andB is closed thenB ⊃ Ā. The setĀ is called theclosureof A.

We define theinterior of A similarly as the largest open set contained inA, and we
denote it byA◦. In other words,A◦ is the union of all open sets contained inA. Note
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that
A◦ ⊂ A ⊂ Ā.8.6

We define theboundaryof A to be the set∂A = Ā \A◦.
For example, ifA is the open ballB(x, r) in the Euclidean spaceE = Rn, the

A◦ = A, Ā = B̄(x, r), and∂A is the sphere of radiusr centered atx. If E = R with
the usual metric, and ifA = (a, b], thenĀ = [a, b] andA◦ = (a, b) and∂A = {a, b}.
The following seems self evident.

8.7 PROPOSITION.A set is closed if and only if it is equal to its closure. A set is open
if and only if it is equal to its interior.

Open Subsets of the Real Line

We takeE = R with the usual distance. Then, every open ball is an open interval, and
according to Proposition 8.4, every open set is the union of a collection of open balls.
The following sharpens the picture by taking into account the special nature of the real
line.

8.8 THEOREM.A subset ofR is open if and only if it is the union of a countable
collection of disjoint open intervals.

PROOF. The “if” part is immediate from Proposition 8.4 and the fact that every open
ball is an interval in this case.

To prove the “only if” part, letA be an open subset ofR. Recall that the setQ of
all rationals is countable. For eachq in Q ∩A, let

aq = sup{y ≤ q : y 6∈ A}, bq = inf{y ≥ q : y 6∈ A}.

Then,
B =

⋃
q∈Q∩A

(aq, bq)

is the union of a countable collection of open intervals. We show next thatA = B by
showing thatA ⊂ B andB ⊂ A.

Let x be in A. SinceA is open, there is a ballB(x, r) contained inA. Take a
rational numberq in this ball. Clearly,B(x, r) ⊂ (aq, bq). Thus,x is in B. Since this
is true for everyx in A, we have thatA ⊂ B.

Fix q ∈ Q ∩A. Clearly,(aq, bq) ⊂ A. Hence,B ⊂ A.
We have shown thatA = B, andB has the desired form except that the intervals

(aq, bq) are not necessarily disjoint. Note that ifr ∈ (aq, bq) then(ar, br) = (aq, bq)
andq ∈ (ar, br). Let us writeq ≈ r if and only if (aq, bq) = (ar, br). This defines
an equivalence relation on the setQ ∩ A. Thus, by picking exactly oneq from each
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0 1

Figure 2: The setD = ∪Dq.

equivalence class, we can form a setI ⊂ Q ∩ A such that(aq, bq) ∩ (ar, br) = ∅ for
all distinctq andr in I, and

A = B =
⋃
q∈I

(aq, bq).

2

8.9 EXAMPLE.
The Cantor Set.Start with the unit intervalB = [0, 1]. To eachq in the setI =

{1/2; 1/4, 3/4; 1/8, 3/8, 5/8, 7/8; 1/16, 3/16, . . . , 15/16; . . .} we associate an
open intervalDq in the following fashion:D1/2 is the open interval(1/3, 2/3) which
is the middle third ofB. Deleting it fromB leaves two closed intervals,[0, 1/3] and
[1/3, 1]. Let D1/4 be the interval(1/9, 2/9), which is the middle third of[0, 1/3],
and letD3/4 be (7/9, 8/9), which is the middle third of[2/3, 1]. Deleting those
middle thirds, we are left with four closed intervals of length1/9 each. LetD1/8,
D3/8, D5/8, D7/8 be the open intervals that make up the middle thirds of those closed
intervals. Delete the middle thirds, and continue in this manner (see Figure 2). Then,

D =
⋃
q∈I

Dq

is the union of the countably many disjoint open intervalsDq, q ∈ I. It is an example
of a non-trivial open set. Incidentally, note that the lengths of theDq sum to

1
3

+ (
1
9

+
1
9
) + (

1
27

+
1
27

+
1
27

+
1
27

) + · · · = 1.

Thus, the “length” ofD is 1. But the setC = B \D is not empty.
The setC = B \ D is called theCantor set. It is obviously a closed set. The

construction above shows thatC is obtained by starting withB and deleting the middle
third of every interval we can find. Thus, there is no open interval contained inC. That
is, there are no open balls inC. Hence, the interior ofC must be empty, andC is pure
boundary:

C◦ = ∅, C̄ = C, ∂C = C.

Also, since the length ofD is equal to the length ofB, the length ofC = B \D must
be0. In summary, the Cantor set is very thin.



8. OPEN AND CLOSED SETS 33

x=g(y)

y=f(x)

Figure 3: The cantor function.

Nevertheless,C has at least as many points as the interval[0, 1]. We prove this next
by showing, via construction, that there exists an injectiong from [0, 1] into C.

To this end, we start by defining an increasing functionf from D into [0, 1] by
letting

f(x) = q, if x ∈ Dq.

Then, we define the functiong on [0, 1] by settingg(1) = 1 and

g(y) = inf{x ∈ D : f(x) > y}, 0 ≤ y < 1.

We show first thatg(y) ∈ C for everyy. This is obvious fory = 1. Let y ∈ [0, 1);
note thatg(y) is the infimum of the union of all intervalsDq with q > y; clearly,
that infimum cannot belong toD; so g(y) must belong toC (since it is obvious that
g(y) ∈ B). Finally, we show thatg : [0, 1] 7→ C is an injection by showing that if
y < z, theng(y) < g(z). Fix y < z. Note that there is at least oneq in I such that
y < q < z, and the corresponding setDq is contained in{x ∈ D : f(x) > y} but not
in {x ∈ D : f(x) > z}. It follows that the numberg(y) is to the left of the intervalDq

whereasg(z) is to the right. So,g(y) < g(z) if y < z. Hence,g : [0, 1] 7→ C is an
injection.

Exercises and Complements:
8.1 Let(E, d) be a metric space. Show that

Ā = {x ∈ E : d(x,A) = 0}
A◦ = {x ∈ E : d(x,Ac) > 0}
∂A = {x ∈ E : d(x,A) = 0 andd(x,Ac) = 0}.
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8.2 Let (E, d) be a metric space. FixA ⊂ E. Show thatAε = {x ∈ E :
d(x,A) < ε} is an open set containingA for eachε > 0. Show that
Ā = ∩ε>0Aε.

8.3 Boundedness.Let (E, d) be a metric space. Show that a subsetA of E is
bounded if and only if it is contained in some ball, that is, if and only if
A ⊂ B(x, r) for somex andr.

8.4 TakeE = R andd the usual metric. LetA ⊂ E. Show that ifA is closed
and bounded above, thensupA belongs toA (that is,A has a maximum).
Similarly, if A is closed and bounded below, then it has a minimum. Show
that an open setA cannot have a minimum, that is,inf A cannot belong to
A.

8.5 LetD be the open set of Example 8.9. Find its interior and boundary.

8.6 Denseness.A setD is said to bedensein E if D̄ = E. Let D be dense in
E. Show that everyx in E is at0 distance fromD. Thus, every open ball
has at least one point ofD. Show that the setQ of all rationals is dense in
R, the set of all pairs of rationals is dense inR2, etc.

8.7 Separability.The metric spaceE is said to be separable if there exists a
countable setD that is dense inE. So, for example, the Euclidean spaces
R, R2, R3, ... are separable.

8.8 Discrete metric spaces.Let E be arbitrary and suppose thatd is the dis-
crete metric (see (7.1) for it) onE. Show that each subsetA is both open
and closed. Forr ≤ 1, every open ballB(x, r) consists of exactly the
point x. Note thatB(x, 1) = {x}, B̄(x, 1) = E for every x (Moral:
B̄(x, r) is not necessarily the closure ofB(x, r)). If E is countable, then
it is separable (trivially). IfE is uncountable, it is not separable. Show
this.

9 Convergence

Let (E, d) be a metric space. Our goal is to discuss the notion of convergence for a
sequence of points inE. We do so by employing the concept of convergence inR, for
which we refer to Section 4 of Chapter .

9.1 DEFINITION. A sequence(xn) in E is said to beconvergentin E if there exists
a pointx in E such thatlim d(xn, x) = 0. And, then,(xn) is said toconvergeto x, the
pointx is called thelimit of (xn), and the notationx = lim xn is used to indicate it.

REMARK: The preceding definition includes, implicit in it, the fact that a convergent
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sequence has exactly one limit. To see this, suppose that(xn) converges tox and toy,
that is,lim d(xn, x) = 0 andlim d(xn, y) = 0. Then,

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y)

by the triangle inequality, and the right side converges to zero. Thus,d(x, y) = 0,
which means thatx = y.

The following brings together a number of re-wordings of convergence. Each is a
slight alteration of the others. No proof seems needed.

9.2 THEOREM.The following statements are equivalent:

1. (xn) converges tox.

2. For everyε > 0 there is annε such thatd(xn, x) < ε for all n ≥ nε.

3. The set{n : d(xn, x) ≥ ε} is finite for eachε > 0.

4. For everyε > 0, the ballB(x, ε) includes all but a finite number of the termsxn.

9.3 COROLLARY.Every convergent sequence is bounded.

PROOF. Let(xn) be convergent andx its limit. In view of the equivalence of 1 and 4
in Theorem 9.2,B(x, 1) includes all but a finite number of the termsxn. Let r be the
maximum of the distances fromx to those termsxn outsideB(x, 1), if there are any;
otherwise, setr = 1. Clearlyr < ∞ andB(x, r) contains(xn), which means that
(xn) is bounded. 2

Subsequences

It follows from Theorem 9.2 that we may remove a finite number of terms, or rearrange
the terms, without affecting the convergence. The following generalizes this.

9.4 PROPOSITION.If a sequence converges tox, then every subsequence of it con-
verges to the samex.

PROOF. Let(xn) be a sequence with limitx. Let (yn) be a subsequence of it, that
is, yn = xkn

for somek1 < k2 < · · ·. Now, by Theorem 9.2, for everyε > 0 the
ball B(x, ε) includes all the termsxn except for some finite number of them; therefore
the same must be true for the termsyn. So, by Theorem 9.2, the subsequence(yn)
converges tox. 2
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Convergence and Closed Sets

Think of a particle that moves inE by jumps: first it is atx1, then atx2, then atx3, and
so on. The following gives meaning to the term “closed set” if you think of sequences
in this fashion.

9.5 THEOREM.A set is closed if and only if it includes the limit of every sequence in
it.

PROOF. “Only if” part. Suppose thatA is a closed set and that(xn) is a sequence in
A with limit x. We show that, then,x must belong toA. For, otherwise, ifx were in
Ac, there would exist anε > 0 such thatB(x, ε) ⊂ Ac sinceAc is open andB(x, ε)
would include infinitely many terms sincex is the limit, which would contradict the
fact that all thexn are inA.

“If” part. We show that ifA is not closed then there is a sequence(xn) in A that
converges to some pointx in Ac. Suppose thatA is not closed. ThenAc is not open.
Thus, there exists anx in Ac such thatB(x, r)∩A has at least one point for eachr > 0.
Hence, for eachn in N, there is anxn in A such thatd(xn, x) < 1/n. Obviously,(xn)
is in A and converges tox which is not inA. 2

Exercises:

9.1 Discrete metric spaces.Suppose thatd is the discrete metric onE. Show
that (xn) is convergent if and only if it is ultimatelystationary, that is, if
and only if it has the form(x1, x2, . . . , xn, x, x, x, . . .) for somen.

9.2 Let (E, d) be arbitrary. Show that if(xn) converges tox and(yn) con-
verges toy, thend(xn, yn) converges tod(x, y). Hint: first show that, for
arbitraryx, y, z in E,

|d(x, y)− d(x, z)| ≤ d(y, z).

Use this to write

|d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(xn, y)|
+|d(xn, y)− d(x, y)|

≤ d(yn, y) + d(xn, x),

and take limits.

9.3 Show that if(xn) converges tox, thend(xn, A) converges tod(x,A) for
each fixed subsetA of E.
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10 Completeness

Let (E, d) be a metric space. Recall that a sequence(xn) in E is convergent if there
is anx in E such thatlim d(xn, x) = 0. This definition has two shortcomings. First,
starting with(xn), we rarely have a candidatex for the limit. Second, often we are
not interested in computing the limit itself; it is generally sufficient to know that the
limit exists and has such and such properties. This section is aimed at rectifying these
shortcomings.

Cauchy Sequences

10.1 DEFINITION. A sequence(xn) in E is said to beCauchyif for everyε > 0 there
is annε such thatd(xm, xn) < ε for all m > n ≥ nε.

The following is nearly a re-statement of this definition in slightly more geometric
terms.

10.2 LEMMA. A sequence(xn) is Cauchy if and only if for everyε > 0 there is a ball
of radiusε that contains all but finitely many of the termsxn.

PROOF. Suppose that(xn) is Cauchy. Letε > 0. Then, there isnε such that
d(xm, xn) < ε for all m > n ≥ nε. Thus, in particular, the ballB(xnε

, ε) contains all
the terms except possiblyx1, . . . , xnε−1. This proves the necessity of the condition.

Conversely, suppose that for everyε > 0 there is a ballB(x, ε) with somex as its
center such that all but a finite number of the terms are in the ball. Givenε > 0, now
pick x so thatB(x, ε/2) contains all thexn except perhaps finitely many, that is, there
is nε such thatxn ∈ B(x, ε/2) for all n ≥ nε. Now, if m > n ≥ nε, then

d(xm, xn) ≤ d(xm, x) + d(x, xn) < ε/2 + ε/2 = ε.

Hence,(xn) is Cauchy. This proves the sufficiency. 2

10.3 THEOREM.

1. Every convergent sequence is Cauchy.

2. Every Cauchy sequence is bounded.

3. Every subsequence of a Cauchy sequence is Cauchy.



38 METRIC SPACES

PROOF. The first claim is immediate from the preceding lemma and Theorem 9.2. The
second claim is proved, via the preceding lemma, by following the proof of Corollary
9.3. The last claim is immediate from the preceding lemma. 2

The following shows that if a sequence is Cauchy and you can find a subsequence
of it that converges to some pointx, then the original sequence converges tox.

10.4 PROPOSITION.A Cauchy sequence that has a convergent subsequence is itself
convergent.

PROOF. Let(xn) be Cauchy. Letx be the limit of a convergent subsequence of it.
Pickε > 0. By Lemma 10.2, there is a ballB(y, ε) that contains all but a finite number
of thexn. That ballB(y, ε) must contain all but a finite number of the subsequence as
well. Thus,x must be inB̄(y, ε). Then,B(x, 3ε) containsB̄(y, ε) and hence contains
all but a finite number of thexn. Thus,(xn) is convergent andx = lim xn in view of
Theorem 9.2. 2

Complete Metric Spaces

All the results above suggest that all Cauchy sequences should be convergent, which is
in fact what we hope for. Unfortunately, this is not true in general. Here is an example.

Suppose thatE = Q, the set of all rationals, with the metric it inherits from the
real line. Letx =

√
2, which is not a rational number, and let(xn) be a sequnce in

Q that converges tox in the sense of convergence inR: for instance, pickxn to be a
rational number in the interval(x, x + 1/n) for eachn. Over the metric spaceQ, the
sequence(xn) is Cauchy, but fails to be convergent inQ simply becausex is not inQ.
The problem here is not with the Cauchy sequence, but with the spaceQ. The spaceQ
has holes in it!

The following introduces the extra notion we want.

10.5 DEFINITION. The metric space(E, d) is said to becompleteif every Cauchy
sequence inE converges to a point ofE.

The following is immediate from Theorem 9.5.

10.6 PROPOSITION.If (E, d) is complete andD ⊂ E is closed, then(D, d) is a
complete metric space.

The following shows that familiar spaces are complete. Other examples are listed
in exercises.
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10.7 THEOREM.Every Euclidean space is complete.

PROOF. We start with the one-dimensional Euclidean space, namelyR. Let (xn) ⊂ R
be Cauchy. Then, for everyε > 0 there is a ball of radiusε (namely an open interval
of length2ε) that contains all but finitely many of thexn. Therefore, the numbers
x = lim inf xn andy = lim supxn must belong to that ball, which means that0 ≤
y − x < 2ε. Since this is true for everyε > 0, we must havex = y, that is,(xn) is
convergent. This proves thatR is complete.

Now, fix k ≥ 2 and consider the Euclidean spaceRk. We writex = (a, b, . . . , c)
for eachx in Rk for simplicity of notation (in other words, the coordinates ofx are
a, b, . . . , c).

Consider a Cauchy sequence of pointsxn = (an, bn, . . . , cn) in Rk. Givenε > 0,
then, for allm andn large enough, we have

d(xm, xn) = (|am − an|2 + |bm − bn|2 + · · ·+ |cm − cn|2)1/2 < ε,

which shows that

|am − an| < ε, |bm − bn| < ε, . . . , |cm − cn| < ε.

In other words, the sequences(an), (bn), ...,(cn) in R are Cauchy. We have just shown
that R is complete. So, these sequences must be convergent inR, say, with limits
a, b, . . . , c respectively. Now, letx = (a, b, . . . , c) and note that

d(xn, x)2 = |an − a|2 + |bn − b|2 + · · ·+ |cn − c|2

converges to0. Hence,lim d(xn, x) = 0, and(xn) is convergent. This completes the
proof thatRk is complete. 2

Exercises and Complements:
10.1 Show that the following metric spaces are complete:

1. E = R2 with the Manhattan metricd.

2. E arbitrary,d is the discrete metric.

In fact, eachRk is a complete metric space with any one of the metricsdp

introduced in Exercises 7.2 and 7.4.

10.2 Show that the spacel2 introduced in Exercise 7.5 is complete. Incidently,
so is the spaceC of Example 7.3 and Exercise 7.6.

10.3 Two Cauchy sequences(xn) and (yn) are said to be equivalent if their
merger(x1, y1, x2, y2, . . .) is Cauchy. In this case, we write(xn) ≡ (yn).
Show that this defines an requivalence relation. That is,

1. (xn) ≡ (xn)
2. (xn) ≡ (yn) implies that(yn) ≡ (xn)
3. (xn) ≡ (yn), (yn) ≡ (zn) implies that(xn) ≡ (zn).
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11 Compactness

Let (E, d) be a metric space. It will be convenient to refer toE as a metric space,
without mentioningd. We shall use the picturesque phrase “the collection{Ai : i ∈ I}
covers B” to mean that∪i∈IAi ⊃ B.

11.1 DEFINITION. A setC ⊂ E is said to becompactif every collection of open sets
that coversC has a finite sub-collection that coversC. The metric space(E, d) is said
to be compact ifE is so.

We shall show that, for many metric spaces, compact sets are precisely the sets that
are bounded and closed. The following are aimed in that direction. The proofs are
excessively detailed in order to facilitate understanding.

11.2 PROPOSITION.Every compact set is bounded.

PROOF. LetC be compact. For eachx in C, letBx be a ball of radius1 centered atx.
Obviously, then, the collection{Bx : x ∈ C} of open sets coversC. Hence, there must
be a finite sub-collection, say of setsBx1 , . . . , Bxn , that coversC. Since the union of
ballsBx1 , . . . , Bxn must be bounded, this implies thatC is bounded as well. 2

11.3 PROPOSITION.Every closed subset of a compact set is compact.

PROOF. LetD be compact. LetC ⊂ D be closed. Fix a collection of open sets that
coversC. Adding the open setE \ C to that collection, we obtain a collection of open
sets that coversD. SinceD is compact, the latter collection has a finite sub-collection
that still coversD. RemovingE \C from that sub-collection (if it were in), we obtain a
finite sub-collection of the original collection that coversC. Thus,C must be compact.
2

Compact Subspaces

Recall that every subsetD of E can be regarded as a metric space by itself, with the
metric it inherits fromE. WhetherD is open or not as a subset ofE, it is open
automatically when it is regarded as a metric space. The concept of compactness does
not suffer from such foolishness.

11.4 PROPOSITION.A setD is compact as a metric space if and only if it is compact
as a subset ofE.
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PROOF. A subset ofD is an open ball in the spaceD if and only if it has the form
B ∩D for some open ballB of the spaceE. Since an open set is the union of all the
open balls it contains, it follows thatA is an open subset of the spaceD if and only if
A = B∩D for some open subsetB of the spaceE. Now, the definition of compactness
does the rest. 2

Cluster Points, Convergence, Completeness

This is to look into the connections between compactness and convergence.

11.5 DEFINITION. A pointx in E is called acluster point2 of a subsetA of E
provided that every open ball centered atx contains infinitely many points ofA.

11.6 THEOREM.Every infinite subset of a compact set has at least one cluster point
in that compact set.

PROOF. We shall show that ifC is compact, andA ⊂ C, andA has no cluster point
in C, thenA is finite. LetA andC be such. Since nox in C is a cluster point ofA, for
everyx in C there is an open ballB(x, r) that contains only finitely many points ofA.
Those open balls coverC obviously. SinceC is compact, there must be a finte number
of them that coverC and, therefore,A. Since each one of those finitely many balls has
a finte number of points ofA, the total number of points inA must be finite. 2

The following is the way compactness helps in discussing convergence. In particu-
lar, together with Proposition 10.4, it shows that every Cauchy sequence in a compact
set is convergent.

11.7 THEOREM.Every sequence in a compact set has a subsequence that converges
to some point of that set.

PROOF. LetC be compact. Let(xn) ⊂ C. If the setA = {x1, x2, . . .} is finite,
then at least one point ofA, sayx, appears infinitely often in the sequence, and hence
(x, x, . . .) is a subsequence, which obviously converges tox ∈ A ⊂ C. Now suppose
thatA is infinite. By the preceding theorem, thenA has a cluster pointx in C. Since
each one of the ballsB(x, 1/n), n = 1, 2, . . ., has infinitely many points inC, we
may pickk1 so thatxk1 is in B(x, 1), pick k2 > k1 so thatxk2 is in B(x, 1/2), pick
k3 > k2 so thatxk3 is in B(x, 1/3), and so on. Obviously,(xkn

) converges tox. 2

2Other terms in common use include limit point, adherence point, point of accumulation, etc.
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11.8 COROLLARY.Every compact set is closed.

PROOF. LetC be compact. The preceding theorem implies that every convergent
sequence inC converges to a point ofC. Thus,C is closed by Theorem 9.5. 2

11.9 COROLLARY.Every compact metric space is complete. Every Cauchy sequence
in a compact metric space is convergent.

PROOF. The second statement is immediate from Theorem 11.7 and Proposition 10.4.
The first follows from the second by the definition of completeness. 2

Compactness in Euclidean Spaces

We have seen that, for an arbitrary metric space, every compact set is bounded and
closed (Proposition 11.2 and Corollary 11.8). In the case of Euclidean spaces, the
converse is true as well. This is called theHeine-Borel Theorem.

11.10 THEOREM.A subset of a Euclidean space is compact if and only if it is bounded
and closed.

We start by listing an auxiliary result that is trivial at least forR, R2, R3. We omit
its proof.

11.11 LEMMA. Let B be a bounded subset of a Euclidean spaceE. Then, for every
ε > 0 there is a finite collection of closed balls of radiusε that coversB.

Here is the proof of Theorem 11.10.

PROOF. As mentioned above, 11.2 and 11.8 prove the necessity part. We now prove
the sufficiency of the condition.

LetE be a Euclidean space and letC be a closed and bounded subset ofE. Suppose
thatC is not compact. Then, there is a collection{Ai : i ∈ I} of open sets that covers
C but is such that

no finite sub-collection{Ai : i ∈ I} coversC.11.12

(a) Letε = 1/2. By the preceding lemma, we can find a finite numberm of closed
ballsB1, . . . , Bm of radiusε that coverC. Then,C = (C ∩B1)∪ · · · ∪ (C ∩Bm). In
view of (11.12), at least one ofC ∩B1, . . . , C ∩Bm cannot ever be covered by a finite
sub-collection of theAi; let that one be denoted byC1. Now,C1 is closed, its diameter
is at most2ε = 1 (since theBk have diameter1), and (11.12) is true forC1.
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(b) Applying the arguments of the preceding paragraph withε = 1/4 to the set
C1 we get a new setC2 ⊂ C1 that is closed, has diameter at most1/2, and (11.12)
holds forC2. Repeating this withε = 1/6, 1/8, 1/10, . . . we obtain further sets
C3, C4, C5, . . . with the same properties but with diameters at most1/3, 1/4, 1/5, . . ..
ClearlyC1 ⊃ C2 ⊃ C3 ⊃ · · ·.

(c) Since (11.12) holds for eachCn, it must be that noCn is empty (covering an
empty set takes no effort). Thus, we may pickx1 from C1, x2 from C2, and so on to
obtain a sequence(xn).

(d) This sequence is Cauchy: givenε > 0 choosen so that1/2n < ε, and then
xn, xn+1, . . . are all in a ball of radiusε since all these terms are inCn which has
diameter less than1/n. SinceE is Euclidean, it is complete (see Theorem 10.7), which
means that every Cauchy sequence converges. Hence, the sequence(xn) converges to
some pointx0 in E. Since, for eachn, (xm : m ≥ n) ⊂ Cn andCn is closed, the limit
x0 belongs toCn by Theorem 9.5.

(e) Since theAi coverC, there must exist ani in I such thatx0 is in Ai. Fix thati.
SinceAi is open, there is anε > 0 such that

B(x0, ε) ⊂ Ai.

Now choosen large enough that1/n < ε/2. Since,x0 ∈ Cn and diamCn ≤ 1/n <
ε/2, we see that

Cn ⊂ B(x0, ε).

In other words,Ai coversCn. This contradicts the earlier assertion that (11.12) holds
for all Cn. This completes the proof. 2

Exercises:
11.1 Supremums.LetA be a non-empty subset ofR. Suppose thatA is bounded

above but has no greatest element. Show that, then,supA is a cluster point
of A.

11.2 Show that the union of a finite number of compact sets is again compact.

11.3 Give an example of an infinite subset ofR that has no cluster points. Give
an example of one with exaclty two cluster points. Identify the cluster
points of the set

A = {x ∈ R : x =
1
m

+
1
n

for somem,n in N}.

11.4 Sequences inR. By the Heine-Borel theorem, every closed interval[a, b] ⊂
R is compact. Thus, every bounded sequence inR has a convergent subse-
quence (cf. Theorem 11.7). Another consequence is the following useful
result:

Let (xn) be a bounded sequence inR. Suppose that all convergent subse-
quences of it have the same limitx. Then,(xn) converges tox.
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Prove this by following the steps below.

(a) Show thatx = lim inf xn and x̄ = lim supxn are cluster points of
(xn).

(b) Show that there is a subsequence of(xn) that converges tox. Similarly,
then, there is a subsequence that converges tox̄.

(c) By the hypothesis that all convergent subsequences have the same limit,
we conclude thatx = x̄, which means thatlim xn exists (and is inR since
(xn) is bounded).



Functions on Metric Spaces

Elementary analysis is mostly about functions fromR intoR, or functions fromRn into
R, or, somewhat more generally, functions fromRn into Rm. Our aim is to consider
functions from one metric space to another. Replacing Euclidean spaces by metric
spaces introduces no new difficulties and is immensely useful for dealing with various
problems concerning differential and integral equations.

For mappings from a metric space to another we employ either notations like
T, S, U or notations likef, g, h. Generally, the transformation notation is cleaner: we
write Tx for the image ofx underT andT−1B for the inverse image ofB, which
becomef(x) andf−1(B) in the standard function notation.

12 Continuous Mappings

Throughout this section,E, E′, etc. will be metric spaces with corresponding metrics
d, d′, etc. Given a mappingT from E into E′, we writeTx for the image of the point
x of E andT−1B for the inverse image of the subsetB of E′. On a first reading, the
reader may wish to takeE′ = R andd′(x, y) = |x− y| as usual.

12.1 DEFINITION. A mappingT : E 7→ E′ is said to becontinuous at the pointx of
E provided that for everyε > 0 there is aδ > 0 such that

y ∈ E, d(x, y) < δ ⇒ d′(Tx, Ty) < ε.

The mappingT is said to becontinuousif it is continuous at everyx of E.

REMARKS: (a) In the definition,δ is allowed to depend onε andx.
(b) WhenE = E′ = R with the usual metric, the preceding is the classical defini-

tion of continuity.
(c) The condition forT to be continuous atx can be rephrased in more geometric

terms as follows: for everyε > 0 there is aδ > 0 such thatT maps the open ball
B(x, δ) of E into the open ballB′(Tx, ε) of E′. Here,

B(x, δ) = {y ∈ E : d(x, y) < δ}, B′(Tx, ε) = {y ∈ E′ : d′(Tx, y) < ε}.

45
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Continuity and Open Sets

12.2 THEOREM.A mappingT : E 7→ E′ is continuous if and only ifT−1B is an
open subset ofE for every open subsetB of E′.

PROOF. Suppose thatT is continuous. LetB ⊂ E′ be open. We want to show that,
then,A = T−1B is open, that is, for everyx in A there isδ > 0 such thatB(x, δ) ⊂ A.
To this end, fixx in A, note thaty = Tx is in B, and therefore, there isε > 0 such
thatB′(y, ε) ⊂ B (sinceB is open). By the continuity ofT , for thatε, there is aδ > 0
such thatT mapsB(x, δ) into B′(y, ε). SinceB′(y, ε) ⊂ B, we haveB(x, δ) ⊂ A as
needed.

Suppose thatT−1B is open inE for every open subsetB of E′. Let x in E be
arbitrary. We want to show that, then,T is continuous atx. To this end, fixε > 0.
SinceB′(Tx, ε) is open, its inverse image is open, that isA = T−1B′(Tx, ε) is an
open subset ofE. Note thatx is in A; therefore, there is aδ > 0 such thatB(x, δ) ⊂ A,
and thenT mapsB(x, δ) into B′(Tx, ε). So,T is continuous atx. 2

Continuity and Convergence

If (xn) is a sequence inE, we writexn
d→ x to mean that(xn) converges tox in E

in the metricd, that is,d(xn, x) → 0. Similarly, we writeyn
d′→ y to mean that the

sequence(yn) in E′ converges toy in the metricd′. The following is probably the
most useful characterization of continuity.

12.3 THEOREM.A mappingT : E 7→ E′ is continuous at the pointx of E if and
only if

(xn) ⊂ E, xn
d→ x ⇒ Txn

d′→ Tx.

PROOF. Suppose thatT is continuous atx. Let (xn) ⊂ E be such thatxn
d→ x.

We want to show that, then,Txn
d′→ Tx, which is equivalent to showing that for

everyε > 0 the ballB′(Tx, ε) contains all but finitely many of the pointsTxn. To
this end, fixε > 0. By the continuity ofT at x, there isδ > 0 such thatT maps
B(x, δ) into B′(Tx, ε). Sincexn ∈ B(x, δ) for all but finitely manyn, it follows that
Txn ∈ B′(Tx, ε) for all but finitely manyn, which is as desired.

Suppose thatT is not continuous atx. Then, there isε > 0 such that for every
δ > 0 there isy in E such thatd(x, y) < δ andd′(Tx, Ty) ≥ ε. Thus, for thatε,
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takingδ = 1, 1/2, 1/3, . . . we can picky = x1, x2, x3, . . . such thatd(xn, x) < 1/n

andd′(Txn, Tx) ≥ ε. Hence, there is a sequence(xn) ⊂ E such thatxn
d→ x but

(Txn) does not converge toTx. 2

Compositions

The following result is recalled best by the phrase “a continuous function of a continu-
ous function is continuous”.

12.4 THEOREM.If T : E 7→ E′ is continuous atx ∈ E and S : E′ 7→ E′′ is
continuous atTx ∈ E′, thenS ◦ T : E 7→ E′′ is continuous atx ∈ E. If T is
continuous andS is continuous, thenS ◦ T is continuous.

PROOF. The second assertion is immediate from the first. To show the first, let(xn) ⊂
E be such thatxn

d→ x. If T is continuous atx, theTxn
d′→ Tx by the last theorem;

and if S is continuous atTx, this in turn implies thatS(Txn) d′′→ S(Tx) by the last
theorem again, which means thatS ◦ T is continuous atx. 2

EXAMPLES.

12.5 Constants.Let T : E 7→ E′ be defined byTx = b whereb in E′ is fixed. This
T is continuous.

12.6 Identity.Let T : E 7→ E be defined byTx = x. ThisT is continuous, as is easy
to see from Theorem 12.2 or 12.3.

12.7 Restrictions.Let T : E 7→ E′ be continuous. ForD ⊂ E, the restriction of
T to D is the mappingS : D 7→ E′ defined by puttingSx = Tx for eachx ∈ D.
Obviously, the continuity ofT implies that ofS.

12.8 Discontinuity.Let f : R 7→ R be defined by settingf(x) = 1 if x is rational and
f(x) = 0 if x is irrational. This function is discontinuous at everyx ∈ R. To see it, fix
x in R. For everyδ > 0, the ballB(x, δ) has infinitely many rationals and infinitely
many irrationals. Thus, it is impossible to satisfy the condition for continuity atx (for
anyε < 1).

12.9 Lipschitz continuity.A mappingT : E 7→ E′ is said to satisfy a Lipschitz
condition if there exists a constantK ∈ (0,∞) such that

d′(Tx, Ty) ≤ Kd(x, y)
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for all x, y in E. Every such mapping is continuous: givenε > 0, chooseδ = ε/K no
matter whatx is.

12.10 Coordinate mappings.Let E = Rn, then-dimensional Euclidean space, fixi
in {1, . . . , n}, and definePi : Rn 7→ R by Pix = xi, theith coordinate ofx. Then,Pi

satisfies the Lipschitz condition above withK = 1 and, thus, is continuous.

Real-Valued Functions

Functionsf from a metric spaceE into R can be combined through arithmetic oper-
ations to obtain new functions. For instance,f + g is the function whose value atx
is f(x) + g(x). In definingf/g, however, one must exercise some caution at pointsx
whereg(x) = 0. It is best to limit the definition off/g to the set{x ∈ E : g(x) 6= 0}.
The following is immediate from Theorem 12.3.

12.11 PROPOSITION.If f : E 7→ R and g : E 7→ R are continuous, then so are
f +g, f −g, f ·g, f/g except that, in the last case,f/g should be treated as a function
on{x : g(x) 6= 0}.

Rn-Valued Functions

These are functions from a metric spaceE into the Euclidean spaceRn (with the Eu-
clidean distance). The following reduces the notion of continuity for such mappings
to the case of real-valued functions. We use the projection mappingsPi introduced in
Example 12.10:Pix is theith coordinate of the vectorx in Rn.

12.12 PROPOSITION.A mappingT : E 7→ Rn is continuous if and only if the map-
pingsP1 ◦ T, . . . , Pn ◦ T fromE into R are continuous.

PROOF. LetT be continuous. Then,Pi ◦ T is continuous for eachi because a contin-
uous function of a continuous function is continuous.

Suppose thatP1◦T, . . . , Pn◦T are continuous. To show that, then,T is continuous,
we start by observing that

‖u− v‖ =

√√√√ n∑
1

|Piu− Piv|2, u, v ∈ Rn.12.13

Now, fix x ∈ E andε > 0. Using the definition of continuity forPi ◦ T at x with
εi = ε/

√
n, we findδi > 0 such that

d(x, y) < δi ⇒ |PiTx− PiTy| < ε/
√

n.
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Let δ = min{δ1, . . . , δn}. Thenδ > 0 and

d(x, y) < δ ⇒ |PiTx− PiTy| < ε/
√

n for eachi

⇒ ‖Tx− Ty‖ < ε

in view of 12.13 used withu = Tx andv = Ty. 2

Exercises:
12.1 Continuity of metrics.Recall the definition of the product spaceE × E

from Exercise 7.9 in Chapter with(E1, d1) = (E2, d2) = (E, d). Show
thatd : E × E 7→ R+ is continuous.

12.2 Continuity of pairs.Let f : E 7→ E′ andg : E 7→ E′ be continuous. De-
fineh : E 7→ E′×E′ by h(x) = (f(x), g(x)). Show thath is continuous.

12.3 Closed sets.If T : E 7→ E′ is continuous, thenT−1B is a closed subset
of E for every closed subsetB of E′. Show. Forf : E 7→ R continuous,
show that the sets{x ∈ E : f(x) ≤ b}, {x ∈ E : f(x) = b}, {x ∈ E :
f(x) ≥ b} are closed inE.

12.4 Indicators.For A ⊂ E let 1A be the indicator ofA, that is,1A(x) = 1 if
x ∈ A and1A(x) = 0 if x 6∈ A. Show that1A is continuous at all points
x ∈ E except forx ∈ ∂A.

12.5 Left and Right Continuity.Let f : R 7→ E′. Order properties of the real
line enable us to refine the notion of continuity as follows. The function

f is said to beright-continuousat x ∈ R provided thatf(xn) d′→ f(x)
for every decreasing sequence(xn) ⊂ R with limit x. Similarly, f is said

to beleft-continuousat x if f(xn) d′→ f(x) for every increasing sequence
(xn) with limit x.

Show thatf is continuous atx if and only if it is both right-continuous and
left-continuous atx.

12.6 Functional inverses.Let f : R+ 7→ R+ be a continuous and strictly
increasing bijection. Letf−1(y) be that pointx for which f(x) = y.
Show that the functionf−1 is continuous and strictly increasing.

12.7 Legendre Transforms.A functionf : R 7→ R is calledconvexif

f(px + qy) ≤ pf(x) + qf(y)

for all x, y ∈ R and allp, q ∈ (0, 1) satisfyingp + q = 1. TheLegendre
transformof a convex functionf is the functiong : R 7→ R defined by

g(y) = max
x

(xy − f(x)).
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Show thatg is convex and that

f(x) = max
y

(xy − g(y)).

State any extra “smoothness” assumptions you might need.

12.8 Sections.Let f : E1 × E2 7→ R be continuous. Show that, for eachy in
E2, the mappingx 7→ f(x, y) from E1 into R is continuous. Similarly,
y 7→ f(x, y) is continuous for eachx. Unfortunately, the converse does
not hold: it is possible to havex 7→ f(x, y) continous for eachy and
y 7→ f(x, y) continuous for eachx even thoughf is not continuous. Give
an example of such a function.

13 Compactness and Uniform Continuity

As before,E, E′, etc. are metric spaces with metricsd, d′, etc. This section is on the
effect of compactness on continuity.

13.1 THEOREM.Let T : E 7→ E′ be continuous. IfE is compact, then the range of
T is a compact subset ofE′.

PROOF. LetD ⊂ E′ be the range ofT . Assuming thatE is compact, we need to show
thatD is compact. Let{Bi : i ∈ I} be a collection of open subsets ofE′ that covers
D. Then, the continuity ofT implies via Theorem 12.2 that the setsAi = T−1Bi,
i ∈ I, are open. Moreover,{Ai : i ∈ I} coversE: if x is in E thenTx is in D, and
hence,Tx is in Bi for somei, which implies thatx is in the correspondingAi. Now
the compactness ofE implies that there exists a finte setJ ⊂ I such that{Ai : i ∈ J}
coversE. Thus, ifx ∈ E, thenx ∈ Ai for somei in J and thereforeTx ∈ Bi for
somei in J . That is,{Bi : i ∈ J} coversD. So,D must be compact. 2

Recall that every compact set is closed and bounded. Thus, iff : E 7→ R is
continuous andE is compact, then the range off is bounded and closed, which im-
plies thatf attains a maximum and a minimum, that is, there arex0 andx1, such that
f(x0) ≤ f(x) ≤ f(x1) for all x ∈ E (see Exercise 11.1 in Chapter to the effect that if
D ⊂ R is closed and bounded theninf A andsupA belong toD). We have thus shown
the following:

13.2 COROLLARY.Let E be compact andf : E 7→ R continuous. Then,f is
bounded and attains a maximum and a minimum.

The conclusion fails ifE is not compact. For instance,f(x) = x onE = (0, 1) is
bounded but has neither a maximum nor a minimum. Also,f(x) = 1/x onE = (0, 1)
is not bounded and has neither a maximum nor a minimum.
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Uniform Continuity

Recall the definition of continuity:T : E 7→ E′ is continuous provided that for every
x in E and everyε > 0 there is aδ > 0 (depending onx andε) such thatd(x, y) < δ
impliesd′(Tx, Ty) < ε for all y in E. The importance of the following is to remove
the dependence ofδ onx.

13.3 DEFINITION. A mappingT : E 7→ E′ is said to beuniformly continuous
provided that for everyε > 0 there is aδ > 0 such that

x, y ∈ E, d(x, y) < δ ⇒ d′(Tx, Ty) < ε.

Obviously, every uniformly continuous function is continuous. The converse is
false. For example, the functionf : (0, 1) 7→ R defined byf(x) = 1/x is continuous
but not uniformly so. The failure here is not due to the unboundedness off . For
instance, the functionf : (0, 1) 7→ [−1, 1] defined byf(x) = sin 1/x is continuous but
not uniformly so. The mappings of Examples 12.5, 12.6, 12.9, and 12.10 are uniformly
continuous. In fact, they are all special cases of 12.9 on Lipschitz continuity. Being
Lipschitz almost encapsulates the notion of uniform continuity

13.4 PROPOSITION.Let T : E 7→ E′ be Lipschitz continuous. ThenT is uniformly
continuous.

PROOF. Fixε > 0 and chooseδ = ε/K. Thisδ works and is independent ofx. 2

(Exercise 13.6 provides an “almost converse” to this result). The following shows
the important role of compactness on uniform continuity.

13.5 THEOREM.LetT : E 7→ E′ be continuous. IfE is compact, thenT is uniformly
continuous.

PROOF. Fixε > 0. We search forδ > 0 that will fulfill the condition for uniform
continuity. SinceT is continuous, for eachx in E there isδ(x) > 0 such that

d(x, y) < δ(x) ⇒ d′(Tx, Ty) < ε/2.13.6

The collection of open ballsB(x, δ(x)/2), x ∈ E, coversE. SinceE is compact, there
must exist a finite number of them, say those corresponding tox1, . . . , xn, that cover
E. Define

δ =
1
2

min{δ(x1), . . . , δ(xn)}.
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Then,δ > 0 and it remains to show that thisδ works. Letx, y in E be arbitrary and
suppose thatd(x, y) < δ. By the way thex1, . . . , xn are chosen, there is ani such that
x is in B(xi, δ(xi)/2), that is,

d(x, xi) <
1
2
δ(xi).

Moreover, for the samei,

d(y, xi) ≤ d(y, x) + d(x, xi) ≤ δ +
1
2
δ(xi) ≤ δ(xi).

Thus,d(x, xi) < δ(xi) andd(y, xi) < δ(xi), which by 13.6 imply that

d′(Tx, Ty) < ε/2, andd′(Ty, Txi) < ε/2.

Thus,d′(Tx, Ty) < ε by the triangle inequality. 2

Exercises:
13.1 Metrics. Show that, for fixedx0 in E, the functionx 7→ d(x, x0) from E

into R+ is uniformly continuous.

13.2 Compositions.Let T : E 7→ E′ andS : E′ 7→ E′′ be uniformly continu-
ous. Show that, then,S ◦ T : E 7→ E′′ is uniformly continuous.

13.3 Homeomorphisms.Recall that for a bijectionf : E 7→ E′ we define the
functional inversef−1 by settingf−1(y) = x if and only if f(x) = y.
A homeomorphismfrom E onto E′ is a bijection that is continuous and
whose functional inverse is also continuous. Incidentally, two spacesE
andE′ are said to behomeomorphicif there exists a homeomorphism from
one to the other. Compactness helps in checking for homeomorphisms.
Show that iff : E 7→ E′ is a continuous bijection andE is compact, then
f is a homeomorphism.

13.4 Extensions.Let D be dense inE (see Exercise 8.6 in Chapter for the
definition). Note that this means that every point ofE \ D is a cluster
point of D. Suppose thatf : D 7→ R is uniformly continuous. Show
that, then, there exists a unique continuous functionf̄ : E 7→ R such that
f̄(x) = f(x) for all x in D. Then,f̄ is called thecontinuous extensionof
f ontoE.

13.5 Cantor function.Let E = [0, 1], andC be the Cantor set, andD = E \C;
see Example 8.9 in Chapter . Note thatD is dense inE, sinceC has no
open intervals contained in it.

Show that the functionf constructed in 8.9 of Chapter is a uniformly
continuous function fromD into [0, 1]. By the preceding exercise, then,
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f has a continuous extension̄f ontoE = [0, 1]. In fact, f̄ is uniformly
continuous (why?).

The functionf̄ is called theCantor function. It is increasing and continu-
ous. Its derivative exists at everyx in D and is equal to0. So, althoughf̄
increases from0 to 1 in a continuous fashion, all its increase is on the set
C, andC has “length”0.

13.6 Lipschitz Continuity.A mappingT : Rn 7→ R is uniformly continuous if
and only if for everyε > 0 there existsKε such that

|Tx− Ty| ≤ Kε · ‖x− y‖+ ε

for all x andy in Rn. Prove this.

Hints: (a) The “if” part is easy. Choose

δ =
ε/2
Kε/2

.

(b) For the “only if” part: fixε > 0 andx andy; choose a chain of points
x = x0, x1, x2, . . . , xm = y with distances‖xi − xi+1‖ < δ; ask, how
many such points do we need, and note that

|Tx− Ty| ≤
m∑
1

|Txi − Txi+1| ≤ nε;

figure outm needed and then whatKε should be.

14 Sequences of Functions

Let E andE′ be metric spaces with respective metricsd andd′. Let (Tn) be a sequence
of mappings fromE into E′.

14.1 DEFINITION. The sequence(Tn) is said toconverge pointwiseto a mapping
T : E 7→ E′ provided that the sequence(Tnx) converges toTx in E′ for each pointx
in E.

In other words, for eachx in E, we must have

lim
n

d′(Tnx, Tx) = 0,14.2

that is, for everyε > 0 there must be annε,x such thatd′(Tnx, Tx) < ε for all
n ≥ nε,x. If nε,x can be chosen to be free ofx, we obtain the following stronger
concept of convergence:
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x
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n
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Figure 4: Here(fn) converges tof , wheref(x) = 0 for x < 1 andf(x) = 1 for
x ≥ 1. Convergence is pointwise but not uniform.

14.3 DEFINITION. The sequence(Tn) is said toconverge uniformlyto a mappingT
provided that

lim
n

sup
x∈E

d′(Tnx, Tx) = 0.

Obviously, uniform convergence of(Tn) implies pointwise convergence (and the
limit T is the same). That the converse is generally false can be seen from Figures
4 and 5 below: here the functionsfn : [0,∞) 7→ [0, 1] converge pointwise, but not
uniformly.

Cauchy Criterion

As with sequences of points, it is important to have a criterion for the uniform conver-
gence of(Tn) expressed in terms of theTn themselves. The following Cauchy criterion
does this:

14.4 THEOREM.Suppose thatE′ is complete. Then,(Tn) is uniformly convergent if
and only if for everyε > 0 there is annε with

sup
x

d′(Tnx, Tmx) < ε for all m > n ≥ nε.14.5
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Figure 5: Thesefn converge tof = 0 pointwise, but not uniformly.
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Figure 6: Thesefn converge to0 uniformly (and hence pointwise).
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PROOF. Suppose that(Tn) converges uniformly, say, toT . Then, for everyε > 0,
there is annε such thatd′(Tnx, Tx) < ε/2 for all n ≥ nε. Thus, form,n ≥ nε,

d′(Tnx, Tmx) ≤ d′(Tnx, Tx) + d′(Tx, Tmx) < ε/2 + ε/2 = ε

for all x. So,(Tn) is Cauchy (for everyε > 0 there isnε such that 14.5 holds).
Let (Tn) be Cauchy. Then, in particular, for eachx in E the sequence(Tnx) in

E′ is Cauchy. SinceE′ is complete, this implies that(Tnx) converges to some point
of E′, call it Tx. This defines a mappingT : E 7→ E′. We want to show that(Tn)
converges toT uniformly. Since(Tn) is Cauchy, for everyε > 0 there is annε such
that

d′(Tnx, Tmx) < ε for all m,n ≥ nε

for all x. Now, let m 7→ ∞; then, (Tmx) converges toTx and the continuity of
y 7→ d′(Tnx, y) implies thatd′(Tnx, Tmx) 7→ d′(Tnx, Tx). Thus, as we needed to
show, forε > 0 there is annε with

d′(Tnx, Tx) < ε for all n ≥ nε and allx ∈ E.

2

Continuity of Limit Functions

As can be seen from Figure 4, the pointwise limit of a sequence of continuous functions
is not necessarily continuous. In fact, the primary use of uniform convergence is to
ensure the continuity of the limit function.

14.6 THEOREM.Suppose that eachTn is continuous and(Tn) converges toT uni-
formly. Then,T is continuous.

PROOF. Fixx in E. Note that for alln andy

d′(Tx, Ty) ≤ d′(Tx, Tnx) + d′(Tnx, Tny) + d′(Tny, Ty).

Given ε > 0, there is annε such that the first and third terms on the right side are
less thanε/3 each forn = nε; This comes from the uniform convergence of(Tn)
of T . Moreover, the continuity ofTnε

at the pointx implies the existence ofδ =
δε,x such that the second term on the right withn = nε is less thanε/3 for all y ∈
B(x, δ). Hence, for everyε > 0 there is aδ = δε,x such thatd(x, y) < δ implies that
d′(Tx, Ty) < ε for all y; that is,T is continuous atx. 2

Exercises:
14.1 Let0 ≤ a < b < 1. Let fn : [a, b] 7→ R+ be defined byfn(x) = xn.

Show that(fn) converges uniformly tof = 0.
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14.2 LetTn : [0, 1] 7→ [0, 1] be defined byTnx = xn(1 − x). Show that(Tn)
is uniformly convergent.

14.3 Letf : R 7→ R be uniformly continuous. Definefn(x) = f(x + 1/n).
Show that(fn) converges uniformly tof .

14.4 Let (fn) be defined as a sequence of functions fromR+ into R+ by

f1(x) =
√

x, f2(x) =
√

x +
√

x, f3(x) =
√

x +
√

x +
√

x, . . . Show
that(fn) is convergent and find the limit function.

15 Spaces of Continuous Functions

Throughout this section(E, d) will be a compact metric space, and all functions are
from E into R. On a first reading, the reader should takeE = [a, b], a closed interval.
Our aim is to illustrate the uses of the foregoing concepts in the analysis of the function
spaceC(E, R) of all continuous functions fromE into R. For brevity, we writeC for
C(E, R).

The setC is a vector space: iff andg are inC then so isaf + bg for eacha in
R andb in R. Moreover, various arithmetic operations are well-defined onC: f + g,
f − g, f · g, andf/g all belong toC if f andg are inC, except that in the case off/g
one must worry aboutg(x) = 0.

Although each point ofC is a function, in many respectsC is like a Euclidean
space. We may, for instance, define a norm ofC as follows. Letf ∈ C. Being a
continuous function on a compact metric space,f is bounded and attains its maximum
and minimum. It follows that

‖f‖ = max
x∈E

|f(x)|15.1

is a well-defined positive real-number; it is called thenormof f . It is indeed a norm:

‖f‖ ≥ 0; ‖f‖ = 0 if and only if f = 0;15.2

‖cf‖ = |c| · ‖f‖;15.3

‖f + g‖ ≤ ‖f‖+ ‖g‖.15.4

As with Euclidean spaces, we may use the norm above to define a metric onC. We
define the distance betweenf andg to be

d(f, g) = ‖f − g‖.15.5

Convergence inC
The following shows that the convergence in the metric spaceC is equivalent to the
uniform convergence of functions onE.
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15.6 THEOREM.A sequence(fn) in C is convergent if and only if the sequence of
functionsfn : E 7→ R is uniformly convergent.

PROOF. The definition of convergence for a sequence of points in a metric space and
the definition of uniform convergence for a sequence of functionsfn : E 7→ R are such
that the claim is simply that

lim
n

d(fn, f) = 0 ⇔ lim
n

sup
x∈E

|fn(x)− f(x)| = 0.

But this is obvious in view of 15.5 and 15.1. 2

Conceptually, then, the somewhat complex concept of uniform convergence of a
sequence of functions is equivalent to the simpler concept of convergence of a sequence
in a metric space.

Lipschitz Continuous Functions

A function f ∈ C is said to beLipschitz continuousif there exists a constantK such
that

|f(x)− f(y)| ≤ K · d(x, y) for all x, y ∈ E.15.7

Let BK be the set of allf in C satisfying 15.7. Then, clearly, the set of all Lipschitz
continuous functions is exactly the union of theBK ’s.

If E = [a, b], f is differentiable, and the derivativef ′ is bounded (that is, there
exists aK such that|f ′(x)| ≤ K for all x ∈ [a, b]), thenf is Lipschitz continuous.
Consider a fixedK and letAK denote the set of all differentiable functionsf whose
derivativesf ′ are continuous and bounded byK. The setAK is not closed, which can
be seen from Figure 7 where(fn) ⊂ AK , (fn) converges tof in C, butf is not inAK .
In fact, the closure ofAK is preciselyBK . We leave this without proof. Instead, we
show the following partial result with generalE.

15.8 PROPOSITION.BK is a closed subset ofC.

PROOF. We use the characterization Theorem 9.5 from Chapter . Let(fn) ⊂ BK

converge to the pointf in C. We need to show thatf is in BK . Now, for arbitraryx
andy in E,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ ‖f − fn‖+ Kd(x, y) + ‖fn − f‖

for all n. Since‖fn − f‖ 7→ 0, this shows thatf satisfies 15.7. 2

As mentioned above, the set of all Lipschitz continuous functions coincides exactly
with ∪KBK . Even though eachBK is closed, the union is not. This fact can be seen
from the sequence of functions shown in Figure 8. In fact, its closure is preciselyC,
that is, everyf in C is the limit of a sequence of Lipschitz continuous functions.
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Figure 7: A sequence of differentiable functions whose derivatives are bounded but
whose limit is not differentiable.
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Figure 8: A sequence of Lipschitz continuous functions converging to a continuous
function that is not Lipschitz.
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Completeness

The spaceC is not bounded. Therefore it cannot be compact. But, at least, it is com-
plete.

15.9 THEOREM.The spaceC is complete.

PROOF. Let(fn) ⊂ C be Cauchy, that is, for everyε > 0 there is annε such that
‖fn − fm‖ ≤ ε for all m > n ≥ nε. This is equivalent to the condition 14.5 (here
E′ = R which is complete). Thus, by Theorem 14.4,(fn) is uniformly convergent as a
sequence of functions onE. But, by Theorem 15.6, uniform convergence is equivalent
to convergence inC. So,(fn) is convergent inC. 2

Functionals

SinceC is a metric space, we may speak of functions defined onC as we speak of
functions defined onE. For linguistic clarity, a function fromC into R is called a
functional. Here are some examples of functionals: forf ∈ C,

M(f) = max
x∈E

f(x)15.10

Px(f) = f(x), x ∈ E fixed15.11

F (f) = φ(f(x1), . . . , f(xk)),15.12

whereφ : Rk 7→ R is fixed andx1, . . . , xk are fixed inE.
Here are some further examples of functionals, in the particular case whereE =

[a, b]:

L(f) =
∫ b

a

f(x)dx,15.13

Lφ(f) =
∫ b

a

φ(x)f(x)dx,15.14

whereφ ∈ C is some fixed function.
The functionalM is uniformly continuous; in fact, it is Lipschitz continuous with

Lipschitz constantK = 1:

|M(f)−M(g)| = |max
x

f(x)−max
x

g(x)|

≤ max
x
|f(x)− g(x)|

= ‖f − g‖
= d(f, g).

Even easier is the Lipschitz continuity of the coordinate mappingPx:

|Px(f)− Px(g)| = |f(x)− g(x)| ≤ ‖f − g‖.
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Assuming that the functionφ : Rk 7→ R is continuous, the functionF is continuous:
if ‖fn − f‖ 7→ 0, then the sequence of points(fn(x1), . . . , fn(xk)) ∈ Rk converges
to the point(f(x1), . . . , f(xk)) ∈ Rk asn 7→ ∞, and the continuity ofφ implies that
F (fn) 7→ F (f).

The functionalL is a linear transformation fromC into R. It is uniformly contin-
uous; in fact, it is Lipschitz continuous with Lipschitz constantK = b − a. So isLφ

with Lipschitz constantK =
∫ b

a
|φ(x)|dx.

Exercises:
15.1 If f andg are two continuous functions on a compact metric space, show

that
|max

x
f(x)−max

x
g(x)| ≤ max

x
|f(x)− g(x)|.
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Differential and Integral
Equations

The aim of this chapter is to discuss several applications of metric space ideas to some
classical problems of engineering analysis.

We shall start with one theorem, the fixed point theorem for contractions on a metric
space, and show how various problems can be beaten to submission with it.

16 Contraction Mappings

The aim of this section is to prepare the stage for some applications to differential and
integral equations encountered frequently in engineering. Throughout,E is a metric
space with some metricd.

We shall use the term “transformation onE” to mean a mapping fromE into E.
If T is a transformation onE, then the imageTx of x is a point inE, and the image
of Tx is T (Tx), for which we will writeT 2x. In other words, we are writingT 2 for
T ◦ T . Similarly, we define further iterates by

Tn+1x = T (Tnx), x ∈ E,n ≥ 0,

with T 0x = x for all x. So,T 0 is the identity,T 1 is T , etc.
Given a pointx in E, if we write x0 = x, x1 = Tx, x2 = T 2x, x3 = T 3x, . . . , we

obtain a sequence(xn) in E; this sequence is called theorbit starting atx. One should
think of xn = Tnx as the position at timen of a particle that starts atx and moves
successively toTx, T 2x, . . . .

16.1 DEFINITION. A transformationT on E is said to be acontractionif it is Lips-
chitz continuous with some Lipschitz constantα < 1.

In other words,T is a contraction ofE if there exists a constantα ∈ [0, 1) such
that

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ E.16.2

63
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x

Tx
T2x

T3x

E

Figure 9: The orbit ofx under the mapT .

Fixed Point Theorem

A point x is said to be afixed pointof a transformationT if Tx = x. Figure 10 shows
a transformationT onE = [0, 1]; there,x∗ is the unique fixed point ofT , and the orbit
(Tnx0) of x0 converges to the fixed pointx∗.

The following theorem shows that every contraction of a complete metric space
has a unique fixed point. Its proof shows how to obtain the fixed point by a method of
successive approximations.

16.3 THEOREM.Suppose thatE is complete. LetT be a contraction onE. Then,T
has a unique fixed point and for each pointx0 in E, the orbit(Tnx0) converges to that
fixed point.

PROOF. Fixx0 in E and let(x0, x1, x2, . . .) be its orbit. We show first that this
sequence is Cauchy. Indeed, suppose thatm < n. Thenxm = Tmx0 andxn =
Tnx0 = TmTn−mx0 = Tmxn−m. Hence, sinced(Tmx, Tmy) ≤ αmd(x, y) in view
of 16.2, we have

d(xm, xn) ≤ αmd(x0, xn−m)
≤ αm[d(x0, x1) + d(x1, x2) + · · ·+ d(xn−m−1, xn−m)].

Now note thatd(xi, xi+1) = d(T ix0, T
ix1) ≤ αid(x0, x1). Thus,

d(xm, xn) ≤ αmd(x0, x1)[1 + α + α2 + · · ·+ αn−m−1]

= αmd(x0, x1)
1− αn−m

1− α

≤ αm d(x0, x1)
1− α

.

Sinceα < 1, the right side goes to0 asm 7→ ∞. Hence, the sequence(xn) is Cauchy.



16. CONTRACTION MAPPINGS 65
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Figure 10: A contraction on[0, 1].

SinceE is complete, the sequence(xn) must converge to some pointx in E. Then,
by the continuity ofT ,

Tx = T (lim xn) = lim Txn = lim xn+1 = x,

that is,x is a fixed point. To complete the proof, we now show that the fixed point is
unique. To this end, lety be another fixed point. Then,

Tx = x and Ty = y,

and hence, by the contraction condition,d(x, y) = d(Tx, Ty) ≤ αd(x, y). Since
α < 1, this is possible only ifd(x, y) = 0, that is,x = y. 2

The preceding theorem can be used to prove existence and uniqueness of solutions
to a wide variety of equations. Besides showing thatTx = x has a solution, the proof
gives a practical method for arriving at it. Indeed, start from an arbitrary pointx0 and
successively computex1 = Tx, x2 = Tx1, x3 = Tx2, . . . . Thexn get close tox
(geometrically fast):

d(xn+1, x) = d(Txn, Tx) ≤ αd(xn, x),

which shows that
d(xn, x) ≤ αnd(x0, x).16.4

Exercises:
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y

y=x
y=Tx

x
10 x0

Figure 11: Exercise 16.1.

16.1 For the transformationT : [0, 1] 7→ [0, 1] shown in Figure 11 find the orbit
of the pointx0 indicated.

16.2 For the transformationT : [0, 1] 7→ [0, 1] given byTx = 0.3 + 0.2x +
0.5x3, Figure 12 shows that there are exactly two fixed points. Find them.
Show that, for arbitraryx0 6= 1, the orbit ofx0 converges to the smaller
fixed pointx∗.

16.3 Branching processes.In a chain reaction, each particle gives rise to a
random number of new particles. Each of these new particles act inde-
pendently and produces random numbers of newer particles. And this
continues indefinitely. Letpk be the probability that a particle producesk
particles; herep0, p1, p2, . . . are positive numbers with

∑
pk = 1. Starting

with one particle, we now consider the probability that the chain reaction
fizzles out, that is, the population of particles becomes extinct. Letxn

be the probability that thenth generation is extinct already. Note that the
(n+1)th generation consists of particles that arenth generation offspring
of the individuals of the first generation. In order for the population to be
extinct at or before the(n + 1)th generation, populations initiated by the
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Figure 12: Exercise 16.2.

0 1 2 3 4

generations

Figure 13: Exercise 16.3.
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particles of the first generation must all become extinct. Thus,

xn+1 =
∞∑

k=0

pk(xn)k.

In other words,xn+1 = Txn whereT : [0, 1] 7→ [0, 1] is defined by

Tx =
∞∑

k=0

pkxk, x ∈ [0, 1].

Now, the probabilityx∗ of eventual extinction for the population is the
limit of xn, and thus satisfies

x∗ = Tx∗.

(a) Show thatx1 = p0. Show that the sequence(xn) increases to the
extinction probabilityx∗.

(b) Assume thatp0 > 0. If p0 + p1 = 1 (so thatp2 = p3 = · · · = 0) show
thatx∗ = 1.

(c) Show that the mappingx 7→ Tx is increasing and convex.

(d) Let a =
∑∞

k=1 pkk, that is, a is the expected number of particles
produced by one particle. Show that ifa ≤ 1, thenx = Tx has only one
solution and the fixed point isx∗ = 1.

(e) Suppose thata > 1. Then, show thatx = Tx has exactly two solutions.
One solution is1, the other is the extinction probabilityx∗. Show this by
examining the graph ofT and using (a).

16.4 LetT : [0, 1] 7→ [0, 1] be defined by

Tx = 4x(1− x).

Show thatT has exactly two fixed points. Compute them. Give an example
of an orbit that converges to the fixed pointx∗ = 0. Note the highly chaotic
nature of the orbits.

16.5 LetT : [0, 1] 7→ [0, 1] be defined byTx = 2x (mod 1), that is,Tx = 2x
if 2x < 1 andTx = 2x− 1 if 2x ≥ 1. The only fixed point isx∗ = 0.

Incidentally, if x = 0.ω1ω2ω3 · · · is the binary representation ofx then
Tx = 0.ω2ω3ω4 · · · and T 2x = 0.ω3ω4ω5 · · ·, etc. Note the highly
chaotic nature of the orbits by plotting(Tnx).

16.6 LetT : Rn 7→ Rn be a linear transformation, sayTx = Ax whereA
is somen × n matrix. Give a condition onA that guaranteesT to be a
contraction (with the Euclidean metric onRn).
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16.7 LetTx = Ax + b whereA is n × n matrix andb is a fixed vector in
Rn. ConsiderE = Rn with the weighted Manhattan metricd(x, y) =∑n

i=1 wi · |xi − yi| where the weightsw1, . . . , wn are strictly positive.
Show that, to assume thatT is a contraction of this metric spaceE, it is
sufficient to have

n∑
i=1

wi|aij | < wj , j = 1, . . . , n.

17 Systems of Linear Equations

In this section we discuss the use of the fixed point theorem in solving systems of linear
equations. As a by-product, we get a chance to discuss the importance of choosing the
right metric for a particular application.

Let E = Rn; we do not specify the metric just yet. Fixb ∈ Rn and consider the
system of linear equations

xi =
n∑

j=1

aijxj + bi, i = 1, . . . , n,17.1

where theaij are real numbers. WritingA for then × n matrix of elementsaij , the
system 17.1 is equivalent to

x = Ax + b.17.2

In other words, the problem is to find the fixed point of the transformationT : Rn 7→
Rn defined by

Tx = Ax + b.17.3

If T is a contraction, then we can use Theorem 16.3 and obtain the unique solution of
Tx = x by the method of successive approximations.

The conditions under whichT is a contraction depend on the choice of metric on
E = Rn. We discuss three cases.

Maximum Norm

Suppose thatd is the metric associated with the maximum norm:

d(x, y) = max
1≤i≤n

|xi − yi|.

Then, sinceTx− Ty = Ax−Ay = A(x− y),

d(Tx, Ty) = max
i
|

n∑
j=1

aij(xj − yj)|
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≤ max
i

∑
j

|aij | · |xj − yj |

≤ max
i

∑
j

|aij |max
k
|xk − yk|

= (max
i

∑
j

|aij |)d(x, y).

Thus, the contraction condition 16.2 is satisfied if

α = max
i

∑
j

|aij | < 1.17.4

Manhattan Metric

Suppose thatd is the Manhattan metric:

d(x, y) =
n∑

i=1

|xi − yi|.

Then,

d(Tx, Ty) =
∑

i

|
∑

j

aij(xj − yj)|

≤
∑

i

∑
j

|aij | · |xj − yj |

≤ (max
j

∑
i

|aij |)d(x, y),

and the contraction condition is satisfied if

α = max
j

∑
i

|aij | < 1.17.5

Euclidean Metric

Suppose thatd is the ordinary Euclidean distance. Then,

d(Tx, Ty)2 =
∑

i

∑
j

aij(xj − yj)

2

≤
∑

i

∑
j

a2
ij

∑
j

(xj − yj)2


= (

∑
i

∑
j

a2
ij)d(x, y)2,
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where we used Schwartz’s inequality at the second step. Thus, the contraction condi-
tion 16.2 is satisfied if

α =
∑

i

∑
j

a2
ij < 1.17.6

Conclusion

Under each of the metrics discussed,Rn is a complete metric space. Hence, if at least
one of the conditions 17.4–17.6 holds, Theorem 16.3 applies to show that there exists
a unique solution to 17.1. The sequence of successive approximationsx(0), x(1), . . .
(whose limit is the fixed pointx) has the following form:

x(k+1) = Ax(k) + b, k = 0, 1, . . . ,17.7

and we can choose any pointx(0) ∈ Rn as the initial point.
Each of the conditions 17.4–17.6 is sufficient for applying this method. None is

necessary; it is easy to give examples ofA where one condition holds but not the
others.

18 Integral Equations

The most interesting applications of fixed point theorems arise when the underlying
metric space is a function space. Here we discuss the existence and uniquencess of
solutions to Fredholm and Volterra equations.

Fredholm Equation

A Fredholm equation(of the second kind) is an integral equation of the form

f(x) = φ(x) + λ

∫ b

a

K(x, y)f(y)dy.18.1

Here, the functionsK : [a, b] × [a, b] 7→ R andφ : [a, b] 7→ R are given,λ ∈ R is an
arbitrary parameter, andf : [a, b] 7→ R is the unknown function. The functionK is
called thekernelof the equation. The equation is said to behomogeneousif φ = 0 and
non-homogeneousotherwise.

The Fredholm equation is the continuous version of the system of linear equations
17.1. To see this, suppose that the interval is discretized and is replaced byn + 1
equidistant pointsa = x0 < x1 < · · · < xn = b. Then, writingyi = f(xi) and
bi = φ(xi) andaij = λK(xi, xj)/n, we see that 18.1 becomes

yi = bi +
∑

j

aijyj .

Whether this discretization is appropriate is a different matter.
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Let C be the collection of all continuous functionsf from [a, b] into R, and let the
metric onC be defined through the maximum norm:

d(f, g) = ‖f − g‖ = sup
a≤x≤b

|f(x)− g(x)|.18.2

With this metric,C is a complete metric space (see Theorem 15.9 in Chapter ).
Suppose thatK is continuous on the square[a, b] × [a, b] and thatφ is continuous

on [a, b]. Then, the functionTf defined by

Tf(x) = φ(x) + λ

∫ b

a

K(x, y)f(y)dy18.3

is continuous on[a, b] for each continuous functionf on [a, b]. In other words, the
mappingf 7→ Tf is a transformation onC. Now, the Fredholm equation 18.1 becomes

f = Tf,18.4

and thus, solving 18.1 is equivalent to finding the fixed points of the transformationT
onC.

To this end, in order to apply the fixed point theorem 16.3, all we need to show is
thatT is a contraction (recall thatC is complete). The following shows thatT is indeed
so if the parameterλ is small enough.

18.5 THEOREM.Suppose thatφ and K are continuous. Then there existsλ0 > 0
such that the equation 18.1 has a unique solutionf for eachλ in (−λ0, λ0). Moreover,
the solutionf is continuous.

PROOF. SinceK is continuous on the square[a, b] × [a, b], it is bounded there (con-
tinuous functions on compact spaces are bounded). So, there is a constantc > 0 such
that|K(x, y)| ≤ c for all x, y. Thus,

‖Tf − Tg‖ = max
x
|λ
∫ b

a

K(x, y)(f(y)− g(y))|

≤ |λ| · c · (b− a) max
y
|f(y)− g(y)|

= |λ| · c · (b− a) · ‖f − g‖.

Chooseλ0 = 1/c · (b− a). Then, for eachλ ∈ (−λ0, λ0), the preceding shows thatT
is a contraction onC. By Theorem 16.3, consequently, there is a unique fixed pointf
in C of the transformationT . 2

18.6 EXAMPLE. Suppose thatK(x, y) = xy on [0, 1]× [0, 1]. Let φ ∈ C be arbitrary
and consider the Fredholm equation

f(x) = φ(x) + λ

∫ 1

0

xyf(y)dy.18.7
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The proof of 18.5 shows that, for|λ| < 1, there is a unique solutionf . And the solution
is the limit of the sequence

f0 = φ, f1 = Tf0, f2 = Tf1, f3 = Tf2, . . .

where, in general,

Tf(x) = φ(x) + λx

∫ 1

0

yf(y)dy.

Now, we start computing. Defininga =
∫ 1

0
yφ(y)dy, we have

f0(x) = φ(x)

f1(x) = Tf0(x) = φ(x) + λx
∫ 1

0
yφ(y)dy

= φ(x) + aλx

f2(x) = Tf1(x) = φ(x) + λx
∫ 1

0
y(φ(y) + aλy)dy

= φ(x) + aλx + aλ2

3 x

f3(x) = Tf2(x) = φ(x) + λx
∫ 1

0
y(φ(y) + aλy + aλ2

3 y)dy

= φ(x) + aλx + aλ2

3 x + aλ3

9 x

...

fn(x) = Tfn−1(x) = φ(x) + aλx
(
1 + λ

3 +
(

λ
3

)2
+ · · ·+

(
λ
3

)n−1
)

.

In fact, it becomes clear from this that a fixed pointf exists for allλ ∈ (−3, 3) and the
solution to 18.7 is

f(x) = lim
n

fn(x) =
3aλ

3− λ
x + φ(x)18.8

with a =
∫ 1

0
φ(y)dy.

Going back to 18.7, the special form of the kernelK suggests a quicker method.
Indeed, let

c =
∫ 1

0

yf(y)dy.

Then, using 18.7 in the form

f(x) = φ(x) + λxc,

we get

c =
∫ 1

0

xf(x)dx =
∫ 1

0

xφ(x)dx +
∫ 1

0

xλxcdx = a +
λ

3
c.

Solving this forc, we see that

f(x) = φ(x) + λxc = φ(x) +
3aλ

3− λ
x
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as before provided thatλ 6= 3. Note that this is the solution for arbitraryλ 6= 3. But
the method of successive approximations works for|λ| < 3 only.

Studying the iterative method in the preceding example, we can get a theoretical
understanding of the nature of solutions. To this end, we re-do the computations of
f0 = φ, f1 = Tf0, f2 = Tf1, . . . once more, now with an arbitrary kernelK, and
omitting the limits of integration we get

f0(x) = φ(x)

f1(x) = Tf0(x) = φ(x) + λ
∫

K(x, y)φ(y)dy

f2(x) = Tf1(x) = φ(x) + λ
∫

K(x, y)f1(y)dy

= φ(x) + λ
∫

K(x, y)[φ(y) + λ
∫

K(y, z)φ(z)dz]dy

= φ(x) + λ
∫

K(x, y)φ(y)dy + λ2
∫

K2(x, z)φ(z)dz

where

K2(x, z) =
∫

K(x, y)K(y, z)dy.

Continuing,

f3(x) = Tf2(x)

= φ(x) + λ

∫
K(x, y)[φ(y) + λ

∫
K(y, z)φ(z)dz

+λ2

∫
K2(y, z)φ(z)dz]

= φ(x) + λ

∫
K(x, z)φ(z)dz

+λ2

∫
K2(x, z)φ(z)dz + λ3

∫
K3(x, z)φ(z)dz

where

K3(x, z) =
∫

K(x, y)K2(y, z)dz.

The pattern is now clear. We have

fn(x) = φ(x) +
n∑

i=1

λi

∫ b

a

Ki(x, y)φ(y)dy18.9

with K1 = K, andK2,K3, . . . defined recursively via

Ki+1(x, y) =
∫ b

a

K(x, z)Ki(z, y)dy.18.10

Theorem 18.5 shows that when|λ| < λ0, the sequencefn converges to the fixed point
f , where

f(x) = φ(x) +
∞∑

i=1

λi

∫ b

a

Ki(x, y)φ(y)dy.18.11
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Since this is true for arbitraryφ, we can change the order of summation and integration.
Thus, with

Rλ(x, y) =
∞∑

i=1

λiKi(x, y),18.12

we have

f(x) = φ(x) +
∫ b

a

Rλ(x, y)φ(y)dy.18.13

Although 18.10, 18.12, 18.13 together give an “explicit” solution to the Fredholm
equation, this explicitness is only theoretical. For, computingRλ is of the same order
of difficulty as solving 18.1 (in fact, even harder).

On the other hand, if the kernelK is simple enough, analytic solutions might be
possible. The following illustrates the computations for such a special case.

18.14 EXAMPLE. Suppose that

K(x, y) =
n∑

j=1

pj(x)qj(y) x, y ∈ [a, b]

for some continuous functionsp1, . . . , pn andq1, . . . , qn on [a, b]. Forφ continuous on
[a, b], consider the Fredholm equations 18.1. Now, iff ∈ C satisfies 18.1, then

f(x) = φ(x) + λ
n∑

j=1

zjpj(x)18.15

where

zj =
∫ b

a

qj(y)f(y)dy, j = 1, . . . , n.18.16

In view of 18.15, then

zi =
∫ b

a

qi(x)f(x)dx

=
∫ b

a

qi(x)φ(x)dx + λ
n∑

j=1

(∫ b

a

qi(x)pj(x)dx

)
zj .

Thus, letting

ci =
∫ b

a

qi(x)φ(x)dx, aij =
∫ b

a

qi(x)pj(x)dx,18.17

we obtain

zi = ci + λ
n∑

j=1

aijzj , i = 1, 2, . . . , n.18.18

Note that theci andaij are known. If we can solve 18.18 for thezi’s, then 18.15 gives
the solutionf .
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In vector-matrix notation, 18.18 becomes

z = c + λAz,

whose solution is easy to discern. We can solve it forz (for arbitraryc) as long as
I − λA is invertible, that is, as long as1/λ is not an eigenvalue forA. Thus, we have
a solutionz for arbitraryb provided thatλ ∈ (−1/λ0, 1/λ0) whereλ0 is the modulus
of the largest eigenvalue ofA.

Volterra Equation

Let K be a continuous function on[a, b]× [a, b] and letφ be a continuous function on
[a, b]. Consider the equation

f(x) = φ(x) + λ

∫ x

a

K(x, y)f(y)dy, x ∈ [a, b].18.19

It is called theVolterra equation. It differs from the Fredholm equation only slightly,
and in form only. If we define

K̂(x, y) =
{

K(x, y) if y ≤ x,
0 if y > x,

then 18.19 becomes the Fredholm equation 18.1 with kernelK̂. However, it is easier
to attack 18.19 directly.

18.20 THEOREM.For eachλ ∈ R, the Volterra equation 18.19 has a unique solution
f that is continuous on[a, b].

PROOF. LetC = C([a, b], R), the set of all continuous functions from[a, b] into R,
with the usual uniform metric‖f − g‖. Let c be the maximum of|K(x, y)| over all
x, y ∈ [a, b]; this number is finite sinceK is continuous. Define the transformation
T : f 7→ Tf onC by

Tf(x) = φ(x) + λ

∫ x

a

K(x, y)f(y)dy.

Now, for f andg in C,

|Tf(x)− Tg(x)| = |λ
∫ x

a

K(x, y)[f(y)− g(y)]dy|

≤ |λ|c(x− a)‖f − g‖, x ∈ [a, b].
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We use this, next, to boundT 2f − T 2g = T (Tf − Tg):

|T 2f(x)− T 2g(x)| = |λ
∫ x

a

K(x, y)[Tf(y)− Tg(y)]dy|

≤ |λ|
∫ x

a

|K(x, y)||λ|c(y − a)‖f − g‖dy

≤ |λ|2c2

∫ x

a

(y − a)dy‖f − g‖

≤ |λ|2c2(x− a)2

2
‖f − g‖.

Iterating in this manner, we see that

|T kf(x)− T kg(x)| ≤ |λ|kck(x− a)k

k!
‖f − g‖

for all x ∈ [a, b]. Hence,

‖T kf − T kg‖ ≤ [|λ|c(b− a)]k

k!
‖f − g‖.

Recalling thatrn/n! tends to0 asn 7→ ∞ for anyr ∈ R, we conclude that there exists
k such thatT k is a contraction: simply takek large enough to have[|λ|c(b−a)]k/k! <
1. Finally, the existence and uniqueness off ∈ C satisfyingf = Tf follows from the
next theorem. Obviously, iff = Tf , thenf solves 18.19. 2

Generalization of the Fixed Point Theorem

18.21 THEOREM.LetE be a complete metric space and letT be a continuous trans-
formation onE. If T k is a contraction for somek ≥ 1, thenT has a unique fixed point.

PROOF. Fixk such thatU = T k is a contraction. By Theorem 16.3, then,U has
a unique fixed pointx, and limn Unx0 = x for every pointx0 in E. Now, by the
continuity ofT ,

Tx = lim
n

TUnx0

= lim
n

TT knx0

= lim T knTx0

= lim
n

UnTx0

= x,
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1

v(t,x(t))

tt0

x0

x(t)

Figure 14: A moving particle.

that is,x is a fixed point ofT . To show that it is the only fixed point ofT we note that
every fixed point ofT is a fixed point ofT k = U , whereasU has only one fixed point,
namelyx. 2

Exercises:
18.1 Solve the Fredholm equation 18.1 for arbitraryφ, on [a, b] = [0, 2π], with

the kernel
K(x, y) = sin(x + y).

18.2 Do the same with[a, b] = [0, 1] andK(x, y) = (x− y)2.

18.3 Letp be a continuous function of[0, b]. Show that

f(x) = φ(x) +
∫ x

0

p(y)f(x− y)dy, x ∈ [0, b],

has a unique solutionf for each continuous functionφ.

19 Differential Equations

We continue with applications of the fixed point theorem by discussing Picard’s method
of successive approximations for solving systems of differential equations.

We start with the simplest case where the differential equation describes the po-
sition of a particle moving onR. The picture of the motion is given in Figure 14.
The motion is described by the initial datat0 andx0 and by a continuous function
v : R× R 7→ R as follows. The particle starts fromx0 at timet0; its velocity at timet
is v(t, x) if its position then isx. Thus, lettingx(t) denote the position of the particle
at timet, we have

x(t) = x0 +
∫ t

t0

v(s, x(s))ds, t ≥ t0.19.1
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The pointst0 andx0 and the velocity functionv are given. We are interested in the
existence and uniqueness of the functionx.

In the classical formulation of this problem, it is usual to express 19.1 as a differ-
ential equation:

dx

dt
= v(t, x), x(t0) = x0.19.2

The following isPicard’s Theorem:

19.3 THEOREM.Let v be defined and continuous on[t0,∞) × [a, b], andx0 be in
(a, b), and suppose thatv satisfies a Lipschitz condition in its spatial argument:

|v(t, x)− v(t, y)| ≤ K|x− y|, x, y ∈ [a, b].19.4

Then, there is at1 > t0 such that 19.1 has a unique solution{x(t) : t0 ≤ t ≤ t1}.

PROOF. By the continuity ofv, we have

|v(t, x)| ≤ c, t0 ≤ t ≤ t′1, a ≤ x ≤ b19.5

for some constantc. Chooseδ > 0 so that

Kδ < 1 and a ≤ x0 − cδ < x0 < x0 + cδ ≤ b.19.6

Let t1 = min{t′1, t0 +δ}. LetC∗ be the space of all continuous functionsx : [t0, t1] 7→
[x0−cδ, x0+cδ] with the usual supremum metric; that is,‖x−y‖ = supt0≤t≤t1 |x(t)−
y(t)|.

The setC∗ is a closed subset of the spaceC([t0, t1], R). Since the latter is complete,
C∗ is complete.

Consider the transformationT defined by

Tx(t) = x0 +
∫ t

t0

v(s, x(s))ds, t ∈ [t0, t1].19.7

Forx ∈ C∗, we have from 19.5 that

|Tx(t)− x0| ≤
∫ t

t0

|v(s, x(s))|ds ≤ c(t− t0) ≤ cδ,

which shows thatTx ∈ C∗. Moreover, forx, y ∈ C∗,

|Tx(t)− Ty(t)| ≤
∫ t

t0

|v(s, x(s))− v(s, y(s))|ds

≤
∫ t

t0

K|x(s)− y(s)|ds

≤ Kδ‖x− y‖
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in view of 19.4. Thus,‖Tx − Ty‖ ≤ Kδ‖x − y‖ andKδ < 1 by the wayδ was
chosen. So,T is a contraction onC∗. SinceC∗ is complete, Theorem 16.3 applies to
show thatT has a unique fixed pointx. But, x = Tx means thatx solves 19.1. This
completes the proof. 2

The preceding can be easily generalized to the case of systems of differential equa-
tions

dxi

dt
= vi(t, x1, . . . , xn), i = 1, 2, . . . , n.19.8

Before listing it, we mention that the term “domain” means “an open and connected
subset of a Euclidean space”, and we note that 19.1 can be interpreted fort < t0 by
the convention that integrals fromt0 to t are the negatives of integrals fromt to t0. The
following is the analog of Theorem 19.3 for motions inRn.

19.9 THEOREM.Letv be a continuous function from some domain

D ⊂ R× Rn

into Rn. Suppose that(t0, x0) ∈ D and thatv(t, x) = (v1(t, x), . . . , vn(t, x)) satisfies
the following Lipschitz condition for someK:

max
1≤i≤n

|vi(t, x)− vi(t, y)| ≤ K max
1≤j≤n

|xj − yj |.19.10

Then, there is an interval[t0− δ, t0 + δ] in which the system 19.8 has a unique solution
{x(t) : t0 − δ ≤ t ≤ t0 + δ} satisfyingx(t0) = x0.

REMARK: In integral notation, we may write 19.8 as

xi(t) = x0i +
∫ t

t0

vi(s, x1(s), . . . , xn(s))ds, i = 1, . . . , n.

The claim of the preceding theorem is that this has a unique solution{x(t) : t0 − δ ≤
t ≤ t0 + δ}. In vector notation, we may re-write this as

x(t) = x0 +
∫ t

t0

v(s, x(s))ds, |t− t0| ≤ δ,

which is exactly the same as 19.1 except that herex : [t0 − δ, t0 + δ] 7→ Rn and
v : D 7→ Rn.

Let the metric onRn be

d(x, y) = max
1≤i≤n

|xi − yi|.

Then, the Lipschitz condition 19.10 can be written as

d(v(t, x), v(t, y)) ≤ Kd(x, y).19.11
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It should be clear by now that the proof of Theorem 19.3 will go through for Theo-
rem 19.9 as well, with some notational changes. We give the proof for the sake of
completeness.

PROOF. By the continuity ofv1, . . . , vn, we have

|vi(t, x)| ≤ c i = 1, . . . , n

for somec > 0, for all (t, x) in some domainD′ ⊂ D containing(t0, x0). Choose
δ > 0 so that

Kδ < 1

and
(t, x) ∈ D′ if t ∈ [t0 − δ, t0 + δ] andd(x, x0) ≤ cδ,

where the metricd is the usual maximum norm onRn.
Let C∗ be the space of continuous functionsx : [t0 − δ, t0 + δ] 7→ B̄(x0, cδ), and

let the metric onC∗ be defined by

‖x− y‖ = max
t

d(x(t), y(t)).

It is clear thatC∗ is complete. Define, forx ∈ C∗,

Tx(t) = x0 +
∫ t

t0

v(s, x(s))ds, t0 − δ ≤ t ≤ t0 + δ.

We proceed to show thatT is a contraction onC∗, which will complete the proof via
Theorem 16.3.

First, we show thatTx ∈ C∗ for x ∈ C∗. For suchx, it is clear thatTx is a
continuous function, and

d(Tx(t), x0) = max
i
|
∫ t

t0

vi(s, x(s))ds| ≤ cδ

for t in [t0− δ, t0 + δ] in view of the boundedness ofvi by c. Thus,Tx ∈ C∗ if x ∈ C∗.
Moreover, forx, y ∈ C∗,

‖Tx− Ty‖ = max
t

d(Tx(t), T y(t))

= max
t

max
i
|
∫ t

t0

[vi(s, x(s))− vi(s, y(s))]ds|

≤ max
t

∫ t

t0

d(v(s, x(s))− v(s, y(s)))ds

≤ max
t

∫ t

t0

Kd(x(s), y(s))ds

≤ Kδ‖x− y‖,
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which follows from the Lipschitz condition 19.11 onv. SinceKδ < 1, this shows that
T is a contraction onC∗. 2

The preceding theorem ensures the existence and uniqueness of a solutionx to the
system 19.8 of differential equations. Successive approximations tox can be obtained
as follows. Define

x(0)(t) = x0, t ∈ [t0 − δ, t0 + δ]
x(n+1)(t) = Tx(n)(t)

= x0 +
∫ t

t0

v(s, x(n)(s))ds, t ∈ [t0 − δ, t0 + δ].

Then, the sequencex(n) of functions converges to the solutionx.

Exercises:
19.1 Solve the system

dxi(t)
dt

=
n∑

j=1

aijxj(t) + bi(t), i = 1, 2, . . . , n

for smoothb and initial conditionx(0) = x0. How does the method of
successive approximations work?



Convex Analysis

The aim of this chapter is to discuss basic concepts in convex analysis.

20 Convex Sets and Convex Functions

20.1 DEFINITION. A setC ⊂ Rn is called aconvex setif

tx + (1− t)y ∈ C

for all x, y ∈ C and0 < t < 1.

20.2 DEFINITION. AnR ∪ {∞}–valued functionf defined onRn is called aconvex
functionif

tf(x) + (1− t)f(y) ≥ f(tx + (1− t)y)

for all x, y ∈ Rn and0 < t < 1.

An example of a convex set and function are shown in Figure 15. An example of a
nonconvex set and function are shown in Figure 16. There are two important sets that
one associates with functions defined onR ∪ {∞}.

20.3 DEFINITION. Theepigraphof anR ∪ {∞}–valued functionf , denote epi(f),
is defined by

epi (f) = {(x, r) ∈ Rn × R : f(x) ≤ r}.

20.4 DEFINITION. Given a convex functionf , Theeffective domainof anR∪ {∞}–
valued functionf , denote dom(f), is defined by

dom(f) = {x ∈ Rn : f(x) < ∞}.

83
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x
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x y�

Figure 15: (a) A convex set. (b) A convex function.
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x

y�

x y�

Figure 16: (a) A nonconvex set. (b) A nonconvex function.
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The notions of set convexity and function convexity are closely related:

20.5 THEOREM.A function is convex if and only if its epigraph is convex.

PROOF. First suppose thatf is convex. Fix(x, r) and(y, s) in epi (f) and fix0 <
t < 1. Then

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)
≤ tr + (1− t)s.

Therefore,(tx + (1− t)y, tr + (1− t)s) ∈ epi (f). That is, epi(f) is convex.
Now, suppose that epi(f) is convex. Fixx, y in Rn and fix0 < t < 1. Then,

t(x, f(x)) + (1− t)(y, f(y)) ∈ epi (f).

Therefore,tf(x) + (1− t)f(y) ≥ f(tx + (1− t)y). That is,f is convex. 2

21 Projection

Given a pointx in Rn and a convex setC, the following theorem establishes the exis-
tence and uniqueness of a point inC closest to the pointx. Such a point is called the
projectionof x onC.

21.1 THEOREM.LetC be a nonempty closed convex set inRn and letx be a point in
Rn. Then, there exists a unique solution to

min
z∈C

‖z − x‖2.

PROOF. We start by proving existence. Fixz0 ∈ C. Put r = ‖z0 − x‖ and let
B(r, x) = {z : ‖z − x ≤ r} denote the closed ball of radiusr centered atx. Clearly,

min
z∈C

‖z − x‖2 = min
z∈C∩B(r,x)

‖z − x‖2.

Putf(z) = ‖z−x‖2. As we saw in Theorem??, a continuous function on a nonempty
compact set (in this caseC ∩ B(r, x)) attains its infimum. Therefore there exists an
x∗ ∈ C such that

‖x∗ − x‖ ≤ ‖z − x‖

for all z ∈ C.
Now, consider the question of uniqueness. Suppose thatx∗ is not unique. That is,

suppose that there exists anx∗∗ in C that is distinct fromx∗ and for which

‖x∗ − x‖ = ‖x∗∗ − x‖.
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x

x*

x**

x
_ C

Figure 17: Clearlyx− x̄ is orthogonal tox∗ − x∗∗ if x∗ andx∗∗ are equidistant from
x.

Put x̄ = (x∗ + x∗∗)/2. By convexity ofC, x̄ belongs toC. Furthermore,x − x̄ is
orthogonal tox∗ − x∗∗ (see Figure 17):

(x− x̄)T (x∗ − x∗∗) =
(

x− x∗

2
+

x− x∗∗

2

)T

(x∗ − x∗∗)

=
1
2

((x− x∗) + (x− x∗∗))T ((x∗ − x) + (x− x∗∗))

=
1
2
(
‖x− x∗∗‖2 − ‖x− x∗‖2

)
= 0.

Now compare the distance tox∗ with the distance tōx:

‖x− x∗‖2 = (x− x∗)T (x− x∗)
= (x− x̄ + x̄− x∗)T (x− x̄ + x̄− x∗)
= ‖x− x̄‖2 + 2(x− x̄)T (x̄− x∗) + ‖x̄− x∗‖2

= ‖x− x̄‖2 + ‖x̄− x∗‖2

> ‖x− x̄‖2.

The strict inequality contradicts the minimality ofx∗. Therefore, the minimum must
have been unique to start with. 2

The next theorem gives a useful characterization of the projection ofx onC.

21.2 THEOREM.A point x̄ is the projection ofx on C if and only if x̄ belongs toC
and

(z − x̄)T (x− x̄) ≤ 0

for all z in C.

Note that the above inequality can be interpreted geometrically as the statement
that the vector from̄x to x makes an obtuse angle with the vector fromx̄ to any other
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x C
x
_

z

Figure 18: The angle between the vector fromx̄ to x and the vector from̄x to z is
clearly obtuse ifz is in C andC is convex.

point inC (see Figure 18).

PROOF. First suppose that(z − x̄)T (x − x̄) ≤ 0 for all z ∈ C and that̄x belongs to
C. Fix z in C and compute as follows:

‖z − x‖2 = ‖(z − x̄) + (x̄− x)‖2

= ‖z − x̄‖2 + ‖x̄− x‖2 + 2(z − x̄)T (x̄− x).

Since all terms on the right are nonnegative, it follows that

‖z − x‖2 ≥ ‖z − x̄‖2.

Sincez was arbitrary, we see that the inequality holds for allz in C. Therefore,̄x is
the projection ofx onC.

Now, suppose that̄x is in C and that there exists az ∈ C for which

(z − x̄)T (x− x̄) > 0.21.3

While z might be further fromx than x̄, we shall show that some points on the line
segment connectinḡx to z are closer than̄x (see Figure 19). To this end, put

z(t) = tz + (1− t)x̄

and
f(t) = ‖z(t)− x‖2.

It is easy to check thatf ′(0) = 2(z− x̄)T (x̄−x), which is strictly negative. Therefore,
there exists a0 < t̄ < 1 such thatf(t̄) < f(0). But z(t̄) ∈ C and sox̄ cannot be the
projection ofx on C. This contradiction implies that the strict inequality (21.3) must
be wrong. 2

When the setC is a linear subspace ofRn, an explicit formula can be given for the
projection ontoC:

21.4 THEOREM.Suppose thatC = {z : z = AT y for somey ∈ Rm} whereA is an
m× n matrix of rankm. Then the following are equivalent:
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x
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x
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z

}these points are closer

Figure 19: Clearly some points on the line segment connectingx̄ to z lie closer tox
thanx̄ when the angle is acute as shown here.

1. x̄ is the projection ofx onC.

2. x̄ = AT (AAT )−1Ax.

3. x̄ ∈ C andxT z = x̄T z for all z ∈ C.

Note: The setC is the span of the set ofn-vectors given by the rows ofA. The rank
assumption simply means that these vectors are linearly independent. It is easy to check
thatA has rankm if and only if AAT is nonsingular.

PROOF. (1) implies (2): By definition, x̄ solvesminy∈Rn f(y) wheref(y) = ‖x −
AT y‖2 = xT x− 2(Ax)T y + yT AAT y. Let ȳ denote a point at which the gradient of
f vanishes:

∇f(ȳ) = −2Ax + 2AAT ȳ = 0.

SinceAAT is nonsingular,̄y is uniquely given by

ȳ = (AAT )−1Ax.

Hence,̄x = AT ȳ = AT (AAT )−1Ax.
(2) implies (3): Suppose that̄x = AT (AAT )−1Ax. Then, x̄ = AT ȳ, where

ȳ = (AAT )−1Ax. Hence,̄x belongs toC. Suppose thatz also belongs toC. That is,
z = AT y for somey ∈ Rm. Then,

zT x̄ = yT AAT (AAT )−1Ax = yT Ax = zT x.

(3) implies (1):Suppose that̄x ∈ C andxT z = x̄T z for all z ∈ C. Pickingz = x̄,
we see thatxT x̄ = x̄T x̄. That is,

x̄T (x− x̄) = 0.

Yet, for anyz in C we have
zT (x− x̄) = 0.
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x
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Figure 20: The separating hyperplane theorem.

Combining these two equations, we see that

(z − x̄)T (x− x̄) = 0.

Therefore, Theorem 21.2 implies thatx̄ is the projection ofx onC. 2

22 Supporting Hyperplane Theorem

22.1 DEFINITION. AhalfspaceH is a set of the form{z : aT z ≤ b}, wherea 6= 0.
Theboundary∂H is the hyperplane{z : aT z = b}.

The projection theorems of the previous section provide the key tool to proving the
importantsupporting hyperplane theorem:

22.2 THEOREM.Suppose thatC is a nonempty closed convex set inRn and thatx is
a point not inC. Then there exists a halfspaceH such thatC ⊂ H, C ∩ ∂H 6= ∅, and
x 6∈ H.

PROOF. Letx̄ denote the projection ofx on C. Let a = x − x̄. Sincex 6∈ C and
x̄ ∈ C, we see thata 6= 0. PutH = {z : aT z ≤ aT x̄}. By Theorem 21.2,C is a
subset ofH. SinceaT x − aT x̄ = ‖a‖2 > 0, it follows thatx 6∈ H. Sincex̄ ∈ C and
x̄ ∈ ∂H, we get thatC ∩ ∂H 6= ∅. 2



Measure and Integration

This chapter is devoted to integration on abstract spaces. As special cases, it covers the
Riemann integral, line and surface integrals, and Stieltjes integrals.

23 Motivation

The integral introduced in elementary calculus courses is called the Riemann integral.
Let’s briefly review the definition of the integral froma to b of a real-valued function
f . LetP denote a partition of the interval[a, b]:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Associated with this partition, is an upper estimate of the integral

U(f,P) =
n∑

i=1

sup
xi−1≤x≤xi

f(x)(xi − xi−1)

and a lower estimate

L(f,P) =
n∑

i=1

inf
xi−1≤x≤xi

f(x)(xi − xi−1).

Clearly,
L(f,P) ≤ U(f,P).

The functionf is said to beRiemann integrableover the interval[a, b] if

sup
P

L(f,P) = inf
P

U(f,P).

The basic result regarding Riemann integration is that iff is continuous, then the Rie-
mann integral exists.

There are at least three problems with the Riemann integral. The first problem
is that highly discontinuous functions aren’t integrable. For example, consider the
functionf that is one at every irrational point and is zero at every rational. Then, for
every partitionP,

U(f,P) = b− a

91
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and
L(f,P) = 0.

The second problem is that one would like to be able to integrate functions whose
domain is more general than simply the reals. Of course, Riemann integrals are ex-
tended to functions defined onRn, but even that is not as general as one would prefer.

The third problem is that one would often like to interchange a limit with an in-
tegral. Although it is not apparent from the definition given above, it turns out that
justifying such an interchange for Riemann integrals is difficult.

To circumvent these difficulties, the idea is to partition the range instead of the
domain (after all, the range is always the reals). Suppose first thatf is a positive
function defined on an arbitrary setE and partition[0, n) using dyadic intervals[(k −
1)/2n, k/2n). Let

Bk,n = {x ∈ E : f(x) ∈ [(k − 1)/2n, k/2n)}

denote the set of points in the domain that map into[(k− 1)/2n, k/2n). The following
sum is a lower estimate of the area underf :

n2n∑
k=1

k

2n
µ(Bk,n),

whereµ(Bk,n) denotes the length or, more generally, the measure ofBk,n. As n
increases, this sum increases. Therefore, it has a limit (possibly infinite) which is
called theLebesgue integralof f overE:

∫
E

f(x)µ(dx) = lim
n

n2n∑
k=1

k

2n
µ(Bk,n).

Note thatµ is a function from subsets ofE into R+. To capture the notion of being
a “measure” of the subsets,µ should possess the following properties:

1. if A1, A2, . . ., are disjoint subsets ofE, thenµ(∪nAn) =
∑

n µ(An);

2. µ(∅) = 0.

A function on subsets ofE with these two properties is called ameasureonE.
At this point the picture seems pretty clear. All that remains is to construct the

measureµ in the cases of interest (such as the usual notion of length onR). However,
the following theorem due to Ulam shows that there aren’t many measures that can be
constructed this way.

23.1 THEOREM.If µ is a finite measure defined on all subsets of[0, 1], then there
exists a countable collection of pointsx1, x2, . . . in [0, 1] such thatµ({x1, x2, . . .}c) =
0.
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Hence, there does not exist a measure defined on all subsets of[0, 1] for which
µ([a, b]) = b−a. That is, there does not exist a measure which corresponds to our idea
of length. The problem is that we have asked for too much. It is not necessary (and
evidently not possible) to define our measures on all subsets ofE. The collections of
sets on which we will define our measures will be called algebras. This is the subject
of the next section.

24 Algebras

Let E be a set (generally this set will be uncountably infinite although we by no means
require this). We wish to assign “measures” to the sizes of various subsets ofE. It
would be nice to assign a measure to arbitrary subsets, but as we shall see this is im-
possible to do in such a way that certain natural additivity properties hold. Hence, we
must restrict our attention only to certain subsets ofE. We will call such subsetsmea-
surable. If a setA is measurable, it stands to reason that its complement should also
be measurable (and its measure should be the total measure ofE minus the measure of
A). Given a finite disjoint collection of measurable sets, it makes sense that their union
should be measurable since the measure of the union should be the sum of the measures
of each set. Using the fact that complements of measurable sets are measurable, it is
easy to see that finite non-disjoint unions of measurable set should also be measurable
since they can be pieced together from disjoint measurable sets. Finally, it is reason-
able to assume that countable unions of measurable sets should also be measurable,
since the sums involved in the appropriate definition involves only positive numbers
and so must either converge to a finite number or to infinity. A collection of measur-
able sets will be called aσ-algebraon E. To summarize the foregoing, aσ-algebra is
a non-empty collectionE of subsets ofE with the following two properties:

A ∈ E ⇒ E \A ∈ E ,

A1, A2, . . . ∈ E ⇒ ∪∞1 An ∈ E .

In other words, aσ-algebra is a collection of subsets ofE that is closed under the
operations of complementation and countable unions. It follows that aσ-algebra is
closed under finite unions, finite intersections, and countable intersections as well. In
particular, the sets∅ andE belong to everyσ-algebra onE.

The simplestσ-algebra onE is E = {∅, E}; it is called thetrivial σ-algebra. The
largest is the collection of all subsets; it is called thediscreteσ-algebra.

The intersection of an arbitrary family (countable or uncountable) ofσ-algebra on
E is again aσ-algebra. IfC is a collection of subsets ofE, the intersection of allσ-
algebras containingC is the smallestσ-algebra that containsC; it is called theσ-algebra
generatedby C and is denoted byσ(C).

If E is a metric space, then theσ-algebra generated by the collection of all open
subsets is called theBorelσ-algebraonE; it is denoted byB(E), and its elements are
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called Borel sets. Thus, every open set, every closed set, every set obtained from open
and closed sets through various set operations are all Borel sets.

Monotone Class Theorem

This is a very useful theorem which simplifies the task of showing that a given col-
leciton is aσ-algebra. Throughout this subsection,E is an arbitrary set.

A collectionC of subsets ofE is called aπ-systemif it is closed under finite inter-
sections, that is, if

A,B ∈ C ⇒ A ∩B ∈ C.24.1

A collectionD of subsets ofE is called ad-systemonE if

(i) E ∈ D,
(ii) A,B ∈ D andB ⊂ A ⇒ A \B ∈ D,
(iii) (An) ⊂ D andAn ↗ A ⇒ A ∈ D.

24.2

On the last line, we wrote(An) ⊂ D to mean that(An) is a sequence of elements of
D, and we wroteAn ↗ A to mean thatA1 ⊂ A2 ⊂ · · · and∪nAn = A.

24.3 PROPOSITION.LetE be a collection of subsets ofE. Then,E is aσ-algebra on
E if and only ifE is both aπ-systme and a d-system onE.

PROOF. IfE is σ-algebra then it is obviously aπ-system and a d-system. To show
the converse, suppose thatE is both aπ-system and a d-system. Now, 24.2i and 24.2ii
show thatE is closed under complements. SinceA ∪ B = (Ac ∩ Bc)c, this implies
thatE is closed under unions (ifA,B ∈ E thenAc, Bc ∈ E , and thusAc ∩ Bc ∈ E
sinceE is aπ-system, and hence(Ac ∩Bc)c ∈ E). This implies thatE is closed under
countable unios as well: ifA1, A2, . . . ∈ E , put

B1 = A1, B2 = A2, B3 = A3, . . . .

EachBn belongs toE by what we have just shown. Obviously,B1 ⊂ B2 ⊂ · · ·
and∪nBn = cupnAn. Thus, using property 24.2iii of athe d-systemE , we see that
∪nAn ∈ E . 2

The following lemma is needed in the proof of the main theorem. Its proof is
obtained by checking the conditions of 24.2 one by one; we leave it as an exercise.

24.4 LEMMA. LetD be a d-system onE. Fix D ∈ D and let

|̂d = {A ∈ D : A ∩D ∈ D}.

Then,∩D is again a d-system.
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The following the main result of this section. It is called Dynkin’s monotome class
theorem.

24.5 THEOREM.If a d-system contains aπ-system, then it contains also theσ-algebra
generated by thatπ-system.

PROOF. LetC be aπ-system. LetD be the smallest d-system onE that containsC.
We need to show thatD ⊃ σ(C). To that end, sinceσ(C) is the smallestσ-algebra
containingC, it is sufficient to show thatD is aσ-algebrȧFor this, it is in turn sufficient
to show thatD is aπ-system (and then Proposition 24.3 implies that the d-systemD is
aσ-algebra).

Fix B ∈ C and letD1 = {A ∈ D : A ∩ B ∈ D}. SinceB ∈ C ⊂ D, Lemma 24.4
shows thatD1 is a d-system. Moreover,D1 ⊃ C sinceA∩B ∈ C ⊂ D for everyA ∈ C
by the fact thatC is aπ-system. SoD1 must contain the smallest d-system containing
C, that is,D1 ⊃ D. In other words,A ∩B ∈ D for everyA ∈ D andB ∈ C.

Next, fix A ∈ D and letD2 = {B ∈ D : A ∩ B ∈ D}. We have just shown
thatD2 ⊃ C. Moreover, by Lemma 24.4 again,D2 is a d-system. THus,D2 ⊃ D. In
other words,A ∩ B ∈ D for everyA ∈ D andB ∈ D, that is,D is aπ-system. This
completes the proof. 2

Exercises:
24.1 Partitions. A partition ofE is a countable disjointed collection of subsets

whose union isE. It is called a finite partition if it has only finitely many
elements.

1. Let{A,B,C} be a partition ofE. Describe theσ-algebra generated
by this partition.

2. Let C be a partition ofE. Let E be the collection of all countable
unions of elements ofC. Show thatE is aσ-algebra. Show that, in
fact,E = σ(C).

Generally, ifC is not a partition, the elements ofσ(C) cannot be obtained
through such explicit constructions.

24.2 LetB andC be two collections of subsets ofE. If B ⊂ C, thenσ(B) ⊂
σ(C). If B ⊂ σ(C) ⊂ σ(B), thenσ(B) = σ(C). Show these.

24.3 Borel σ-algebra onR. Show thatB(R) is generated by the collection of
all open intervals. Hint: recall that every open subset ofR is a countable
union of open intervals.

24.4 Continuation.Show that every interval ofR is a Borel set. In particular,
(−∞, x), (−∞, x], (x, y], [x, y] are all Borel sets. Every singleton{x} is
a Borel set.
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24.5 Show thatB(R) is also generated by any one of the following:

1. the collection of all intervals of the form(x,∞),

2. the collection of all intervals of the form(x, y],

3. the collection of all intervals of the form[x, y],

4. the collection of all intervals of the form(−∞, x],

5. the collection of all intervals of the form(x,∞) with x rational.

25 Measurable Spaces and Functions

A measurable spaceis a pair(E, E) whereE is a set andE is aσ-algebra onE. Then,
the elements ofE are calledmeasurable sets. WhenE is a metric space andE = B(E),
the Borelσ-algebra onE, the measurable sets are also calledBorel sets.

Let (E, E) andF,F) be measurable spaces and letf be a mapping fromE into F .
Then,f is said to bemeasurablerelative toE andF if f−1(B) ∈ E for everyB ∈ F
(these are the functions we wish to be able to integrate). IfE andF are metric spaces
andE = B(E) andF = B(F ) andf : E 7→ F is measurable relative toE andF , tthen
f is also called aBorel function.

Measurable Functions

The following proposition reduces the checks for measurability:

25.1 PROPOSITION.Let (E, E) and (F,F) be measurable spaces. In order forf :
E 7→ F to be measurable relative toE and F , it is necessary and sufficient that
f−1(B) ∈ E for everyB ∈ F0 for some collectionF0 that generatesF .

PROOF. Necessity part is trivial. To prove the sufficiency, letF0 ⊂ F be such that
σ(F0) = F and suppose thatf−1(B) ∈ E for everyB ∈ F0. We need to show that,
then,

F1 = {B ∈ F : f−1(B) ∈ E}

is equal toF . For this, it is sufficient to show thatF1 is aσ-algebra, sinceF1 ⊃ F0

by hypothesis andF is the smallestσ-algebra containingF0. But checking thatF1 is
aσ-algebra is easy in view of the relations given in Exercise 2.1. 2
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Borel Functions

Let E andF be metric spaces and letE andF be their respective Borelσ-algebras.
Let f : E 7→ F . SinceF is generated by the open subsets ofF , in order forf to be a
Borel function, it is necessary and sufficient thatf−1(B) ∈ E for every open subsetB
of F ; this is an immediate corollary of the preceding proposition. In particular, iff is
continuous, thenf−1(B) is open inE for every openB ⊂ F . Thus, every continuous
functionf : E 7→ F is Borel measurable. The converse is generally false.

Compositions of Functions

Let (E, E), (F,F), and(G,G) be measurable spaces. Letf : E 7→ F andg : F 7→ G.
Then, their compositiong ◦ f : x 7→ g(f(x)) is a mapping fromE into G. The fol-
lowing proposition will be recalled by the phrase “measurable functions of measurable
functions are measurable”.

25.2 PROPOSITION.If f is measurable relative toE andF , and if g is measurable
relative toF andG, theng ◦ f is measurable relative toE andG.

PROOF. Recall that(g ◦ f)−1(C) = f−1(g−1(C)) for everyC ⊂ G. If C ∈ G and
g is measurable, thenB = g−1(C) is in F . Therefore, iff is measurable,f−1(B) =
f−1(g−1(C)) is in E for everyC ∈ G. 2

Numerical Functions

By a numerical functionon E, we mean a mapping fromE into R̄ or some subset
thereof. Such a function is said to bepositiveif all its values are inR̄+ and is said
to be real-valued if all its values are inR. If (E, E) is a measurable space andf is a
numerical function onE, thenf is said to beE-measurableif it is measurable with
respect toE andB(R̄).

Let (E, E) be a measurable space and letf be a numerical function onE. Using
Proposition 25.1 withF = R̄ andF = B(R̄) and recalling Exercise 24.5, we see that
the following holds.

25.3 PROPOSITION.The numerical functionf is E-measurable if and only if any one
of the following is true:

1. {x : f(x) ≤ r} ∈ E for everyr ∈ R,

2. {x : f(x) > r} ∈ E for everyr ∈ R,

3. {x : f(x) < r} ∈ E for everyr ∈ R, etc.
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25.4 COROLLARY.Suppose thatf : E 7→ F whereF is a countable subset of̄R.
Then,f is E-measurable if and only if{x : f(x) = a} ∈ E for everya ∈ F .

PROOF. Necessity is trivial since each singleton{a} is a Borel set. For the sufficiency,
fix r ∈ R and note that{x : f(x) ≤ r} is the union of{x : f(x) = a} over all
a ≤ r, a ∈ F , and therefore belongs toE since it is a countable union of the sets
{x : f(x) = a} ∈ E . Thus,f is E-measurable by the preceeding proposition. 2

Positive and Negative Parts of a Function

Let (E, E) be a measurable space. Letf be a numerical function onE. Then,3

f+ = f ∨ 0, f− = −(f ∧ 0)

are called the positive part off and negative part off , respectively. Note that bothf+

andf− are positive functions and

f = f+ − f−.

25.5 PROPOSITION.The functionf is E-measurable if and only if bothf+ andf−

areE-measurable.

The proof is left as an exercise. The decompositionf = f+ − f− enables us to
state most results for positive functions only, since it is easy to obtain the corresponding
result for arbitraryf .

Indicators and Simple Functions

Let A ⊂ E. Its indicator, denoted by1A, is defined by

1A(x) =
{

1 if x ∈ A,
0 if x 6∈ A.

Obviously,1A is E-measurable if and only ifA ∈ E .
A functionf onE is said to besimpleif it has the form

f =
n∑
1

ai1Ai
25.6

3For a, b ∈ R̄ we writea ∨ b for the maximum ofa andb, anda ∧ b for the minimum. The notation
extends to functions:f ∨ g is the function whose value atx is f(x) ∨ g(x); similarly for f ∧ g.
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for some integern, real numbersa1, . . . , an, and measurable setsA1, . . . , An. It is
clear that, then, there exist an integerm ≥ 1, distinct real numbersb1, . . . , bm, and a
measurable partition{B1, . . . , Bm} of E such thatf =

∑m
1 bi1Bi

, this latter repre-
sentation is called thecanonical formof the simple functionf .

Every simple function ofE is E-measurable; this is immediate from Corollary 25.4
applied to the canonical form off . Conversely, iff is E-measurable, takes only finitely
many values, and all those values are real, thenf is simple.

In particular, every constant is a simple function. Moreover, iff andg are simple,
then so are

f + g, f − g, fg, f/g, f ∨ g, f ∧ g,

except that, in the case off/g one must make sure thatg is never0.

Approximations by Simple Functions

We start by constructing a sequence of simple functions that approximate the identity
functiond from R̄+ into R̄+. For eachn ∈ N, let

dn(x) =
{

k/2n if k
2n ≤ x < k+1

2n , k ∈ {0, 1, . . . , n2n − 1},
n if x ≥ n.

25.7

The figure below is ford2. The following lemma should be self-evident.

25.8 LEMMA. Eachdn is a simple Borel function on̄R+. Eachdn is right-continuous
and increasing. The sequence(dn) is increasing pointwise to the functiond : x 7→ x.

The following theorem characterizes allE-measurable positive functions, and via
Proposition 25.5, allE-measurable functions.

25.9 THEOREM.A positive function onE is E-measruable if and only if it is the limit
of an increasing sequence of simple positive functions.

PROOF. Necessity.Let f : E 7→ R̄+ beE-measurable. Let thedn be defined by 25.7.
Since eachdn is a measurable function from̄R+ into R̄+, and since measurable func-
tions of measurable functions are measurable, the functionfn = dn◦f isE-measurable
for eachn. Sincedn is simple, so isfn. Finally, lim fn(x) = lim dn(f(x)) = f(x)
sincelim dn(y) = y for all R̄+. Thus,f is the limit of the sequence(fn) of simple
positive functions andf1 ≤ f2 ≤ · · · sinced1 ≤ d2 ≤ · · ·.

Sufficiency.Let f1 ≤ f2 ≤ · · · be simple and positive and letf = lim fn. Now, for
eachx ∈ E andr ∈ R, we havef(x) ≤ r if and only if fn(x) ≤ r for all n; thus,

{x ∈ E : f(x) ≤ r} = ∩∞n=1{x ∈ E : fn(x) ≤ r}

for eachr ∈ R. Since thefn are simple (and therefore measurable), each factor on
the right side belongs toE and, therefore, so does the intersection. Hence,f is E-
measurable by Proposition 25.3. 2
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Limits of Sequences of Functions

Let (E, E) be a measurable space and let(fn) be a sequence of numerical functions on
E.

25.10 THEOREM.Suppose that eachfn is E-measurable. The, each one of

inf fn, sup fn, lim inf fn, lim sup fn

is againE-measurable. Moreover, iflim fn exists, then it isE-measurable.

PROOF. Forx ∈ E andr ∈ R, we haveinf fn(x) ≥ r if and only if fn(x) ≥ r for all
n. Thus, for eachr ∈ R,

{x ∈ E : inf fn(x) ≥ r} = ∩n{x ∈ E : fn(x) ≥ r}.

Now, {x : fn(x) ≥ r} ∈ E for eachn by the measurability offn, and therefore the in-
tersection on the right side belongs toE sinceE is closed under countable intersections.
Thus,inf fn is E-measurable by Proposition 25.3.

The proof thatsup fn is E-measurable follows via similar reasoning upon noting
that

{x ∈ E : sup fn(x) ≤ r} = ∩n{x ∈ E : fn(x) ≤ r}.

It follows from these that

lim inf fn = sup
m

inf
n≥m

fn, lim sup fn = inf
m

sup
n≥m

fn

are bothE-measurable. Finally,lim fn exists if and only iflim inf fn = lim sup fn,
and thenlim fn is the common limit; so, it must beE-measurable. 2

Monotone Classes of Functions

Often we are interested in showing that a certain property holds for all measurable
functions. The following are useful in such quests.

LetM be a collection of positive functions onE. Then,M is called amonotone
class of functionsprovided that

(i) 1 ∈M,
(ii) f, g ∈M, anda, b ∈ R+ ⇒ af + bg ∈M,
(iii) (fn) ⊂M, andfn ↗ f ⇒ f ∈M.

25.11

The following is called the monotone class theorem for functions.

25.12 THEOREM.LetM be a monotone class of functions onE. Suppose that1A ∈
M for everyA ∈ C for someπ-systemC that generates theσ-algebraE . Then,M
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includes all positiveE-measurable functions and all boundedE-measurable functions.

PROOF. We start by showing that1A ∈M for everyA ∈ E . To this end, let

D = {A ∈ E : 1A ∈M}.

Using the properties 25.11 ofM, it is easy to check thatD is a d-system. Moreover,
D ⊃ C by hypothesis. Thus, by Dynkin’s monotone class theorem,D ⊃ σ(C) = E . In
other words,1A ∈M for everyA ∈ E .

Consequently, in view of property 25.11(ii),M includes all simpleE-measurable
functions.

Let f be a positiveE-measurable function. By Theorem 25.9, there exists a se-
quence of positive simple functionsfn ↗ f . Since eachfn in inM by the preceeding
step, 25.11(iii) implies thatf is inM.

2

Notation

We shall writef ∈ E to mean thatf is anE-measurable function. Thus,E stands
both for aσ-algebra and for the collection of all numerical functions measurable with
respect to it. Furthermore, we shall use the notation

F+ = {f ∈ F : f ≥ 0}

for any collection ofF of numerical functions. Thus, in particular,E+ is the collection
of all positiveE-measurable functions.

Exercises:

25.1 Trace spaces.Let (E, E) be a measurable space and letD ⊂ E be fixed.
Show that

D = {A ∩D : A ∈ E}

is aσ-algebra onD. Then,D is called the trace ofE onD, and(D,D) is
called the trace of(E, E) onD.

25.2 σ-algebra generated by a function.Let E be a set and let(F,F) be a
measurable space, Letf be a mapping fromE into F and set

f−1(F) = {f−1(B) : B ∈ F}.

Use Exercise 2.1 to show thatf−1(F) is aσ-algebra onE; it is called the
σ-algebra onE generated byf . It is the smallestσ-algebra onE such that
f is measurable relative to it andF .
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25.3 Product spaces.Let (E, E) and(F,F) be measurable spaces. A rectangle
A × B is said to be measurable ifA ∈ E andB ∈ F . Show that the
collection of all measurable rectangles form aπ-system. Theσ-algebra on
E × F generated by thatπ-system is denoted byE ⊗ F and is called the
productσ-algebra. Further,(E×F, E ⊗F) is called the product of(E, E)
and(F,F), and is denoted by(E, E) × (F,F) also. If (E, E) = (F,F),
then it is usual to writeE2 for E × F andE2 = E ⊗ F . In particular,
(R2,B(R2)) = (R,B(R)) × (R,B(R)), and by an obvious extension,
(Rn,B(Rn)) = (R,B(R))× · · · × (R,B(R)), n times.

25.4 Continuation. Let (E, E), (F,F), (G,G) be measurable spaces. Let
f : E 7→ F be measurable relative toE andF , and letg : E 7→ G
be measurable relative toE andG. Then,

h(x) = (f(x), g(x)), x ∈ E,

defines a mapping fromE into F ×G. Show thath is measurable relative
to E andF ⊗G.

In particular, a functionf : E 7→ Rn is measurable relative toE and
B(Rn) if and only if its coordinates are measurable relative toE and
B(R); recall that the coordinates off are the functionsf1, . . . , fn such
thatf(x) = (f1(x), . . . , fn(x)), x ∈ E.

25.5 Discrete spaces.A measurable space(E, E) is said to bediscreteif E is
countable andE is theσ-algebra of all subsets ofE. Then, show that every
numerical function ofE is E-measurable.

25.6 Suppose thatE is generated by a countable partition ofE. Show that, then,
a numerical function onE is E-measurable if and only if it is constant over
each member of that partition.

25.7 Approximation by simple functions.Show that a numerical function of
E is E-measruable if and only if it is the limit of a sequence of simple
functions.

25.8 Arithmetic operations.Let f andg be E-measurable. Show that, then,
each one of

f + g, f − g, f · g, f/g, f ∨ g, f ∧ g

is E-measurable provided that it be well-defined.

25.9 Functions onR. Let f : R 7→ R+ be increasing. Show that it is a Borel
function.

25.10 Step functions.A function f : R 7→ R is called a step function if it has
the form

f =
∞∑
1

ai1Ai
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where eachAi is an interval. Show that every suchf is a Borel function.

25.11 Right-continuous functions.Show that every right-continuous function
f : R 7→ R is Borel measurable. SImilarly, every left-continuous function
is Borel. Hint for right-continuousf : definedn(x) = (k + 1)/2n if
k/2n ≤ x < (k + 1)/2n for somek = 0, 1, 2, . . . for n = 1, 2, . . .. Show
that dn is Borel. Letfn(x) = f(dn(x)). Show that eachfn is a step
function, and show thatfn → f asn →∞.

26 Measures

Let E, E) be a measurable space. Ameasureon (E, E) is a mappingµ : E 7→ R̄+ such
that

1. µ(∅) = 0 ,

2. µ(∪nAn) =
∑

n µ(An) for every disjointed sequence(An) ⊂ E .

The latter condition is calledcountable additivity.
A measure spaceis a triplet(E, E , µ) whereE is a set,E is aσ-algebra onE, and

µ is a measure on(E, E).

26.1 PROPOSITION.Let µ be a measure on(E, E). Then, the following hold for all
measurable setsA,B, andAn, n ≥ 1:

Finite additivity: A ∩B = ∅ implies thatµ(A ∪B) = µ(A) + µ(B).

Monotonicity: A ⊂ B implies thatµ(A) ≤ µ(B).

Sequential continuity: An ↗ A implies thatµ(An) ↗ µ(A).

Boole’s inequality: µ(∪nAn) ≤
∑

n µ(An).

PROOF. Finite additivity is a particular instance of the countable additivity ofµ: take
A1 = A, A2 = B, A3 = A4 = · · · = ∅. Monotonicity follows from it and the
positivity of µ: if A ⊂ B,

µ(B) = µ(A) + µ(B \A) ≥ µ(A)

sinceµ(B\A) ≥ 0. Sequential continuity follows from (and is equivalent to) countable
additivity: suppose thatAn ↗ A; then,

B1 = A1, B2 = A2 \A1, B3 = A3 \A2, · · ·
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are disjoint, their union isA, and the union of the firstn is An; hence, the sequence of
numbersµ(An) increases by the monotonicity ofµ, and

limµ(An) = lim µ(∪n
1Bi) = lim

n

n∑
1

µ(Bi) =
∞∑
1

µ(Bi) = µ(∪∞1 Bi) = µ(A).

Finally, Boole’s inequality follows from the observation that

µ(A ∪B) = µ(A) + µ(B \A) ≤ µ(A) + µ(B).

2

Arithmetic of Measures

Let (E, E) be a measurable space. Ifµ is a measure on it and ifc ≥ 0 is a constant,
thencµ is again a measure. Ifµ andν are measures on(E, E), so isµ+ν. If µ1, µ2, . . .
are measures, then so isµ =

∑
µm: it is obvious thatµ(∅) = 0, and ifA1, A2, . . . are

disjoint then

µ(∪nAn) =
∑
m

µm(∪nAn)

=
∑
m

∑
n

µm(An)

=
∑

n

∑
m

µm(An)

=
∑

n

µ(An),

where the crucial step (where the order of summation is changed) is justified by the
elementary fact that ∑

m

∑
n

amn =
∑

n

∑
m

amn

if amn ≥ 0 for all m,n.

Finite, σ-finite, Σ-finite measures

Let µ be a measure on(E, E). It is said to befinite if µ(E) < ∞. It is called a
probability measureif µ(E) = 1. It is said to beσ-finite if there exists a measurable
partition(En) of E such thatµ(En) < ∞ for eachn. It is said to beΣ-finite if there
exist finite measuresµ1, µ2, . . . such thatµ =

∑
µn. Note that every finite measure

is trivially σ-finite, everyσ-finite measure isΣ-finite. The converses are false (see
Exercise 26.4).
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Specification of Measures

It is generally difficult to specifyµ(A) for eachA, simply because there are too manyA
in a σ-algebra. The following proposition is helpful in reducing the task to specifying
µ(A) for thoseA belonging to aπ-system that generates the givenσ-algebra.

26.2 PROPOSITION.Let µ and ν be measures on(E, E). Suppose thatµ(E) =
ν(E) < ∞, and thatµ andν agree on aπ-system generatingE . Then,µ = ν.

PROOF. LetC be aπ-system withσ(C) = E . Suppose thatµ(A) = ν(A) for every
A ∈ C. We need to show that, then,µ(A) = ν(A) for everyA ∈ E . This amounts to
showing that

D = {A ∈ E : µ(A) = ν(A)}
containsE . Now,D ⊃ C by hypothesis, and it is straightforward to check thatD is a
d-system. Thus, by Dynkin’s monotone class theorem,D ⊃ σ(C) = E . 2

26.3 COROLLARY.LEt µ andν be probability measures onR,B(R)). Then,µ = ν
if and only if, for everyx ∈ R,

µ((−∞, x]) = ν((−∞, x]).

PROOF. The collectionC of all intervals of the form(−∞, x] is aπ-system generating
B(R). THus, the preceding proposition applies to prove sufficiency. Necessity is trivial.
2

The following proposition extends 26.2 toσ-finite measures.

26.4 PROPOSITION.Let µ andν beσ-finite measures on(E, E). Suppose that they
agree on aπ-systemC generatingE . Suppose further that there is a partition(En) of
E such thatEn ∈ C andµ(En) = ν(En) < ∞ for everyn. Then,µ = ν.

PROOF. For eachn, define the measuresµn andνn on (E, E) by

µn(A) = µ(A ∩ En), νn(A) = ν(A ∩ En), A ∈ E .

SInceEn ∈ C, and sinceA ∩ En ∈ C for everyA ∈ C, we have

µn(A) = µ(A ∩ En) = ν(A ∩ En) = νn(A) for A ∈ C.

And, by hypothesis,µn(E) = µ(E) = ν(E) = νn(E) < ∞. Thus, the last proposi-
tion applies to show thatµn = νn for eachn. This completes the proof sinceµ =

∑
µn

andν =
∑

νn. 2
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Image of Measure

Let (E, E) and(F,F) be measurable spaces. Letµ be a measure on(E, E) and let
f : E 7→ F be measurable relative toE andF . Then,

µ ◦ f−1(B) = µ(f−1(B)), B ∈ F ,26.5

is well-defined sincef−1(B) ∈ E for eachB ∈ F . It is easy to check thatν = µ◦f−1

is a measure on(F,F). It is called theimage ofµ underf .

Almost Everywhere

Often we face situations where a certain statement is true for everyx ∈ E0 andE0 is
almost the same asE in the sense thatE0 ∈ E andµ(E \E0) = 0. In that case, we say
that the statement is true foralmost everyx in E or that the statement is true almost
everywhere.

Incidentally, a setN ⊂ E is said to be neglibible if there is anA ∈ E such that
N ⊂ A andµ(A) = 0. So, a statement holds almost everywhere if and only if it fails
only over a neglibible set.

EXAMPLES.

26.6 Dirac measure.Let (E, E) be a measurable space. Fixx ∈ E. Define

δx(A) =
{

1 if x ∈ A
0 if x 6∈ A

for eachA ∈ E . Then,δx is a measure on(E, E). It is called theDirac measuresitting
atx.

26.7 Counting measures.Let (E, E) be a measurable space and letD be a countable
subset ofE. Define a measureν on (E, E) by

ν =
∑
x∈D

δx.

Note thatν(A) is the number of points inA ∩D. Such measures are called counting
measures.

26.8 Discrete measure spaces.Let E be countable andE be the collection of all
subsets ofE. Specifying a measure on(E, E) is equivalent to assigning a number
m(x) in R̄+ to each pointx in E and then letting

µ(A) =
∑
x∈A

m(x), A ∈ E .
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Then,m is called the mass function corresponding toµ. In particular, ifE = {1, 2, . . . , n},
every measureµ on (E, E) can be regarded a a vector inRn.

26.9 Purely atomic measures.Let (E, E) be a measurable space, letD be a countable
subset ofE, and letm(x) be a positive number for eachx ∈ D. Define

µ(A) =
∑
x∈D

m(x)δx(A), A ∈ E .

Then,µ is a measure on(E, E). It puts the massm(x) at the pointx, and there are
only countable many pointsx like that. Suchµ are said to be purely atomic, the points
x with µ({x}) > 0 are called the atoms ofµ.

26.10 Lebesgue measures.A measureµ on (R,B(R)) is called theLebesgue measure
on R if µ(A) is the length ofA for every intervalA. The collectionC of all intervals
form a π-system that generatesB(R) and thus, by Proposition 26.4, there can be at
most one such measure. The whole point of all measure theory is the following theorem
which, unfortunately, we don’t prove.

26.11 THEOREM.There exists a measure on(R,B(R)) which assigns to each interval
A its length.

It is impossible to displayµ(A) explicity for each Borel setA, but countable ad-
ditivity and various properties list in Proposition 26.1 enable us to figureµ(A) out for
most reasonable setsA. For instance,µ({x}) = 0 for everyx ∈ R, µ(A) = 0 for
every countable setA ⊂ R, µ(A) = 0 for the cantor setA, and so on. Of course, there
are many sets with strictly positive measure.

Similarly, Lebesgue measure onR2 is the “area” measure, Lebesgue measure on
R3 is the “volume” measure, and so on. All Lebesgue measures onR, R2, R3, etc. are
σ-finite.

More generally, given an intervalE ⊂ R, it makes sense to talk of Lebesgue mea-
sure on(E,B(E)); this is the restriction of Lebesgue measure onR to the trace space
(E,B(E)). Similarly, one can talk of Lebesgue measure on a domain inR2 or on a do-
main inRn. In all cases we shall useλn to denote the Lebesgue measure on a domain
in Rn.

Exercises:
26.1 Show thatD in the proof of 26.2 is a d-system.

26.2 Restrictions.Let (E, E , µ) be a measure space. LetD ∈ E and letD =
{A ∈ E : A ⊂ D}. Then,(D,D) is the trace of(E, E) on D. Define
ν(A) = µ(A) for A ∈ D. Then,ν is a measure on(D,D); it is called the
restrictionof µ to D.
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26.3 Uniform distribution. Let D ⊂ R be an interval of finite length. Let
µ(B) = λ1(B)/λ1(D) for Borel subsetsB of D. Show thatµ is a prob-
ability measure on(D,D) whereD = B(D). It is called theuniform
distributiononD.

26.4 Σ-finiteness. Let E = {a, b} with the discreteσ-algebra, and define
µ({a}) = 0, µ({b}) = +∞. Show that this defines aΣ-finite measure
µ that is notσ-finite.

26.5 Atoms, atomic measures, diffuse measures.Let (E, E) be such the{x} ∈
E for everyx ∈ E. A point x is said to be anatom for the measureµ
if µ({x}) > 0. If µ has no atoms, then it is said to bediffuse. If µ puts
no mass outside the set of its atoms, then it ispurely atomic. In general,
µ will have some atomic part and some diffuse part. This is to show this
decomposition.

1. Letµ be finite. Show that it has at most countably many atoms. Hint:
let D be the set of atoms, note thatD = ∪nDn whereDn = {x :
µ({x}) ∈ [1/n, 1/(n− 1)), n = 1, 2, . . .. Use the finiteness ofµ to
conclude that eachDn is a finite set, and therefore, thatD must be
countable.

2. Letµ beΣ-finite. Show that it has at most countably many atoms.

3. LetD be the set of atoms of aΣ-finite measureµ. Define

ν(A) = µ(A ∩D), λ(A) = µ(A ∩Dc), A ∈ E .

Then,ν is purely atomic,λ is diffuse, and

µ = ν + λ.

27 Integration

Let (E, E) be a measurable space. Recall thatE stands also for the collection of all
E-measurable functions and thatE+ is the sub-collection consisting of positiveE-
measurable functions. Given a measureµ on (E, E), our aim is to define the “integral
of f with respect toµ” for all reasonable functionsf in E . We shall denote it by any of
the following:

µf =
∫

E

µ(dx)f(x) =
∫

E

fdµ.

When E is an interval ofR and f is continuous andµ is the Lebesgue measure,
the integral will coincide with the usual Riemann integral off on E. WhenE =
{1, . . . , n} andE is the discreteσ-algebra, every measureµ is specified by a row vec-
tor (µ1, . . . , µn) with µi denotingµ({i}), and every functionf ∈ E corresponds to a
column vector(f1, . . . , fn) with fi = f(i); in this case the integralµf will coincide
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with the product of the row vector(µ1, . . . , µn) with the column vector with entires
f1, . . . , fn. As this last case illustrates, it is best to think of the integral as a product.
After we define it, we shall show that it has the properties of products.

Definition of the Integral

We define the integralµf in three steps: first for simple positivef , then forf ∈ E+,
finally for reasonablef ∈ E .

Step 1. Let f be a nonnegative simple function. If its cannonical form isf =∑n
1 ai1Ai

, then we define

µf =
n∑
1

aiµ(Ai).27.1

Step 2. Let f ∈ E+. Let (dn) be defined by 25.7 and recall from the proof of
Theorem 25.9 thatlim dn ◦ f = f . Now, for eachn, the functiondn ◦ f is simple and
positive, and the integralµ(dn ◦ f) is defined by the preceding step. We shall show in
the remarks below that the numbersµ(dn ◦f) form an increasing sequence, and hence,
limµ(dn ◦ f) exists (it may be+∞). Sincef = lim dn ◦ f , we define

µf = lim µ(dn ◦ f).27.2

Step 3.Let f ∈ E be arbitrary. Then,f+ andf− belong toE+, and their integrals
are defined by the preceding step. Noting thatf = f+ − f−, we define

µf = µf+ − µf−27.3

provided that at least one term on the right is finite. Otherwise, ifµf+ = µf− = +∞,
thenµf does not exist.

REMARKS: (a) Formula 27.1 holds for nonnegative simple functions even when∑n
1 ai1Ai

is not the canonical representation forf :

f =
n∑
1

ai1Ai
=

m∑
1

bj1Bj
⇒ µf =

n∑
1

aiµ(Ai) =
m∑
1

bjµ(Bj).

This is easy to check using the finite additivity ofµ.
(b) If f andg are nonnegative simple functions anda, b ∈ R+, thenaf + bg is

again a nonnegative simple function, and

µ(af + bg) = a µf + b µg.

This can be checked using the preceding remark.
(c) If f is a nonnegative simple function, then 27.1 shows thatµf ≥ 0 (it can be

+∞).
(d) If f andg are nonnegative simple functions andf ≤ g, then the preceding two

remarks applied tof andg − f show thatµf ≤ µg.
(e) In Step 2 of the definition, we haved1 ◦ f ≤ d2 ◦ f ≤ · · · and the preceding

remark shows thatµ(d1 ◦ f) ≤ µ(d2 ◦ f) ≤ · · · as claimed.
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Integral over a Set

Let f be a measurable function andA a measurable set. Then,f1A ∈ E . The integral
of f overA is defined to be the integral off1A; it exists if and only ifµ(f1A) exists.
The following notations are used for it:

µ(f1A) =
∫

A

µ(dx)f(x) =
∫

A

fdµ.27.4

Integrability

A function f ∈ E is said to beintegrableif µf exists and is a finite number. Thus,
f ∈ E is integrable if and only ifµf+ < ∞ andµf− < ∞, or equivalently, if and
only if µ|f | < ∞ (note that|f | = f+ + f−).

Elementary Properties

Here are some familiar properties of the integrals. A few others are put into the exer-
cises.

27.5 PROPOSITION.
(a) Positivity. If f ∈ E+, thenµf ≥ 0.
(b) For f ∈ E+, µf = 0 if and only iff = 0 almost everywhere.
(c) Monotonicity. If f, g ∈ E+ andf ≤ g, thenµf ≤ µg. If f, g ∈ E andf, g are

integrable, andf ≤ g, thenµf ≤ µg.
(d) Finite additivity over sets.Let f ∈ E+. If {A1, . . . , Am} is a measurable

partition ofA ∈ E , then ∫
A

fdµ =
m∑

i=1

∫
Ai

fdµ.27.6

PROOF. (a) Iff ≥ 0, then the definition ofµf yieldsµf ≥ 0.
(c) If 0 ≤ f ≤ g, thendn ◦ f ≤ dn ◦ g and so

µ(dn ◦ f) ≤ µ(dn ◦ g)

by the monotonicity of integration for simple functions. Now, the left-hand side con-
verges toµf and the right-hand side converges toµg. Henceµf ≤ µg. The general
case is similar.

(b) Linearity for simple functions and monotonicity imply the following chain of
inequalities:

0 ≤ 1
n

µ({x : f(x) ≥ 1
n
}) =

1
n

µ(1f≥ 1
n
) = µ(

1
n

1f≥ 1
n
) ≤ µ(f1f≥ 1

n
) ≤ µf = 0.
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Since the two ends of this chain of inequalities are equal, it follows that all the inequal-
ities are in fact equalities. Hence,

µ({x : f(x) ≥ 1/n}) = 0 ∀n

and so
{x : f(x) > 0} = ∪n{x : f(x) ≥ 1/n}.

Taking the measure of both sides, we get

0 ≤ µ({x : f(x) > 0}) ≤
∑

n

µ({x : f(x) ≥ 1/n}) = 0.

Again, equating this anchored chain of inequalities, we see thatf = 0 a.e.
(d) Fix f ∈ E+. Let A1, . . . , Am ∈ E be disjoint with unionA. If f is simple, 27.6

is immediate from Remark b applied to the simple functionsf1A1 , . . . , f1Am whose
sum isf1A. Applying this to simple functionsdn ◦ f , we see that

m∑
1

µ(1Aidn ◦ f) = µ(1Adn ◦ f).

Note that1B(x)dn ◦ f(x) = dn(1B(x)f(x)) for eachx by the way the functiondn is
defined. Putting this observation into the preceding expression and lettingn → ∞ we
obtain

m∑
1

µ(f1Ai
) =

m∑
1

lim
n

µ(dn ◦ (f1Ai
))

= lim
n

m∑
1

µ(dn ◦ (f1Ai
))

= lim
n

µ(dn ◦ (f1A))

= lim
n

µ(f1A),

where the interchange of the limit and the sum is justified by the finiteness ofm. 2

Monotone Convergence Theorem

This is the key result in the theory of integration. It allows interchanging the order of
taking limits and integrals under reasonable conditions.

27.7 THEOREM.Let (fn) ⊂ E+ be increasing. Then,

µ(lim fn) = lim µfn.
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PROOF. Letf = lim fn; it is well-defined sincef1 ≤ f2 ≤ · · · and is positive andE-
measurable. So,µf is well-defined. By the monotonicity of integration,µf1 ≤ µf2 ≤
· · · ≤ µf . Thereforelim µfn exists and

lim
n

µfn ≤ µf.

It remains to show thatlimn µfn ≥ µf . This is accomplished in steps.
Step 1. Ifb ∈ R+, B ∈ E , andf(x) > b for x ∈ B, thenlimn µ(fn1B) ≥ bµ(B).
First, note that{f1 > b} ⊂ {f2 > b} ⊂ · · · and that

∪n{fn > b} = {x : fn(x) > b for somen} = {f > b}.

PutBn = {fn > b} ∩B. Then,Bn ↗ and∪nBn = {f > b} ∩B = B. Thus,

lim
n

µ(Bn) = µ(B)27.8

by the sequential continuity ofµ under increasing limits. Now, note that

fn1B ≥ fn1Bn
≥ b1Bn

,

and so the monotonicity of integration yields that

µ(fn1B) ≥ µ(b1Bn) = bµ(Bn).

Taking limits on both sides and using 27.8, we get

lim µ(fn1B) ≥ bµ(B).27.9

Step 2. The same inequality holds even iff(x) ≥ b for x ∈ B.
Forb = 0, this is trivial. Forb > 0, apply Step 1 withb−ε to see thatlimn µ(fn1B) ≥

(b−ε)µ(B). Sinceε is arbitrary, we can let it go to zero to obtain the desired inequality.
Step 3. Ifg is a simple function andg ≤ f , thenlimn µfn ≥ µg.
Let

∑m
1 bi1Bi

denote the canonical representation forg. Then, our assumptions
imply thatf(x) ≥ g(x) = bi for x ∈ Bi. Hence, we may apply the result of Step 2 to
conclude that

lim
n

µ(fn1Bi
) ≥ biµ(Bi) i = 1, . . . ,m.

Hence, by Proposition 27.5d applied to the functionfn, we see that

lim
n

µfn = lim
n

m∑
1

µ(fn1Bi)

=
m∑
1

lim µ(fn1Bi
)

≥
m∑
1

biµ(Bi) = µg.
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Step 4.limn µfn ≥ µf .
Putg = dm ◦ f . Step 3 applied with thisg yields limn µfn ≥ µ(dm ◦ f). Letting

m →∞ we get the desired result. 2

A particular consequence of the monotone convergence theorem is that, in defini-
tion 27.2, the special sequence(dn ◦ f) can be replaced by any sequence(fn) ⊂ E+

increasing tof .

Linearity of Integration

27.10 PROPOSITION.If f, g ∈ E+ anda, b ∈ R+, then

µ(af + bg) = aµf + bµg.

The same holds for arbitraryf, g ∈ E and a, b ∈ R provided that both sides are
well-defined. It holds, in particular, iff andg are integrable.

PROOF. Iff, g are simple, the result is established by direct checking as was remarked
in b. Forf, g ∈ E+, anda, b ∈ R+, choose(fn) and(gn) to be sequences of simple
positive functions increasing tof andg, respectively. Then,

µ(afn + bgn) = aµfn + bµgn,

andafn + bgn ↗ af + bg, fn ↗ f , gn ↗ f . Taking limits on both sides and using the
monotone convergence theorem completes the proof. Iff, g ∈ E are arbitrary, write
f = f+ − f− andg = f+ − g− and go through the same steps. 2

Fatou’s Lemma

This gives a useful inequlaity for arbitrary sequences of positive measurable functions.

27.11 LEMMA.Let (fn) ⊂ E+. Then,µ(lim inf fn) ≤ lim inf µfn.

PROOF. Definegm = infn≥m fn. Then, lim inf fn is the limit of the increasing
sequence(gm) ⊂ E+, and thus

µ(lim inf fn) = µ(lim gm) = lim µgm

by the monotone convergence theorem. On the other hand,gm ≤ fn for all n ≥ m,
which yieldsµgm ≤ µfn for all n ≥ m, which in turn means thatµgm ≤ infn≥m µfn.
Hence, as needed,

limµgm ≤ lim
m

inf
n≥m

µfn = lim inf µfn.
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2

27.12 COROLLARY.
(a) Let(fn) ⊂ E . If fn ≥ g for all n for some integrable functiong, then

µ(lim inf fn) ≤ lim inf µfn.

(b) Let(fn) ⊂ E . If fn ≤ g for all n for some integrable functiong, then

µ(lim sup fn) ≥ lim sup µfn.

PROOF. Letg be an integrable function. Suppose thatg is real-valued so that 2

Dominated Convergence Theorem

This is the second important tool for interchanging the order of taking limits and inte-
grals.

A function f is said to be dominated by a functiong if |f | ≤ g; note thatg ≥ 0
necessarily. A sequence of functions(fn) is said to bedominatedby g if |fn| ≤ g for
eachn. If g can be taken to be a finite constant, the(fn) is said to be bounded.

27.13 THEOREM.Suppose that(fn) ⊂ E is dominated by an integrable functiong.
If lim fn exists, then it is integrable and

µ(lim
n

fn) = lim
n

µfn.

PROOF. By assumption,−g ≤ fn ≤ g for everyn, andg and−g are both integrable.
Thus,µfn exists and is sandwiched between the finite numbers−µg andµg. Now,
both statements of the last corollary apply and we get

µ(lim inf fn) ≤ lim inf µfn ≤ lim sup µfn ≤ µ(lim sup fn).

If lim fn exists, thenlim inf fn = lim sup fn = lim fn, andlim fn is integrable since
it is dominated byg. Hence, the extreme members of the preceding expression are
finite and equal, which means that equality holds throughout. 2
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If (fn) ⊂ E is bounded, say by the constantb, and if the measureµ is finite, then we
can takeg = b in the preceding theorem. The resulting corollary is called thebounded
convergence theorem:

27.14 THEOREM.Let (fn) ⊂ E be bounded. Suppose thatµ is finite. If lim fn exists,
then

µ(lim
n

fn) = lim
n

µfn.

27.15 EXAMPLE. Let(E, E) = (R+,B(R+)) and letfn be the sequence of functions
shown in Figure??. Note that the functions are not monotone and there is no integrable
function that dominates them. Also,µfn = 1 for all n and solim µfn = 1, whereas,
lim fn = 0 and soµ lim fn = 0.


