Transportation Problem

Each node is one of two types:
- source (supply) node
- destination (demand) node

Every arc has:
- its tail at a supply node
- its head at a demand node

Such a graph is called **bipartite**.
Solving with Pivot Tool

Best to arrange:
- supply nodes vertically on left
- demand nodes horizontally across top

Note that arc data appears as a neat table.

Data:
Tree Solution

Leaving arc: (a,b)
Entering arc: (i,h)
Etc., etc., etc.
Assignment Problem

Transportation problem in which

- There are an equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a complete bipartite graph).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate ($2n$ constraints but only n nonzero flows).
Shortest Paths Problem

Given:

- Network: \((\mathcal{N}, \mathcal{A})\)
- Costs = Travel Times: \(c_{ij}, (i, j) \in \mathcal{A}\)
- Home (root): \(r \in \mathcal{N}\)

Problem: Find shortest path from every node in \(\mathcal{N}\) to root.
Network Flow Formulation

• Put

\[b_i = \begin{cases}
1 & i \neq r \\
-(m - 1) & i = r
\end{cases} \]

• Solve min-cost network flow problem.
• Shortest path from \(i \) to \(r \): follow tree arcs.
• Length (of time) of shortest path = \(y_r^* - y_i^* \).

Notation Used in Following Algorithms

• Put \(v_i \) = min. time from \(i \) to \(r \)
 – Called \textit{label} in networks literature.
 – Called \textit{value} in dynamic programming literature.
Label Correcting Algorithm
Dynamic Programming

• **Bellman's Equation = Principle of Dynamic Programming**

\[
v_r = 0
\]

\[
v_i = \min \{ c_{ij} + v_j : (i, j) \in \mathcal{A} \}
\]

\[
T = \{ (i, j) \in \mathcal{A} : v_i = c_{ij} + v_j \} \quad \text{– not necessarily a tree}
\]

• **Method of Successive Approximation**

 – **Initialize:** \(v_i^{(0)} = \begin{cases}
 0 & i = r \\
 \infty & i \neq r
 \end{cases} \)

 – **Iterate:** \(v_i^{(k+1)} = \begin{cases}
 0 & i = r \\
 \min \{ c_{ij} + v_j^{(k)} : (i, j) \in \mathcal{A} \} & i \neq r
 \end{cases} \)

 – **Stop:** when a pass leaves \(v_i \)'s unchanged.
Label Correcting Algorithm—Complexity

- $v_i^{(k)} =$ length of shortest path having k or fewer arcs.
- Requires at most $m - 1$ passes.
- n adds/compares per pass.
- mn operations in total.
Label Setting Algorithm
Dijkstra’s Algorithm

Notations:
• F = set of finished nodes (labels are set).
• $h_i, i \in \mathcal{N}$ = next node to visit after i (heading).

Dijkstra’s Algorithm:
• Initialize:

\[
F = \emptyset, \quad v_j = \begin{cases}
0 & j = r \\
\infty & j \neq r
\end{cases}
\]

• Iterate:
 – While unfinished nodes remain, select the one with smallest v_k. Call it j. Add it to set of finished nodes F.
 – For each unfinished node i having an arc connecting it to j:
 * If $c_{ij} + v_j < v_i$, then set
 \[
 v_i = c_{ij} + v_j \quad (4) \\
 h_i = j \quad (5)
 \]
Dijkstra’s Algorithm—Complexity

- Each iteration finishes one node: m iterations
- Work per iteration:
 - Selecting an unfinished node:
 * Naively, m comparisons.
 * Using appropriate data structures, a heap, $\log m$ comparisons.
 - Update adjacent arcs.
- Overall: $m \log m + n$.