Transportation Problem

Each node is one of two types:
- source (supply) node
- destination (demand) node

Every arc has:
- its tail at a supply node
- its head at a demand node

Such a graph is called *bipartite*.
Solving with Pivot Tool

Best to arrange:

- supply nodes vertically on left
- demand nodes horizontally across top

Note that arc data appears as a neat table.
Leaving arc: (a,b)
Entering arc: (i,h)
Etc., etc., etc.
Assignment Problem

Transportation problem in which

- There are an equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a complete bipartite graph).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate ($2n$ constraints but only n nonzero flows).
Shortest Paths Problem

Given:

- Network: \((\mathcal{N}, \mathcal{A})\)
- Costs = Travel Times: \(c_{ij}, (i, j) \in \mathcal{A}\)
- Home (root): \(r \in \mathcal{N}\)

Problem: Find shortest path from every node in \(\mathcal{N}\) to root.
Network Flow Formulation

• Put

\[b_i = \begin{cases}
1 & i \neq r \\
-(m - 1) & i = r
\end{cases} \]

• Solve min-cost network flow problem.
• Shortest path from \(i \) to \(r \): follow tree arcs.
• Length (of time) of shortest path = \(y_r^* - y_i^* \).

Notation Used in Following Algorithms

• Put \(v_i \) = min. time from \(i \) to \(r \)

 – Called label in networks literature.
 – Called value in dynamic programming literature.
• **Bellman’s Equation = Principle of Dynamic Programming**

\[
\begin{align*}
v_r &= 0 \\
v_i &= \min\{c_{ij} + v_j : (i, j) \in \mathcal{A}\} \\
T &= \{(i, j) \in \mathcal{A} : v_i = c_{ij} + v_j\} \quad \text{– not necessarily a tree}
\end{align*}
\]

• **Method of Successive Approximation**

 – Initialize: \(v_i^{(0)} = \begin{cases} 0 & i = r \\ \infty & i \neq r \end{cases}\)

 – Iterate: \(v_i^{(k+1)} = \begin{cases} 0 & i = r \\ \min\{c_{ij} + v_j^{(k)} : (i, j) \in \mathcal{A}\} & i \neq r \end{cases}\)

 – Stop: when a pass leaves \(v_i’s\) unchanged.
Label Correcting Algorithm—Complexity

\[v_i^{(k)} = \text{length of shortest path having } k \text{ or fewer arcs.} \]

- Requires at most \(m - 1 \) passes.
- \(n \) adds/compares per pass.
- \(mn \) operations in total.
Label Setting Algorithm

Dijkstra’s Algorithm

Notations:

- F = set of finished nodes (labels are set).
- $h_i, i \in \mathcal{N}$ = next node to visit after i (heading).

Dijkstra’s Algorithm:

- Initialize:

$$F = \emptyset, \quad v_j = \begin{cases} 0 & \text{if } j = r \\ \infty & \text{if } j \neq r \end{cases}$$

- Iterate:
 - While unfinished nodes remain, select the one with smallest v_k. Call it j. Add it to set of finished nodes F.
 - For each unfinished node i having an arc connecting it to j:
 * If $c_{ij} + v_j < v_i$, then set
 \begin{align*}
 v_i &= c_{ij} + v_j \quad \text{(4)} \\
 h_i &= j \quad \text{(5)}
 \end{align*}
Dijkstra’s Algorithm—Complexity

- Each iteration finishes one node: \(m \) iterations
- Work per iteration:
 - Selecting an unfinished node:
 * Naively, \(m \) comparisons.
 * Using appropriate data structures, a heap, \(\log m \) comparisons.
 - Update adjacent arcs.
- Overall: \(m \log m + n \).