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1. Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

• Convex Problems

– Minimal Surfaces

– Digital Audio Filters

• Nonconvex Problems

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem
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The Interior-Point Algorithm

http://www.princeton.edu/~rvdb
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2. Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

minimize f (x)
subject to hi(x) ≥ 0, i = 1, . . . ,m

• Introduce slack variables to make all inequality constraints into
nonnegativities:

minimize f (x)
subject to h(x)− w = 0,

w≥ 0

http://www.princeton.edu/~rvdb
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3. Associated Log-Barrier Problem

• Replace nonnegativity constraints with logarithmic barrier terms
in the objective:

minimize f (x)− µ
m∑

i=1

log(wi)

subject to h(x)− w = 0

http://www.princeton.edu/~rvdb


Home Page

Title Page

Contents

JJ II

J I

Page 6 of 33

Go Back

Full Screen

Close

Quit

4. First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using La-
grange multipliers:

L(x, w, y) = f (x)− µ

m∑
i=1

log(wi)− yT (h(x)− w)

• Set all derivatives to zero:

∇f (x)−∇h(x)Ty = 0

−µW−1e + y = 0

h(x)− w = 0

http://www.princeton.edu/~rvdb


Home Page

Title Page

Contents

JJ II

J I

Page 7 of 33

Go Back

Full Screen

Close

Quit

5. Symmetrize Complementarity Condi-
tions

• Rewrite system:

∇f (x)−∇h(x)Ty = 0

WY e = µe

h(x)− w = 0

http://www.princeton.edu/~rvdb
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6. Apply Newton’s Method

• Apply Newton’s method to compute search directions, ∆x, ∆w,
∆y:

 H(x, y) 0 −A(x)T

0 Y W
A(x) −I 0

 ∆x
∆w
∆y

 =

 −∇f (x) + A(x)Ty
µe−WY e
−h(x) + w

 .

Here,

H(x, y) = ∇2f (x)−
m∑

i=1

yi∇2hi(x)

and
A(x) = ∇h(x)

• Note: H(x, y) is positive semidefinite if f is convex, each hi is
concave, and each yi ≥ 0.

http://www.princeton.edu/~rvdb
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7. Reduced KKT System

• Use second equation to solve for ∆w. Result is the reduced
KKT system:

[
−H(x, y) AT (x)

A(x) WY −1

] [
∆x
∆y

]
=

[
∇f (x)− AT (x)y
−h(x) + µY −1e

]

• Iterate:
x(k+1) = x(k) + α(k)∆x(k)

w(k+1) = w(k) + α(k)∆w(k)

y(k+1) = y(k) + α(k)∆y(k)

http://www.princeton.edu/~rvdb
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8. Convex vs. Nonconvex Optimization
Probs

Nonlinear Programming (NLP)

minimize f (x)
subject to hi(x) = 0, i ∈ E ,

hi(x)≥ 0, i ∈ I.

NLP is convex if

• hi’s in equality constraints are affine;

• hi’s in inequality constraints are concave;

• f is convex;

NLP is smooth if

• All are twice continuously differentiable.

http://www.princeton.edu/~rvdb
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9. Modifications for Convex Optimiza-
tion

For convex nonquadratic optimization, it does not suffice to choose
the steplength α simply to maintain positivity of nonnegative vari-
ables.

• Consider, e.g., minimizing

f (x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.

http://www.princeton.edu/~rvdb
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10. Step-Length Control

A filter-type method is used to guide the choice of steplength α.
Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W−1Y A(x).

Theorem Suppose that N(x, y, w) is positive definite.

1. If current solution is primal infeasible, then (∆x, ∆w) is a de-
scent direction for the infeasibility ‖h(x)− w‖.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent
direction for the barrier function.

Shorten α until (∆x, ∆w) is a descent direction for either the infea-
sibility or the barrier function.

http://www.princeton.edu/~rvdb
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11. Nonconvex Optimization: Diagonal
Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail
to be positive definite.

• In such a case, we lose the descent properties given in previous
theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) =
H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent
direction for

1. the primal infeasibility, ‖h(x)− w‖;
2. the noncomplementarity, wTy.

http://www.princeton.edu/~rvdb
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12. Notes:

• Not necessarily a descent direction for dual infeasibility.

• A line search is performed to find a value of λ within a factor of
2 of the smallest permissible value.

http://www.princeton.edu/~rvdb
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13. Nonconvex Optimization: Jamming

Theorem If the problem is convex and and the current solution
is not optimal and ..., then for any slack variable, say wi, we have
wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small
they tend to get large again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for non-
convex problems, jamming really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a
very short step,

– then increase this slack variable to the average size of the
variables the “mainstream” slack variables.

• This modification corrects all examples of jamming that we know
about.

http://www.princeton.edu/~rvdb
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14. Modifications for General Problem
Formulations

• Bounds, ranges, and free variables are all treated implicitly as
described in Linear Programming: Foundations and Extensions
(LP:F&E).

• Net result is following reduced KKT system:[
−(H(x, y) + D) AT (x)

A(x) E

] [
∆x
∆y

]
=

[
Φ1
Φ2

]
• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is
provided, is described in the paper.

• Stopping rules, matrix reordering heuristics, etc. are as described
in LP:F&E.

http://www.princeton.edu/~rvdb
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Examples: Convex Optimization Models
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15. Minimal Surfaces

• Given: a domain D in R2 and an embedding x = (x1, x2, x3) of
its boundary ∂D in R3;

• Find: an embedding of the entire domain into R3 that is con-
sistent with the boundary embedding and has minimal surface
area:

minimize

∫∫
D

∥∥∥∥∂x

∂s
× ∂x

∂t

∥∥∥∥ dsdt

subject to x(s, t) fixed for (s, t) ∈ ∂D
x1(s, t) fixed for (s, t) ∈ D
x2(s, t) fixed for (s, t) ∈ D

The specific problems coded below take D to be either a square or
an annulus.

 

Page 1 of 1

6/6/2001http://www.princeton.edu/~rvdb/minsurf/helicoid.gif

 

Page 1 of 1

6/6/2001http://www.princeton.edu/~rvdb/minsurf/catenoid.gif

 

Page 1 of 1

6/6/2001http://www.princeton.edu/~rvdb/minsurf/scherk.gif

 

Page 1 of 1

6/6/2001http://www.princeton.edu/~rvdb/minsurf/twist.gif

http://www.princeton.edu/~rvdb
http://www.princeton.edu/~rvdb/minsurf/helicoid.wrl
http://www.princeton.edu/~rvdb/minsurf/catenoid.wrl
http://www.princeton.edu/~rvdb/minsurf/scherk.wrl
http://www.princeton.edu/~rvdb/minsurf/twist.wrl


Home Page

Title Page

Contents

JJ II

J I

Page 19 of 33

Go Back

Full Screen

Close

Quit

16. Specific Example

Scherk.mod with D discretized into a 64×64 grid gives the following
results:

constraints 0
variables 3844
time (secs)

loqo 5.1
lancelot 4.0
snopt *

http://www.princeton.edu/~rvdb
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17. Finite Impulse Response (FIR) Filter
Design

• Audio is stored digitally in a computer as a stream of short
integers: uk, k ∈ Z.

• When the music is played, these integers are used to drive the
displacement of the speaker from its resting position.

• For CD quality sound, 44100 short integers get played per second
per channel.

0 -32768
1 -32768
2 -32768
3 -30753
4 -28865
5 -29105
6 -29201
7 -26513

8 -23681
9 -18449

10 -11025
11 -6913
12 -4337
13 -1329
14 1743
15 6223

16 12111
17 17311
18 21311
19 23055
20 23519
21 25247
22 27535
23 29471

http://www.princeton.edu/~rvdb
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18. FIR Filter Design—Continued

• A finite impulse response (FIR) filter takes as input a digital
signal and convolves this signal with a finite set of fixed numbers
h−n, . . . , hn to produce a filtered output signal:

yk =

n∑
i=−n

hiuk−i.

• Sparing the details, the output power at frequency ν is given by

|H(ν)|

where

H(ν) =

n∑
k=−n

hke
2πikν,

• Similarly, the mean squared deviation from a flat frequency re-
sponse over a frequency range, say L ⊂ [0, 1], is given by

1

|L|

∫
L
|H(ν)− 1|2 dν

http://www.princeton.edu/~rvdb
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19. Filter Design: Woofer, Midrange,
Tweeter

minimize ρ

subject to

∫ 1

0

(
Hw(ν) + Hm(ν) + Ht(ν)− 1

)2
dν ≤ ε

(
1

|W |

∫
W

H2
w(ν)dν

)1/2

≤ ρ W = [.2, .8]

(
1

|M |

∫
M

H2
m(ν)dν

)1/2

≤ ρ M = [.4, .6] ∪ [.9, .1]

(
1

|T |

∫
T

H2
t (ν)dν

)1/2

≤ ρ T = [.7, .3]

where

Hi(ν) = hi(0) + 2
n−1∑
k=1

hi(k) cos(2πkν), i = W, M, T

hi(k) = filter coefficients, i.e., decision variables

http://www.princeton.edu/~rvdb
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20. Specific Example

filter length: n = 14

integral discretization: N = 1000

constraints 4
variables 43
time (secs)

loqo 79
minos 164
lancelot 3401
snopt 35

Ref: J.O. Coleman, U.S. Naval Research Laboratory,

CISS98 paper available: engr.umbc.edu/∼jeffc/pubs/abstracts/ciss98.html

Click here for demo

http://www.princeton.edu/~rvdb
http://engr.umbc.edu/~jeffc/pubs/abstracts/ciss98.html
http://www.princeton.edu/~rvdb/ampl/nlmodels/jeffc/index.html
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Examples: Nonconvex Optimization
Models
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21. Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t)− P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t)− xj(t))2 + (yi(t)− yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

http://www.princeton.edu/~rvdb
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22. Specific Example

Orbits.mod with n = 3 and (0, 2π) discretized into a 160 pieces
gives the following results:

constraints 0
variables 960
time (secs)

loqo 1.1
lancelot 8.7
snopt 287 (no change for last 80% of iterations)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

"after.out"

http://www.princeton.edu/~rvdb
http://www.princeton.edu/~rvdb/JAVA/astro/galaxy/Galaxy.html
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23. Putting on an Uneven Green

Given:

• z(x, y) elevation of the green.

• Starting position of the ball (x0, y0).

• Position of hole (xf , yf).

• Coefficient of friction µ.

Find: initial velocity vector so that ball will roll to the hole and arrive
with minimal speed.
Variables:

• u(t) = (x(t), y(t), z(t))—position as a function of time t.

• v(t) = (vx(t), vy(t), vz(t))—velocity.

• a(t) = (ax(t), ay(t), az(t))—acceleration.

• T—time at which ball arrives at hole.

http://www.princeton.edu/~rvdb
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24. Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:

x(T ) = xf and y(T ) = yf .

In this case, x(T ), y(T ), and the objective function are compli-
cated functions of the two variables that can only be computed
by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position,
velocity, and acceleration) can be taken as variables and the
physical laws encoded in the differential equation can be written
as constraints.

To implement the first approach, one would need an ode integrator
that provides, in addition to the quantities being sought, first and
possibly second derivatives of those quantities with respect to the
decision variables.
The modern trend is to follow the second approach.

http://www.princeton.edu/~rvdb
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25. Putting—Continued

Objective:
minimize vx(T )2 + vy(T )2.

Constraints:

v = u̇

a = v̇

ma = N + F −mgez

u(0) = u0 u(T ) = uf ,

where

• m is the mass of the golf ball.

• g is the acceleration due to gravity.

• ez is a unit vector in the positive z direction.

and ...

http://www.princeton.edu/~rvdb
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26. Putting—Continued

• N = (Nx, Ny, Nz) is the normal force:

Nz = m
g − ax(t)

∂z
∂x
− ay(t)

∂z
∂y

+ az(t)

(∂z
∂x

)2 + (∂z
∂y

)2 + 1

Nx = −∂z

∂x
Nz

Ny = −∂z

∂y
Nz.

• F is the force due to friction:

F = −µ‖N‖ v

‖v‖
.

http://www.princeton.edu/~rvdb
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27. Putting—Specific Example

• Discretize continuous time into n = 200 discrete time points.

• Use finite differences to approximate the derivatives.

constraints 597
variables 399
time (secs)

loqo 14.1
lancelot > 600.0
snopt 4.1

http://www.princeton.edu/~rvdb
http://www.princeton.edu/~rvdb/putt_atan.wrl
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28. Goddard Rocket Problem

Objective:
maximize h(T );

Constraints:

v = ḣ

a = v̇

θ = −cṁ

ma = (θ − σv2e−h/h0)− gm

0 ≤ θ ≤ θmax

m ≥ mmin

h(0) = 0 v(0) = 0 m(0) = 3

where

• θ = Thrust , m = mass

• θmax, g, σ, c, and h0 are given constants

• h, v, a, Th, and m are functions of time 0 ≤ t ≤ T .

http://www.princeton.edu/~rvdb
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29. Goddard Rocket Problem—Solution

constraints 399
variables 599
time (secs)

loqo 5.2
lancelot (IL)
snopt (IL)

http://www.princeton.edu/~rvdb
http://www.princeton.edu/~rvdb/goddard.html
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