Nonlinear Optimization: Algorithms and Models

Home Page

Title Page
Robert J. Vanderbei
Contents

Page 1 of 33
December 12, 2005

Go Back

Full Screen

Close

Operations Research and Financial Engineering, Princeton University

Outline

- Algorithm

Home Page

- Basic Paradigm
- Step-Length Control
- Diagonal Perturbation

Title Page

Contents

- Minimal Surfaces
- Digital Audio Filters

Page 2 of 33

- Nonconvex Problems
- Celestial Mechanics
- Putting on an Uneven Green
- Goddard Rocket Problem

Home Page

The Interior-Point Algorithm

Contents

Page 3 of 33

Go Back

Full Screen

Introduce Slack Variables

- Start with an optimization problem-for now, the simplest NLP:

$$
\begin{aligned}
& \operatorname{minimize} \quad f(x) \\
& \text { subject to } h_{i}(x) \geq 0, \quad i=1, \ldots, m
\end{aligned}
$$

Home Page

Title Page

Contents

- Introduce slack variables to make all inequality constraints into nonnegativities:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)-w=0, \\
w \geq 0
\end{array}
$$

Associated Log-Barrier Problem

- Replace nonnegativity constraints with logarithmic barrier terms in the objective:

$$
\begin{array}{ll}
\text { minimize } & f(x)-\mu \sum_{i=1}^{m} \log \left(w_{i}\right) \\
\text { subject to } & h(x)-w=0
\end{array}
$$

Contents

Page 5 of 33

Go Back

Full Screen

First-Order Optimality Conditions

- Incorporate the equality constraints into the objective using Lagrange multipliers:

$$
L(x, w, y)=f(x)-\mu \sum_{i=1}^{m} \log \left(w_{i}\right)-y^{T}(h(x)-w)
$$

Title Page

Contents

- Set all derivatives to zero:

$$
\begin{array}{r}
\nabla f(x)-\nabla h(x)^{T} y=0 \\
-\mu W^{-1} e+y=0 \\
h(x)-w=0
\end{array}
$$

Home Page

Page 6 of 33

Go Back

Full Screen

Symmetrize Complementarity Conditions

Home Page

Title Page

Contents

- Rewrite system:

$$
\begin{aligned}
\nabla f(x)-\nabla h(x)^{T} y & =0 \\
W Y e & =\mu e \\
h(x)-w & =0
\end{aligned}
$$

Apply Newton's Method

- Apply Newton's method to compute search directions, $\Delta x, \Delta w$, Δy :

Home Page

$$
\left[\begin{array}{ccc}
H(x, y) & 0 & -A(x)^{T} \\
0 & Y & W \\
A(x) & -I & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta w \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x)+A(x)^{T} y \\
\mu e-W Y e \\
-h(x)+w
\end{array}\right]
$$

Here,

$$
H(x, y)=\nabla^{2} f(x)-\sum_{i=1}^{m} y_{i} \nabla^{2} h_{i}(x)
$$

and

$$
A(x)=\nabla h(x)
$$

- Note: $H(x, y)$ is positive semidefinite if f is convex, each h_{i} is concave, and each $y_{i} \geq 0$.

Title Page

Page 8 of 33

Go Back

Full Screen
-

Reduced KKT System

- Use second equation to solve for Δw. Result is the reduced KKT system:

Home Page

Title Page

Contents

$$
\left[\begin{array}{cc}
-H(x, y) & A^{T}(x) \\
A(x) & W Y^{-1}
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)-A^{T}(x) y \\
-h(x)+\mu Y^{-1} e
\end{array}\right]
$$

Page 9 of 33

- Iterate:

$$
\begin{aligned}
x^{(k+1)} & =x^{(k)}+\alpha^{(k)} \Delta x^{(k)} \\
w^{(k+1)} & =w^{(k)}+\alpha^{(k)} \Delta w^{(k)} \\
y^{(k+1)} & =y^{(k)}+\alpha^{(k)} \Delta y^{(k)}
\end{aligned}
$$

Go Back

Full Screen

Convex vs. Nonconvex Optimization Probs

Nonlinear Programming (NLP)

Home Page

Title Page

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=0, \quad i \in \mathcal{E}, \\
& h_{i}(x) \geq 0, \quad i \in \mathcal{I} .
\end{array}
$$

NLP is convex if

- h_{i} 's in equality constraints are affine;

Contents

Page 10 of 33

- h_{i} 's in inequality constraints are concave;
- f is convex;

NLP is smooth if

- All are twice continuously differentiable.

Modifications for Convex Optimization

Home Page
For convex nonquadratic optimization, it does not suffice to choose
the steplength α simply to maintain positivity of nonnegative variables.

Title Page

Contents

- Consider, e.g., minimizing

$$
f(x)=\left(1+x^{2}\right)^{1 / 2} .
$$

- The iterates can be computed explicitly:

$$
x^{(k+1)}=-\left(x^{(k)}\right)^{3}
$$

- Converges if and only if $|x| \leq 1$.
- Reason: away from 0 , function is too linear.

Step-Length Control

Home Page
A filter-type method is used to guide the choice of steplength α. Define the dual normal matrix:

Title Page

$$
N(x, y, w)=H(x, y)+A^{T}(x) W^{-1} Y A(x)
$$

Contents
Theorem Suppose that $N(x, y, w)$ is positive definite.

1. If current solution is primal infeasible, then $(\Delta x, \Delta w)$ is a descent direction for the infeasibility $\|h(x)-w\|$.
2. If current solution is primal feasible, then $(\Delta x, \Delta w)$ is a descent direction for the barrier function.

Shorten α until $(\Delta x, \Delta w)$ is a descent direction for either the infeasibility or the barrier function.

Full Screen

Nonconvex Optimization: Diagonal Perturbation

- If $H(x, y)$ is not positive semidefinite then $N(x, y, w)$ might fail

Home Page to be positive definite.

- In such a case, we lose the descent properties given in previous theorem.
- To regain those properties, we perturb the Hessian: $\tilde{H}(x, y)=$ $H(x, y)+\lambda I$.
- And compute search directions using \tilde{H} instead of H.

Notation: let \tilde{N} denote the dual normal matrix associated with \tilde{H}.
Theorem If \tilde{N} is positive definite, then $(\Delta x, \Delta w, \Delta y)$ is a descent direction for

1. the primal infeasibility, $\|h(x)-w\|$;
2. the noncomplementarity, $w^{T} y$.

Notes:

Home Page

Title Page

- Not necessarily a descent direction for dual infeasibility.

Contents

- A line search is performed to find a value of λ within a factor of 2 of the smallest permissible value.

Page 14 of 33

Go Back

Nonconvex Optimization: Jamming

Theorem If the problem is convex and and the current solution is not optimal and ..., then for any slack variable, say w_{i}, we have $w_{i}=0$ implies $\Delta w_{i} \geq 0$.

- To paraphrase: for convex problems, as slack variables get small

Home Page

Title Page they tend to get large again. This is an antijamming theorem.

- A recent example of Wächter and Biegler shows that for nonconvex problems, jamming really can occur.
- Recent modification:
- if a slack variable gets small and
- its component of the step direction contributes to making a very short step,
- then increase this slack variable to the average size of the variables the "mainstream" slack variables.
- This modification corrects all examples of jamming that we know about.

Modifications for General Problem Formulations

- Bounds, ranges, and free variables are all treated implicitly as

> Home Page described in Linear Programming: Foundations and Extensions (LP:F\&E).

Title Page

- Net result is following reduced KKT system:

$$
\left[\begin{array}{cc}
-(H(x, y)+D) & A^{T}(x) \\
A(x) & E
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
\Phi_{1} \\
\Phi_{2}
\end{array}\right]
$$

- Here, D and E are positive definite diagonal matrices.
- Note that D helps reduce frequency of diagonal perturbation.
- Choice of barrier parameter μ and initial solution, if none is provided, is described in the paper.
- Stopping rules, matrix reordering heuristics, etc. are as described in LP:F\&E.

Home Page

Title Page

Examples: Convex Optimization Models

Contents

Page 17 of 33

Go Back

Full Screen

Minimal Surfaces

- Given: a domain D in R^{2} and an embedding $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ of its boundary ∂D in R^{3};
- Find: an embedding of the entire domain into R^{3} that is consistent with the boundary embedding and has minimal surface area:

$$
\begin{array}{ll}
\text { minimize } & \iint_{D}\left\|\frac{\partial \mathbf{x}}{\partial s} \times \frac{\partial \mathbf{x}}{\partial t}\right\| d s d t \\
\text { subject to } & \mathbf{x}(s, t) \text { fixed for }(s, t) \in \partial D \\
& x_{1}(s, t) \text { fixed for }(s, t) \in D \\
& x_{2}(s, t) \text { fixed for }(s, t) \in D
\end{array}
$$

The specific problems coded below take D to be either a square or an annulus.

Title Page

Contents

Page 18 of 33

Go Back

Full Screen

Specific Example

Home Page

Title Page
Scherk.mod with D discretized into a 64×64 grid gives the following
Contents results:

constraints	0
variables	3844
time (secs)	
\quad LOQO	5.1
LANCELOT	4.0
SNOPT	$*$

Page 19 of 33

Go Back

Full Screen

Finite Impulse Response (FIR) Filter

 Design- Audio is stored digitally in a computer as a stream of short integers: $u_{k}, k \in \mathbb{Z}$.
- When the music is played, these integers are used to drive the displacement of the speaker from its resting position.
- For CD quality sound, 44100 short integers get played per second per channel.

Contents

Page 20 of 33

Go Back

Full Screen

FIR Filter Design-Continued

- A finite impulse response (FIR) filter takes as input a digital signal and convolves this signal with a finite set of fixed numbers h_{-n}, \ldots, h_{n} to produce a filtered output signal:

$$
y_{k}=\sum_{i=-n}^{n} h_{i} u_{k-i} .
$$

- Sparing the details, the output power at frequency ν is given by

$$
|H(\nu)|
$$

where

$$
H(\nu)=\sum_{k=-n}^{n} h_{k} e^{2 \pi i k \nu}
$$

Page 21 of 33

Go Back

- Similarly, the mean squared deviation from a flat frequency response over a frequency range, say $\mathcal{L} \subset[0,1]$, is given by

$$
\frac{1}{|\mathcal{L}|} \int_{\mathcal{L}}|H(\nu)-1|^{2} d \nu
$$

Filter Design: Woofer, Midrange, Tweeter

minimize $\quad \rho$
Home Page

Title Page
subject to $\int_{0}^{1}\left(H_{w}(\nu)+H_{m}(\nu)+H_{t}(\nu)-1\right)^{2} d \nu \leq \epsilon$

$$
\begin{array}{ll}
\left(\frac{1}{|W|} \int_{W} H_{w}^{2}(\nu) d \nu\right)^{1 / 2} \leq \rho & W=[.2, .8] \\
\left(\frac{1}{|M|} \int_{M} H_{m}^{2}(\nu) d \nu\right)^{1 / 2} \leq \rho & M=[.4, .6] \cup[.9, .1] \\
\left(\frac{1}{|T|} \int_{T} H_{t}^{2}(\nu) d \nu\right)^{1 / 2} \leq \rho & T=[.7, .3]
\end{array}
$$

Contents

Page 22 of 33

Go Back

$$
\begin{aligned}
H_{i}(\nu) & =h_{i}(0)+2 \sum_{k=1}^{n-1} h_{i}(k) \cos (2 \pi k \nu), \quad i=W, M, T \\
h_{i}(k) & =\text { filter coefficients, i.e., decision variables }
\end{aligned}
$$

Specific Example

Home Page
filter length: $n=14$ integral discretization: $N=1000$

constraints	4
variables	43
time (secs)	
\quad LOQO	79
MINOS	164
LANCELOT	3401
SNOPT	35

Contents

Page 23 of 33

Go Back

CISS98 paper available: engr.umbc.edu/~jeffc/pubs/abstracts/ciss98.html Click here for demo

Home Page

Title Page

Examples: Nonconvex Optimization Models

Contents

Page 24 of 33

Go Back

Full Screen

Celestial Mechanics-Periodic Orbits

- Find periodic orbits for the planar gravitational n-body problem.
- Minimize action:

$$
\int_{0}^{2 \pi}(K(t)-P(t)) d t
$$

- where $K(t)$ is kinetic energy,

$$
K(t)=\frac{1}{2} \sum_{i}\left(\dot{x}_{i}^{2}(t)+\dot{y}_{i}^{2}(t)\right),
$$

- and $P(t)$ is potential energy,

$$
P(t)=-\sum_{i<j} \frac{1}{\sqrt{\left(x_{i}(t)-x_{j}(t)\right)^{2}+\left(y_{i}(t)-y_{j}(t)\right)^{2}}} .
$$

- Subject to periodicity constraints:

$$
x_{i}(2 \pi)=x_{i}(0), \quad y_{i}(2 \pi)=y_{i}(0) .
$$

Specific Example

Orbits.mod with $n=3$ and ($0,2 \pi$) discretized into a 160 pieces gives the following results:

| constraints | 0 |
| :--- | ---: | :--- |
| variables | |$\quad 960$

Title Page

Contents

Page 26 of 33

Full Screen

Close

Putting on an Uneven Green

Given:

- $z(x, y)$ elevation of the green.
- Starting position of the ball $\left(x_{0}, y_{0}\right)$.
- Position of hole $\left(x_{f}, y_{f}\right)$.
- Coefficient of friction μ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

- $u(t)=(x(t), y(t), z(t))$-position as a function of time t.
- $v(t)=\left(v_{x}(t), v_{y}(t), v_{z}(t)\right)$-velocity.
- $a(t)=\left(a_{x}(t), a_{y}(t), a_{z}(t)\right)$-acceleration.
- T-time at which ball arrives at hole.

Putting-Two Approaches

- Problem can be formulated with two decision variables:

$$
v_{x}(0) \quad \text { and } \quad v_{y}(0)
$$

Home Page
and two constraints:

$$
x(T)=x_{f} \quad \text { and } \quad y(T)=y_{f} .
$$

In this case, $x(T), y(T)$, and the objective function are complicated functions of the two variables that can only be computed by integrating the appropriate differential equation.

- A discretization of the complete trajectory (including position, velocity, and acceleration) can be taken as variables and the physical laws encoded in the differential equation can be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition to the quantities being sought, first and possibly second derivatives of those quantities with respect to the decision variables.
The modern trend is to follow the second approach.

Putting-Continued

Objective:

$$
\text { minimize } v_{x}(T)^{2}+v_{y}(T)^{2}
$$

Constraints:

$$
\begin{aligned}
v & =\dot{u} \\
a & =\dot{v} \\
m a & =N+F-m g e_{z} \\
u(0) & =u_{0} \quad u(T)=u_{f},
\end{aligned}
$$

where
Page 29 of 33

- m is the mass of the golf ball.

Go Back

Full Screen

- e_{z} is a unit vector in the positive z direction. and ...
- g is the acceleration due to gravity.

Putting-Continued

- $N=\left(N_{x}, N_{y}, N_{z}\right)$ is the normal force:

$$
\begin{aligned}
& N_{z}=m \frac{g-a_{x}(t) \frac{\partial z}{\partial x}-a_{y}(t) \frac{\partial z}{\partial y}+a_{z}(t)}{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} \\
& N_{x}=-\frac{\partial z}{\partial x} N_{z} \\
& N_{y}=-\frac{\partial z}{\partial y} N_{z} .
\end{aligned}
$$

Title Page

Contents

Page 30 of 33

- F is the force due to friction:

$$
F=-\mu\|N\| \frac{v}{\|v\|}
$$

Putting--Specific Example

- Discretize continuous time into $n=200$ discrete time points.
- Use finite differences to approximate the derivatives.

Home Page

Title Page

Contents

constraints	597
variables	399
time $($ secs $)$	
LOQO	14.1
LANCELOT	>600.0
SNOPT	4.1

Page 31 of 33

Go Back

Full Screen

Goddard Rocket Problem

Objective:

$$
\text { maximize } h(T) \text {; }
$$

Constraints:

$$
\begin{aligned}
v & =\dot{h} \\
a & =\dot{v} \\
\theta & =-c \dot{m} \\
m a & =\left(\theta-\sigma v^{2} e^{-h / h_{0}}\right)-g m \\
0 & \leq \theta \leq \theta_{\max } \\
m & \geq m_{\min } \\
h(0) & =0 \quad v(0)=0 \quad m(0)=3
\end{aligned}
$$

Title Page

Contents

Page 32 of 33
where
Go Back

- $\theta=$ Thrust, $m=$ mass
- $\theta_{\max }, g, \sigma, c$, and h_{0} are given constants
- h, v, a, T_{h}, and m are functions of time $0 \leq t \leq T$.

Goddard Rocket Problem-Solution

constraints	399
variables	599
time $($ secs $)$	
LOQO	5.2
LANCELOT	$(I L)$
SNOPT	$(I L)$

Page 33 of 33

Go Back

