Sharad Malik @) °
Princeton University . :
DAC 2023 T
HEH

July 11, 2023

This work was supported in part by the Applications Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored by
SRC and DARPA; by the DARPA POSH and SSITH programs; and by NSF XPS Grant No. 1628926. ;

ILA Verification Team + Collaborators

il

Sharad Malik Aarti Gupta Pramod Subramanyan Bo-Yuan Huang Jason Fung

:\.\ \

Hongce Zhang

Huaixi Lu

|

Yakir Vizel Weikun Yang Grigory Fedyukovich Caroline Trippel Yatin A. Manerkar

Hardware-Software Interface

G. M. Amdahl
G. A. Blaauw
F. P. Brooks, Jr.,

Architecture of the IBM System/360

Abstract: The architecture* of the newly announced IBM System/360 features four innovations:

. An approach to storage which permits and exploits very large capacities, hierarchies wf speeds, read-

cnly storage for microprogram contrel, flexible storage p.

and simple prog

2. An input/output system offering new degrees of concurrent operation, compatible channel operation,

data rates app! hing 5,000,000 ch /second, i i design of hard and soff , a new
' t, Itiple-ch I p ge sharing main-frame hardware, new provisions for device status infor-
mation, and a standard ch | interface k central p ing unit and input/output devices.

3. Atruly g I-purg hine or offering new supervisory facilities, powerful logical pro-

cessing operations, and a wide variety of data formats.

M bl

4, Strict up d and d

formance range factor of 50.

y over a line of six models having a per-

This paper discusses in detail the objectives of the design and the rationale for the main features of the
architecture. Emphasis is given to the problems raised by the need for com puﬁbﬂlﬁy among central process-

mg units of various size and by the

h

of ial, ifi I-time, and logical in-

i ing. A tabular y of the

Introduction

The design philosophies of the new g I-purpose ma-
chine organization for the IBM System/360 are discussed

is shown in the Appendiws‘

The section that follows describes the objectives of
the new syslem design, i.e., that it serve as a base for new

in this paper.t In addition to showing the
of the new family of data processing systems, we point out
the various engineering problems encountered in attempts
to make the system design compatible, at the program bit
level, for large and small models. The compatibility was
to extend not only to models of any size but also to their
various applications—scientific, commercial, real-time, and
SO on.
“The term architecture is used here to describe the attributes of a
system as seen by the programmer, ie., the conceptual structure and

functional behavior, as distinct from the organization of the data flow
and controls, the logical design, and the physical implementation,

and lications, that it be g 1-purpose,
efficient, and strictly program compatible in all models.
The remainder of the paper is devoted to the design
problems faced, the alternatives considered, and the deci-
sions made for data format, data and instruction codes,
storage assignments, and input/output controls.

Design objectives

The new architecture builds upon but differs from the de-
signs that have gradually evolved since 1950. The evolution
of the computer had included, besides major technological

t Additional details concerning the design,
programming, and application of the IBM System/360 will appear in a
series of articles in the IBM Systems Journal.

impr , several important systems concepts and
developments:

87

IBM JOURNAL % APRIL 1964

Software

Hardware

Abstraction for software

Instruction-Set Architecture

Specification for hardware

Single-core uniprocessor

Hardware-Software Interface

Software Abstraction for software

ﬁ Instruction-Set Architecture +
@ Memory Consistency Model

28
(1o
e
(9
&
>=
a5
o
<
[e4
(o]
a

~ (ueys £) AHd vyaa |

C

Hardware Specification for hardware

CPU
Tile Tile

hip Multiprocessor
Intel Skylake Chip Multiproce

Source: wikichip.org

Hardware-Software Interface

Software Abstraction for software
o | | Hardware Specification for hardware

Heterogenous System-on-Chip

Apple M1 Die Photo Specialized hardware units - aka accelerators
Source: AnandTech Software/firmware accessed/invoked

https://www.anandtech.com/show/1622
6/apple-silicon-m1-al4-deep-dive

Accelerator Interface

CPU GPU

HW accelerators

On-chip Interconnect
Microcontroller +
Firmware

MMIO Instructions have load/store semantics
Opaque to hardware accelerator semantics

Firmware C code // Load instruction
1 uint32_t status = *ADDR_STATUS; // mmio read
2 if ((status >> 8) == INIT)
3 for(int i=0; i<KEY_SIZE; i++)
4 * (ADDR_KEY+i) = KEY[il; // mmio write |
5 status |= 1; // set lock bit
6 *ADDR_STATUS = status; // mmio write & lock
7 | *ADDR_ENABLE = 1; // mmio write & enable |

// Store instruction

Can we convert MMIO loads/stores
to meaningful instruction-level
semantics?

Instruction-Level Abstraction (ILA)

Interface Commands £ Instructions

Merits (similar to ISA)

AES Block Encryption Software-visible “architectural”
Visible State state variables

Modular: set of instructions
Per-instruction state-update

Abstraction of the HW as seen at
the interface

A disciplined lifting of the RTL to
the level of software

Write, OxffOO, Ox1 START_ENCRYPT

ey @ners CEIE] | WILIE NS Generalizes the ISA to include processors and accelerators
.

Instruction-Level Abstraction (ILA)

Top_rtl ({
clk, rst, interrupt, WR ©x33000100 val (SetWeightAddr val),
if axi_rd_r _msg, if axi_rd_r_rdy, WR ©x33000120 val (SetTensorSize val),
if axi_wr_w_msg, if axi_wr_w_rdy WR ©x33000130 val (SetLSTMConfig val),
// other AXI interface ports WR ©x33000200 ©x1 (StartLSTM),
)5 }

and_192 = and_6& (fsm_out[2]);

or 117 = (fsm_out[2]) | (fsm out[5]); (b) Accelerator instruction set (partial).

Each HW operation triggered by an MMIO
@(clk rst_bar) begin access is modeled as an individual

(~rst_bar) . .
addrBound_4_1 equal <= 1°b0; Instruction.

. SetWeightAddr ©xff100100
(PR ELITEm & (~Uinilile, 25 () SetDataAddr ©xff100200
addrBound_4_1 equal <= addrBound_1_1 tmp_7; SetOutputAddr @xff100300

SetTensorSize 0x20

SetNumTimestep ©x10
SetLSTMConfig ©x02cd87f9

(a) Accelerator RTL implementation snippet. SETEL
FIexASR Accelerator (Speech Recognition) (c) A sequence of accelerator instructions
6 performing an LSTM layer.

Harvard Wei Group

ILA Verification Framework

Ref. Model &
Properties

Model

checker

Refinement

Map

RTL

if (
me
la
1d
if

1d

always @ (posedge clk) begin

!resetn) begin
m la firstword reg <= 0;
st _mem valid <= 0;
else begin
(!mem valid)

mem la reg <= mem la firstword;
lastm valid <= mem valid && !mem ready;

ILA: Function
Modeling

Tandem
Simulation

High-level
Simulation
Model

ILAAQG

Formal co-
verification

_J
_

Design artifact
Verification input

Generated

Tools

uint32_t status

if ((status >>

for(int i=0;
*(ADDR_KEY +
Software status [= 1;
* ADDR_STATUS
*ADDR_ENABLE

= *ADDR_STATUS;

8)

i<KEY_SIZE; i++)

i)

status;

135

== INIT)

= KEY[i];

Co-simulation

Application of ILA: Hardware Verification

Formal verification of RTL implementation

Processor or accelerator RTL

DRAM |

IE

Lq
mofq

.B

D odu?

———

end

if (lresetn) begin

] always @(posedge clk) begin
I mem_la_firstword_reg <= @;
last_mem_valid <= @;

end else begin

if (!last_mem_valid)
mem_la_firstword_reg <= mem_la_fir

last_mem_valid <= mem_valid && !mem_ready;

What to compare

“state_mapping”: {

“aes_address” :

“aes_length”

2}

Refinement
Map

ILA specification

Add: rg=rytre,
pct+=4, ...

SetlLength:
if lbusy: length=axi_wdata

Jump:
pc=rg;,Himm, ...

SetKey:
if lbusy: key=axi_wdata

(for processors or accelerators)

When to compare

“instructions”: [{

“RTL.aes_reg opaddr_i.reg out”,

: “RTL.aes_reg oplen_i.reg out”,

“instruction”
“ready_signal” :
“max_bound”

: “WR_ADDR”,

120 3}, ..]

“RTL.xram_ack_delay 1%,

10

Application of ILA: Hardware Verification (cont’d)

Formal verification of RTL implementation
Auto-generate complete formal properties for each instruction

Contrast with ad-hoc set of properties

ILA specification
Instruction i: S’=F(S)

State S State S’
Assume: ' 'match Check: | 'match?
Instruction i Instruction i
Sl e A I e s s K s
Implementation Symbolically execute the instruction

Use standard property checkers 1

ILA Verification Framework

Model

checker

Ref. Model &
Properties

ILA: Function
Modeling

Refinement
Map

RTL

always @ (posedge clk) begin

if (!resetn) begin
mem la firstword reg <= 0;
last mem valid <= 0;
1d else begin

if

(!mem valid)
mem la reg <= mem la firstword;

lastm valid <= mem valid &&

Tel

High-level
Simulation
Model

!mem ready;

ILAAG

Formal co-
verification

)
_

Design artifact
Verification input

Generated

Tools

uint32_t status

if ((status >> 8)
for(int i=0;
*(ADDR_KEY+1i)

status |= 1;
*ADDR_STATUS
*ADDR_ENABLE

Software

i<KEY_SIZE;

status;

1;

*ADDR_STATUS;
== INIT)
i++)
= KEY[i];

Tandem
Simulation

Co-simulation

14

Application of ILA: Hardware Verification (cont’d)

Simulation-based Validation
ILA supports auto-generation of simulation model

ILA Spec. ILAtor Instruction level executable model (ILEM)
RTL Impl. Existing RTL RTL executable model (RTEM)
Compiler*
Tool’s input Generated ILA toolchain e.g. Verilator

Executable 15

Application of ILA: Hardware Verification (cont’d)

Simulation-based validation (tandem simulation)

After simulating each instruction, check if the RTEM Architectural Variables (RTAV) match
ILEM Architectural Variables (ILAV)

add r1, r2, r3: 1A | ISA Execution
jmp; Model (ILEM)
: aed _ AV-check
Instruction RTL Design RTAV ILAV

Sequence Stimuli Execution Model values wm%

Use Refinement Map

|dentify bugs right at the instruction that causes AV deviations

Automated - Generalized to Processors + Accelerators 16

ILA Verification Framework

Model

checker

Ref. Model &
Properties

ILA: Function
Modeling

Refinement
Map

RTL

always @ (posedge clk) begin

if (!resetn) begin
mem la firstword reg <= 0;
last mem valid <= 0;
1d else begin

if

(!mem valid)
mem la reg <= mem la firstword;

lastm valid <= mem valid &&

Tel

High-level
Simulation
Model

!mem ready;

ILAAQG

Formal co-
verification

)
_

Design artifact
Verification input

Generated

Tools

uint32_t status

if ((status >> 8)
for(int i=0;
*(ADDR_KEY+1i)

status |= 1;
*ADDR_STATUS
*ADDR_ENABLE

Software

i<KEY_SIZE;

status;

1;

*ADDR_STATUS;
== INIT)
i++)
= KEY[i];

Tandem
Simulation

Co-simulation

17

FW/HW co-verification in SoCs

IP1 Communicating (heterogeneous) IPs
ue Processor

LW

Firmware

FW Specialized accelerators
MMIO
<:@ 1 uint32_t status = *ADDR_STATUS; // mmio read
2 if ((status >> 8) == INIT)
3 for(int i=0; i<KEY_SIZE; i++)
4 *(ADDR_KEY+i) = KEY[i]; // mmio write
On_Chip Fabric 5 status [= 1; // set lock bit
6 *ADDR_STATUS = status; // mmio write & lock
7 * ADDR_ENABLE = 1; // mmio write & enable
e |P2
MMIO FW/HW interaction
<:@ Hardware functions not captured
FW MMIO RTL models not practical (too complex)
<:@ SW/HW level of abstraction gap

Co-verification methodology

* Modeling * Verification

* |LA for specialized HW
« Source-level (LLVM) modeling of SW

Program 1 Program 2

Interactin%

program
threads

» Software verification
techniques

19

ILA Verification Framework

Model

checker

Ref. Model &
Properties

ILA: Function
Modeling

Refinement
Map

RTL

always @ (posedge clk) begin

if (!resetn) begin
mem la firstword reg <= 0;
last mem valid <= 0;
1d else begin

if

(!mem valid)
mem la reg <= mem la firstword;

lastm valid <= mem valid &&

Tel

High-level
Simulation
Model

!mem ready;

ILAAQG

Formal co-
verification

)
_

Design artifact
Verification input

Generated

Tools

uint32_t status

if ((status >> 8)
for(int i=0;
*(ADDR_KEY+1i)

status |= 1;
*ADDR_STATUS
*ADDR_ENABLE

Software

i<KEY_SIZE;

status;

1;

*ADDR_STATUS;
== INIT)
i++)
= KEY[i];

Tandem
Simulation

Co-simulation

20

Hardware-Software Co-Verification (cont’d)

Simulation-based
hardware-software co-simulation using ILA as verified abstraction

ﬁ .
ILA Model ILAtor mlp | |nstruction-level

in simulator | |-
\/ _/
Formally-verified Hi_gh Ispt(_eed
abstraction simuiation
|
|
Low speed simulation
verilog HW/SW co-simulation (QEMU)
design |~
\/

Summary: ILA Based SoC Verification

CPU

GPU

On-chip Interconnect

HW accelerators

Microcontroller +
Firmware

Accelerator implementation
verification

Formal

Simulation-based

Firmware hardware co-verification
Formal
Simulation-based

Shared memory accesses and
memory consistency

ILA-MCM: Memory Consistency Models

for Acclerator-rich SoC Platforms 5o

ILA-based Compilation for Accelerators

Applications provided Compiler IR Verified mapping using ILA Programs exploiting Heterogeneous
in DSLs (compute graph) Pattern matching & code generation custom accelerators backends
() Accel 1 func A:
77N\
o o o > r2, exffffoooo ; CPU instructions m
i i - \eo”/ r3, oxffffoo1o
1. Prowlde cf[ompller I.R . ® 0, rl RISC-V g
accelerator mappin
‘\ /‘ using ILA asavpeeifigd " e Accel 1 func B: re, re, ri 3
. o ISINg (7 <> r2, Oxffffaaoo o ARM =
e 9\ lifting. o_o r3, oxffffaabb P 5
()‘ ® ; Invoke accel 1 (MMIO) 36 2
. X o}
o’ \o”/ (O) Acce142 ;u:!;ffcél@@ r2, Oxffffeeee
) r4, ox -
K \‘ > Verify th _ o r5, OxffFfo110 r3, OxFFffelo —
) erity the mapping ; Invoke accel 2 (MMIO) VTA

correctness. — ILAISI — r4, oxffffo10e

* Simulation-based r5. oxffffo110
- HLSCNN
@ Relay * Proof-based 5¢

; CPU instructions
3. Pattern match the compiler IR

. . . r3, r2 FlexASR
pattern provided in the mapping. o ro. 1
[ro, ro, r
I '] NVDLA
!. tV 4. Rewrite compute graph and lower to 1r

the MMIO accesses during code
generation. 23

o1J108ds uoneolddy

Compiler Team (Princeton, UW, Harvard)

Bo-Yuan Huang Thierry Tambe Gus Smith

Gu-Yeon Wei Aarti Gupta Sharad Malik Zachary Tatlock

24

The ILAng Framework ILAAS

GitHub: https://github.com/PrincetonUniversity/ILAng

Wiki: https://bo-yuan-huang.gitbook.io/ilang/

Docker: https://hub.docker.com/r/byhuang/ilang/

25

https://github.com/PrincetonUniversity/ILAng
https://bo-yuan-huang.gitbook.io/ilang/
https://hub.docker.com/r/byhuang/ilang/

Selected Bibliography ILAASG

Primary Papers

Generalizing Tandem Simulation: Connecting High-level and RTL Simulation Models [ASPDAC 21]
ILAng: A Modeling and Verification Platform for SoCs using Instruction-Level Abstractions. [TACAS19]
Integrating Memory Consistency Models with Instruction-Level Abstractions for Heterogeneous
System-on-Chip Verification. [FMCAD 18]

Formal Security Verification of Concurrent Firmware in SoCs using Instruction-Level Abstraction for
Hardware. [DAC18]

Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification.
[TODAES18] (Best Paper Award)

Additional Papers

Leveraging Processor Modeling and Verification for General Hardware Modules. [DATE21] (Best

Paper Award)

Generating Architecture-Level Abstractions from RTL Designs for Processors and Accelerators, Part I:
Determining Architectural State Variables [[CCAD 20]

Automatic Generation of Architecture-Level Models from RTL Designs for Processors and
Accelerators [DATE 22] 26

https://ieeexplore.ieee.org/abstract/document/9712564
https://bo-yuan-huang.github.io/ILAng-Doc/tacas19.pdf
https://bo-yuan-huang.github.io/ILAng-Doc/fmcad18.pdf
https://bo-yuan-huang.github.io/ILAng-Doc/dac18.pdf
https://bo-yuan-huang.github.io/ILAng-Doc/todaes18.pdf
https://dl.acm.org/journal/todaes/honors-and-awards
https://dl.acm.org/journal/todaes/honors-and-awards
https://ieeexplore.ieee.org/abstract/document/9643584

	Generalizing the ISA to the ILA: �A Software/Hardware Interface for �Accelerator-rich Platforms
	ILA Verification Team + Collaborators
	Hardware-Software Interface
	Hardware-Software Interface
	Hardware-Software Interface
	Accelerator Interface
	Instruction-Level Abstraction (ILA)
	Instruction-Level Abstraction (ILA)
	ILA Verification Framework
	Application of ILA: Hardware Verification
	Application of ILA: Hardware Verification (cont’d)
	ILA Verification Framework
	Application of ILA: Hardware Verification (cont’d)
	Application of ILA: Hardware Verification (cont’d)
	ILA Verification Framework
	FW/HW co-verification in SoCs
	Co-verification methodology
	ILA Verification Framework
	Hardware-Software Co-Verification (cont’d)
	Summary: ILA Based SoC Verification
	ILA-based Compilation for Accelerators
	Compiler Team (Princeton, UW, Harvard)
	The ILAng Framework
	Selected Bibliography

