Sébastien Bubeck – Publications by Topics
Lecture Notes, Survey, PhD Thesis
S. Bubeck, Theory of Convex Optimization for Machine Learning. Submitted, 2014. [pdf]
S. Bubeck, The complexities of optimization. Lecture notes, 2013. Available on my blog.
S. Bubeck and N. CesaBianchi, Regret Analysis of Stochastic and Nonstochastic Multiarmed Bandit Problems. In Foundations and Trends in Machine Learning, Vol 5: No 1, 1122, 2012. [pdf]
S. Bubeck, Introduction to Online Optimization. Lecture Notes, 2011. [draft]
S. Bubeck, Bandits Games and Clustering Foundations. PhD dissertation, Université Lille 1, 2010 (Jacques Neveu prize 2010, runnerup for the french AI prize 2011, runnerup for the Gilles Kahn prize 2010). [pdf] [slides of the defense] [slides of my jobtalk] [slides for the Gilles Kahn prize]
Combinatorial statistics/analysis of networks
L. AddarioBerry, S. Bhamidi, S. Bubeck, L. Devroye, G. Lugosi, and R. Imbuzeiro Oliveira, Exceptional rotations of random graphs: a VC theory. Submitted, 2015. [arxiv]
S. Bubeck, J. Ding, R. Eldan and M. Racz, Testing for highdimensional geometry in random graphs. Submitted, 2014. [draft]
S. Bubeck, L. Devroye and G. Lugosi, Finding Adam in random growing trees. Submitted, 2014. [draft]
S. Bubeck, R. Eldan, E. Mossel and M. Racz, From trees to seeds: on the inference of the seed from large trees in the uniform attachment model. Submitted, 2014. [draft]
S. Bubeck, E. Mossel and M. Racz, On the influence of the seed graph in the preferential attachment model. IEEE Transactions on Network Science and Engineering 1, 3039, 2015. [arxiv]
E. AriasCastro, S. Bubeck and G. Lugosi, Detecting Positive Correlations in a Multivariate Sample. Bernoulli 21, 209241, 2015. [draft]
E. AriasCastro, S. Bubeck and G. Lugosi, Detection of correlations. Annals of Statistics 40, 412435, 2012. [pdf]
Combinatorics
Convex optimization
S. Bubeck and R. Eldan, Bandit Convex Optimization: sqrt{T} Regret in Any Dimension. Draft, 2015. [draft]
S. Bubeck, Y.T. Lee, and M. Singh, A geometric alternative to Nesterov's accelerated gradient descent. Draft, 2015. [draft]
S. Bubeck, J. Lehec, and R. Eldan, Sampling from a logconcave distribution with Projected Langevin Monte Carlo. Draft, 2015. [draft]
S. Bubeck, O. Dekel, T. Koren and Y. Peres, Bandit Convex Optimization: sqrt{T} Regret in One Dimension. COLT 2015. [arxiv]
S. Bubeck and R. Eldan, The entropic barrier: a simple and optimal universal selfconcordant barrier. COLT 2015. [arxiv]
Multiarmed bandit
S. Bubeck and C.Y. Liu, Priorfree and priordependent regret bounds for Thompson Sampling . NIPS 2013. [pdf] [Supp. material]
S. Bubeck, V. Perchet and P. Rigollet, Bounded regret in stochastic multiarmed bandits. COLT 2013. [pdf] [Video]
(Note: The proof of Theorem 8 is not correct. We do not know if the theorem holds true.)
S. Bubeck, N. CesaBianchi and G. Lugosi, Bandits with heavy tail. IEEE Transactions on Information Theory 59, 77117717, 2013. [pdf]
S. Bubeck and A. Slivkins, The best of both worlds: stochastic and adversarial bandits. COLT 2012. [pdf]
J.Y. Audibert and S. Bubeck, Regret Bounds and Minimax Policies under Partial Monitoring. Journal of Machine Learning Research (JMLR) 11, 26352686, 2010. [pdf]
J.Y. Audibert and S. Bubeck, Minimax Policies for Adversarial and Stochastic Bandits. In Proceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009 (Best Student Paper Award). [pdf] [slides]
Linear bandit, Continuouslyarmed bandit
J.Y. Audibert, S. Bubeck and G. Lugosi, Regret in Online Combinatorial Optimization. Mathematics of Operations Research, 39, 3145, 2014. [pdf]
S. Bubeck, N. CesaBianchi and S. M. Kakade, Towards Minimax Policies for Online Linear Optimization with Bandit Feedback. COLT 2012. [pdf] [slides] [Video]
S. Bubeck, G. Stoltz and J. Y. Yu, Lipschitz Bandits without the Lipschitz Constant. In Proceedings of the 22nd International Conference on Algorithmic Learning Theory (ALT), 2011. [pdf]
J.Y. Audibert, S. Bubeck and G. Lugosi, Minimax Policies for Combinatorial Prediction Games. COLT 2011. [pdf] [slides] [Video]
S. Bubeck, R. Munos, G. Stoltz and C. Szepesvari, XArmed Bandits. Journal of Machine Learning Research (JMLR) 12, 15871627, 2011. [pdf] [slides] [Video]
S. Bubeck and R. Munos, OpenLoop Optimistic Planning. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010. [pdf] [slides]
S. Bubeck, R. Munos, G. Stoltz and C. Szepesvari, Online Optimization in XArmed Bandits. In Advances in Neural Information Processing Systems (NIPS) 22, 2009. [pdf] [Supp. material] [poster]
Stochastic optimization
C.Y. Liu and S. Bubeck, Most Correlated Arms Identification. COLT 2014. [draft]
K. Jamieson, M. Malloy, S. Bubeck and R. Nowak, lil’ UCB: An Optimal Exploration Algorithm for MultiArmed Bandits. COLT 2014. [draft]
K. Jamieson, M. Malloy, S. Bubeck and R. Nowak, On Finding the Largest Mean Among Many. Asilomar, 2013. [draft]
S. Bubeck, D. Ernst and A. Garivier, Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality. Journal of Machine Learning Research (JMLR), 14, 601623, 2013. [pdf]
S. Bubeck, T. Wang and N. Viswanathan, Multiple Identifications in MultiArmed Bandits. ICML 2013. [pdf]
S. Bubeck, D. Ernst and A. Garivier, Optimal discovery with probabilistic expert advice. 51st IEEE Conference on Decision and Control (CDC), 2012. [pdf] [Extended version]
V. Gabillon. M. Ghavamzadeh, A. Lazaric and S. Bubeck, MultiBandit Best Arm Identification. NIPS 2011. [pdf] [Tech. reportl]
J.Y. Audibert, S. Bubeck and R. Munos, Best Arm Identification in MultiArmed Bandits. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010. [pdf] [slides]
J.Y. Audibert, S. Bubeck and R. Munos, Bandit View on Noisy Optimization. Chapter to appear in the book Optimization for Machine Learning, MIT press, 2010. [pdf]
S. Bubeck, R. Munos and G. Stoltz, Pure Exploration in FinitelyArmed and ContinuouslyArmed Bandits. Theoretical Computer Science 412, 18321852, 2011. [pdf]
S. Bubeck, R. Munos and G. Stoltz, Pure Exploration in MultiArmed Bandit Problems. In Proceedings of the 20th International Conference on Algorithmic Learning Theory (ALT), 2009. [pdf] [slides]
Clustering
S. Bubeck, M. Meila and U. von Luxburg, How the Initialization Affects the Stability of the kmeans Algorithm. ESAIM: Probability and Statistics 16, 436452, 2012. [pdf]
S. Bubeck and U. von Luxburg, Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions. Journal of Machine Learning Research (JMLR) 10, 657698, 2009. [pdf]
U. von Luxburg, S. Bubeck, S. Jegelka and M. Kaufmann, Consistent Minimization of Clustering Objective Functions. In Advances in Neural Information Processing Systems (NIPS) 21, 2008. [pdf] [Supp. material] [poster]
