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THE OPTIMAL CHOICE OF A SUBSET OF A
POPULATION*
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We check a ranked population in random order. At each step we either accept or reject the
observed sample. As a result we get a partition of the population into two parts: accepted and
rejected. We are interested only in the case when all accepted samples are better than all
rejected. Under this condition, we maximize the probability to obtain a fixed size k& of the
accepted part. An arbitrary gain function (k) is also considered.

1. Introduction. There is extensive literature on the problem of optimal choice. In
the simplest case, known as the secretary problem, the object is to choose one
appropriate sample from a population of n, e.g., select the best [3], one of the few best
(5], or maximize the expected rank [5]. We shall investigate the problem of choosing
not just one sample but a subset of the population. We are only interested in subsets
D with the property that each element of D is better than all elements of the rest of
the population. We will call these excellent sets. We observe sequentially samples from
the population and decide to accept or reject each sample as we go. After sampling
the entire population we receive a pay-off depending on the excellent set obtained (the
pay-off is zero for nonexcellent sets). As a special case we consider in §4 the problem
of selecting the best k of a population of n = 2k with maximal probability. In this case
we describe explicitly the optimal strategy and we prove that the corresponding
probability of success is 1/(k + 1). We do not have an explicit solution if n #* 2k.
However, we get certain asymptotic results as n—>cc for fixed & and also as
k> oc,n—> oo in such a way that 2k — n)/Yn remains finite. In the latter case we get
as a limit a diffusion process with a constant diffusion and variable drift.

Some results identical to ours are contained in a technical report [4] which appeared
after this paper had been submitted for publication. In particular, a simple induction
proof is given for equation (4.2). The problem of optimal selection of the two best
samples has been considered earlier in [6).

Clearly a strategy will produce an excellent subset if and only if it satisfies the
following condition: if a sample is better (worse) than some previously accepted
(rejected) then accept (reject) it. Such strategies will be called admissible. This
condition tells how to handle all samples except ones which are worse than any
previously accepted but better than all rejected. We will call these marginal samples.
An admissible strategy is determined by indicating what to do with marginal samples.

Suppose at time ¢ (i.e., after # samples have been observed and decided on) we
observe sample number 7 + 1 and it is marginal. We must decide either to accept or
reject it based on the information we have at this time. Namely, the relative ranks of
the samples already checked and which ones were accepted. However, not all this
information is needed for our problem. It is sufficient to know only the number
accepted or the number rejected. For symmetry, we prefer to introduce the difference
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and to describe the state X, at time / as the number of accepted minus the number of
rejected samples. In this way we get a sequence X, =0, X, X,. .. ., X, where X, -
X, 1s equal to 1 if we accept and — 1 if we reject sample number ¢ + 1. If this sample is
not marginal our action is determined by the admissibility condition. This gives
certain probabilities. p,(x) and g¢,(x), of transition from x to x+ 1 and x —|
respectively at each time /. A marginal sample can be treated as we like and a given
decision increases one or both of these probabilities.

2. Controlled Markov Chain. We assume that all n! possible orders in which we
check our population have equal probability. This implies that all relative rankings of
the first / + 1 samples are equally likely. To be at state x at time 7 means that we have
accepted 1(r+ x), hence, sample number 7 + 1 will be better than a previously
accepted sample with probability {(r + x)/(¢ + 1) which gives us p,(x). Analogously,
g(x)=3(t — x)/(t + 1). The difference

=1~ P,(X) - ql(x) = 1/(’ + 1)

does not depend on x. This amount of probability can be allocated to p,(x) and g,(x)
by our own choice. In this way X, is a controlled Markov chain with transition
probabilities

P {X, . =x+1X,=x)=p(x)+ y,(x)r,
P {Xt+l =x -1 lX’=X} =qt(x)+(] - Yt(x))rt

where v,(x), 0 < y,(x) < |, represents our strategy at state x and time ¢.
An excellent set obtained at the end is uniquely determined by X,, and our
objective is to maximize the mathematical expectation of ¢(X,) for a given pay-off

function . We put
F(x)=supE] @(X,)
Y

where E  is the mathematical expectation if we start at time 7 in state x and use the
strategy y. According to the general theory of dynamic programming [1],

F(x)=p()F, (x + 1)+ g ()F, (x — D)+ r,[E+,(x +DVF o (x - 1)]
2.hH
with
F(x) = @(x).
3. Optimal strategy. In this section we derive the general form of the optimal
strategy for arbitrary ¢. Since X, = 0, the process visits even (odd) states at even (odd)

times. Thus at time 7, X, € £, = {x :|x| < r, x + r is even} and it suffices to define ¢
only on E,. If we let

{X = E1 :F/+1(X + ]) > FH—I(x - 1)}’
{

A
R, xEE F (x+1)<F,(x—1)}

and
C=(x€E F(x+1)=F(x- 1)}

then by (2.1) the optimal strategy acquires the following simple form.

Optimal strategy. 1f sample number ¢ + 1 is marginal then accept (reject, or do
either to) it if X, € A4,(R,. C,. respectively). Now we establish some relations between
At’ Rr’ Cr and Al+l’ Rl+ { C

t+ 1
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LemMa 3.1. If x+ 1 and x—1 are in A,,, (R,,,C,,,) then x € A, (R,,C,,
respectively).

ProoF. Let A be the symmetric difference operator (Au(x)= u(x +1)—
u{x —1)). Suppose x+ 1,x — 1€ 4,,,. Then AF, ,(x+1)>0 and AF, ,(x — 1)
> 0. It follows from (2.1) that F,_ [ (x + D> F,,,(x)> F,, (x — 1) and so x € 4,.
The proof is the same for R, and C,.

Lemma 32, If x+1€C,,, and x— 1€ A4, (R, ) then x € A(R). The same
result holds when x + 1 and x — 1 are interchanged.

Proor. It suffices to consider the case where x+1€ C,,, and x— 1€ 4,,,.
Then we have F, (x + 1) = F, ,(x)> F,, (x — 1) and so x € 4,.

REMARK. Lemmas 3.1 and 3.2 give an inductive procedure for determining 4,, R,
and C, given A4,,,, R,,, and C,,, except at points x € E, for which x +1
€A4,,(R,)and x—-1€ R, ,(4,,), i.e., points where F, , has a local minimum
(maximum, resp.). Hence, if ¢ has say N critical points then the strategy at time ¢ is
determined by the strategy at time 7 + 1 except at N points (or less).

4. Selection of the best half. Now consider the problem of selecting the best half
from a population of n.

THEOREM 4.1.  For the problem of selecting exactly the best half, an admissible
strategy is optimal if and only if marginal samples are accepted (rejected) when the total
number of samples accepted so far is less ( greater) than the number rejected. The optimal
probability of success is 1/(k + 1), where k = n/2.

Proor. For this problem ¢(x) is one at x =0 and zero elsewhere. Hence 4, _,
={~1}, R,_,={1}and C,_,= {x:lx| > 1}. By Lemma 3.1 we see that {x € E,:
|x| > n— 1t} CC,. Since p(—x) = @(x) and p,(— x) = g,(x), it follows that F,(— x)
= F,(x). In particular, for ¢ even F, _,(—1) = F, (1) which implies that 0 € C,. From
Lemmas 3.1 and 3.2 we see that 4, = {x € E,: x>0}, R,={x€ E,: x>0} and

=(XxE€EE 1 x=0U{xEE |x|>n—1)}.

To solve (2.1) first change the independent variables to the number rejected,
r = 1(¢ — x), and the number accepted, ¢ = 1 (¢ + x). Then we have

(a+r+ DF(r,a)y=rF(r+ La)y+aF(r,a+ Y+ F(r+ L,a) vV E(r,a+1). (41)

Now letting w(r,a) = F(r,a)/a(a + 1) ... (r + a) we transform (4.1) into a difference
equation. Solving it we express w(r, a) in terms of w(r + 1, m), m > a. Then we show
by induction that

F(r.r)=

2r+1 ) S r(2k—2r~1)
a
k+1 (ka)Z:l’ k—r—1{

where a; = | and a; is defined recursively by

-1
411’ =3 a’

2—m=2 ! )_(21—m——1)} ,
mf:;m{(l—m—l)(2+r+l—] I —m ) > 1.
For r = 0, we have a’ = 1. Hence the probability of success using an optimal strategy
1s

F(0,0) = 1/(k + 1).

Letting y* denote the optimal strategy we can express the above result in terms of the
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controlled Markov chain X, as
PI(X,=0)=2/(n+2).
In fact, a simple modification of the above calculation gives us

{ n+1

P&‘O(X,, — 9= | 4 (n+2+1xn+x)’ x#0, 42)
i n i 27 x=0,
for even n. Using this we can show that for any 8 < |
lim sup Py o X, €[ —anf.an’]) = 0. (4.3

5. Selection of the k best out of n. In this section we consider the problem of
selecting the excellent set containing exactly 4 elements. We will call this the (k, n)
problem. The (k, n) and (n — k, n) problems are dual in the sense that by interchang-
ing our notions of accept/reject and better /worse we see that these two problems are

interchanged. As in §4. denote the number of samples previously accepted by ¢ and
those rejected by r.

THEOREM 5.1.  There exists a partition of {0, 1, ..., n — 1} into two disjoint sets
T={1t,<t;<- <t} and S={50<s, < -+ <5, ,_} which determine an
optimal strategy as follows: accept a marginal sample if and only if t > 1; that is, if and
only if the number sampled so far is greater than t,, where a is the number accepted so
far. An equivalent formulation is: reject a marginal sample if and only if t > s,. For the
dual problem, S and T are interchanged.

ProOE. First note that for « > k or r > n — k there is no chance for success. Also.
for a = k the optimal strategy is to reject marginal samples. Similarly, for r = n — &
the optimal strategy is to accept marginal samples. Hence it suffices to specify the
strategy only for (r,a) in the rectangle 0 < ¢ < k,0 < r < 1~ k. If there are any
points (r,a) in this rectangle which are in C,, assign them either to the acceptance
region 4 or the rejection region R. By Lemmas 3.1 and 3.2, if (r,a) € R then (r — |, a)
and (r,a + 1) are in R. Also for (r.a) € 4, (r + 1,a) and (r,a — 1) are in 4. Let r*(a)
be the smallest value of r for which (r,a) € 4 (set r*(a) equal to n — k if there are no
such r’s). Clearly, 0 < r*(O) < r*() < -+ - < ¥k — 1)< n— k. Now if we let ¢,
= r*(a) + a then T = {t,} determines the optimal strategy stated in the theorem.

Let a*(r) be the smallest value of a for which (r, @) € R (set a*(r) equal to k if there
are no such a’s). Then S = {a*(r) + r:0 < r < n — k} gives the alternate form of the
optimal strategy. Suppose that 7, = s, for some a. r, then

r*ay+a=a*(ry+r. (5.1)

If a* > a then by the definition of a*. (a,r) € A. However, by (5.1) r* > r and so by
the definition of r*, (a,r) € R. This contradiction forces us to consider ¢* < a but
similar arguments again lead to a contradiction. Hence S and T are disjoint.

Now we investigate the (k. n) problem for a fixed k as » tends to infinity. We prove
that the limits 7(k) = lim ¢, _(k,n)/n, o(k) = lim¢, _,(k,n)/n and p, = hm p, , exist
for ali k. [t is known [4] that p, = ¢ "' and 7(1) = ¢ ~'. We will show that (k) = ¢~ /*
and

|- 2k ‘) (k) = 7(Kk)loga (k) — o (k). (5.2)

Ck(k -1
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In particular, 6(2) ~0.2291 and p, = 210 — ¢* ~0.2254.
A simple calculation shows that

((:)) and F(n—k,a)= g—"i—) .

F(r.k)= —
(k) ®
From F(r, k) we find that for k < n/2

(n—ke '+ k-Q2-e V< <(n—ke V*+k

(for k > n/2,1,_, = n— 1). Taking limits we get 7(k) = e~ /%,

Let £, (x) be the limit of F; ,(r,a) as r and n tend to infinity in such a way that r/n
tends to x. We replace the system of difference equations (4.1) with a system of
differential equations in two different ways. These give upper and lower bounds on
F(r,a) and passing to the limit we get

a(fo(%) ~ farr (X)) for fo(x) > fasr(x) (53)
(@ + D(L(xX) — fosr(x))  for f,(x) < fois(%)

with f(x)=x* and f,(1)=0 for a < k. Then 7 and ¢ are the solutions of the
equations f, _ (1) = f,(7) and f, _ (o) = f; _ (0). respectively. Also p, = f(0). Equation
(5.2), p;, and p, now follow by solving (5.3) fora =k — 1 and k — 2.

It is interesting to compare these results to those obtained by Gusein-Zade [5] for
the problem of selecting one of the k best out of #. In this case there exists a sequence
I <7 <7, < -+ <7 < n which determines the optimal strategy as follows: accept
the first sample for which ¢ > =, , where x, is the rank of sample number ¢ among
those preceding it. The asymptotic results for this problem are:

X (x) =

Je" fork =1,

_ 1/tk=1y
l(%) fork > 1.

o=1lim,, m(2,n)/n=~0.347 is the solution of the equation 1 —log ¢ = 0 — logg,
pr=e ', and p, =20 — 0* =~ 0.574.

Consider the following suboptimal strategy: reject the first m samples and after that
accept all marginal samples. The probability of success p™ is given by

A G VTS

which is maximized by taking m =[(n + 1)/(k + 1)] ([x] stands for the greatest
integer less than x). From this we find that

anaxo m(k.n)/n=

L1 (1 1 )k~ 1 1
P2 ¥ k+1) T e k+1-
6. Diffusion equation. In §2 we introduced a controlled Markov chain X,. Now
let

7= —x

\/;l- n»
us?(x, 1) = EY @(&")

where y is any admissible strategy and ¢ is a bounded, piecewise continuous, inte-
grable function. Then according to the general theory [2], u(x, ) =lim uy(")(x, )]

t=0,1/n2/n,...,1,

n—»oQ
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exists and 1s the solution to
X
w~u,=—2‘;um.+«[—u‘. 0<r<i, (6.1

with u(x, 1) = @(x). The transition function p(x,?;-,s) corresponding to (6.1) is
Gaussian with mean xs/¢ and variance s(1 — 7)/r. Taking ¢ to be the indicator
function for the interval | — a, a] we get

4

u(x, 1)< a -

BT

(6.2)

Using (6.2) it is easy to get (4.3) for = 1.
I would like to thank E. B. Dynkin for suggesting this problem.
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