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ABSTRACT
Retrieval practice is a study technique in which students answer
questions related to target material, and has been demonstrated to
be an effective way to promote learning and retention. Educational
technology commonly leverages multiple-choice questions for re-
trieval practice, but short-answer questions hold the potential to
provide better learning outcomes. Unfortunately, students in on-
line settings often exhibit little effort when crafting short-answer
responses. Instead, students often produce invalid (or garbage) re-
sponses that are off-topic and do not relate to the question being
answered. In this study, we consider the effect of response validity
on retrieval practice. To do this, we first develop GarbageDetec-
tor, a method to automatically analyze and classify short-answer
responses as being valid or garbage. We show that GarbageDetec-
tor achieves excellent classification accuracy on real-world student
data. Using data from several high school AP Biology and Physics
classes, we present evidence that that providing valid short-answer
responses creates a positive educational benefit on later practice.

Keywords
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1. INTRODUCTION
1.1 Overview and Motivation
Within education, it is critical that students not only acquire new
knowledge, but that they are able to use that knowledge. Thus,
an important part of the learning process is practicing the use of
learned information by recalling that information from memory.
This process, referred to as retrieval practice in the cognitive psy-
chology literature [11], has been demonstrated to be a powerful and
efficient way to improve student learning and retention [12].

Implementing retrieval practice within educational technology is
straightforward – simply have students answer questions about the
target material. The most commonly used question format is multiple-
choice, primarily because multiple-choice responses are easy to
machine score. While multiple-choice may be a great option for as-
sessment, it is worth asking whether is is the best option for improv-
ing learning. Indeed, multiple-choice questions are oft-criticized
because they are perceived to require only shallow recognition pro-
cesses to complete.

An alternate format to multiple choice is short-answer. Short an-

swer questions are not as frequently used as multiple-choice be-
cause natural language responses are difficult to machine score.
However, they afford difficult reconstructive cognitive processes
that are believed to be beneficial for student learning. Thus, it is
often expected that short-answer responses are more beneficial to
student learning. Interestingly, experiments examining the relative
benefits of short-answer and multiple-choice questions on learning
are mixed. Often, there is little to no difference between the two
formats [22], but short-answer questions appear to be more bene-
ficial than multiple-choice in scenarios where correct answer feed-
back is provided [10, 14]. Thus, short-answer may afford better
learning for retrieval, but better understanding of the nuances of
short-answer questions is required.

One factor that has not been examined in prior research is how the
quality of short-answer responses provided by students contribute
to learning. In online educational settings where students lack over-
sight, students do not always take the time to craft thoughtful short-
answer responses. Instead, they often opt to to quickly enter a
“garbage” response to advance their progress or view feedback. In-
deed, surveys of college students found that when they practice re-
trieval on their own, they often avoid overt production of responses
[26]. In this project, we examine how production of valid short-
answer responses during retrieval practice influences learning.

A reasonable hypothesis is that students will derive greater learning
benefits when they produce valid short-answer responses than when
they do not. This hypothesis rests the assumption that producing
garbage responses is an indication that the student was not actively
engaged in retrieval processes. As mentioned previously, short-
answer questions appear to be most effective when students are
provided with subsequent feedback [10], suggesting that produc-
ing a short-answer response improves the processing of subsequent
correct answer feedback. Moreover, several studies have found that
engaging in retrieval improves subsequent encoding, even when the
information recalled was not correct [12, 13]. This last part is im-
portant, because it suggests students need not enter a correct re-
sponse to receive the benefits of short-answer questions. Indeed,
Table 1 presents several real-world student responses to a biology
question, that highlight the distinction between validity and cor-
rectness of these responses. In sum, we expect that producing valid
short-answer responses will produce better learning, regardless of
correctness.

We test the hypothesis that producing valid short-answer responses



Table 1: An example question taken from AP Biology with a set of
actual responses provided by students. The examples cover both
valid and garbage responses, with the valid responses including
both correct and incorrect responses.

What is true about the energy released by the hydrolosis of ATP?
Student Response Valid? Correct?
It powers many chemical reactions Yes Yes
It’s short term Yes Yes
It’s very high energy Yes No
It produces energy and water Yes No
A lot, surge, hyper No No
nope No No
asdlkfjas No No

improves learning with a large set of real user data, obtained from
a web-based learning platform, OpenStax Tutor. In order to test
this hypothesis, it is necessary to first determine whether the short-
answer responses entered by students are valid. While this problem
is easy at a small scale, it becomes much harder at a large scale.

Our contributions to this area of research are two-fold. First, we de-
velop an automated method for classifying short-answer responses
as being valid or garbage. Our method, which we dub GarbageDe-
tector, relies on natural language processing (NLP) techniques to
capture the salient information in short-answer responses and then
to classify the response as being valid or garbage using supervised
machine learning techniques. We show that this method performs
extremely well on real-world student data, achieving a classifica-
tion accuracy above 92%. Second, we further use GarbageDetector
to automatically classify over 100,000 short-answer responses to
questions collected during a pilot study across several high school
science classrooms. Finally, we present evidence that crafting valid
short-answer response to questions provide a strong learning bene-
fit which translates to improved performance on later retrieval prac-
tice questions on the same topic. Our results demonstrate that this
effect extends above and beyond the student’s initial success in cor-
rectly answering multiple-choice questions.

1.2 Related Work
There are a variety of works that utilize extracted textual features
from students’ responses to predict future performance. Using
higher-order language features to predict essay quality is discussed
in [6]. The work in [18] analyzes students’ textual responses and
found that verbosity is an important predictor of their performance
on the task at hand. The work described in [3] analyzes text of stu-
dents’ self-explanations and found that word occurrence statistics
cannot be used to predict their responses to questions on its own.
Neural networks are used to analyze student comments in [15] to
predict their course grades. Student interactions in discussion fo-
rums of a massive open online course (MOOC) were analyzed in
[24] where features such as topic composition of their posts were
used to predict their performance on post-tests. Student dialogues
with an automated tutoring system were used to estimate student
prior knowledge in [23]. Our work differs significantly from these
prior works in that we focus on using textual features to measure
future learning outcome, i.e., long-term knowledge retention, as op-
posed to predicting immediate learning outcome or understanding
levels. Moreover, we study the specific feature of response validity
as a proxy for students’ amount of retrieval effort, and its impact
on learning.

The work in [25] analyzes student discussion forum posts in a
MOOC and also trained a classifier to classify whether a post is
on-task, and found that the quantity of on-task posts is a signifi-
cant predictor of student learning gains. While related, our work is
fundamentally different as we focus on analyzing the impact of the
retrieval effort students put crafting valid responses to questions,
rather than discussion dialogues, on future retrieval performance.
Our task is significantly more complicated as the size of a student
short-answer responses is often significantly shorter than a discus-
sion forum post, making the final classification task more challeng-
ing.

2. VALIDITY CLASSIFICATION VIA
GARBAGEDETECTOR

In this section, we describe GarbageDetector, our method for clas-
sifying short-answer responses as either valid or garbage. GarbageDe-
tector first parses a student’s short-answer response to extract and
retain salient information. It then classifies the response using a bi-
nary classifier, which is trained on prior data consisting of a set
of responses and ground-truth labels provided by human expert
graders. A full block diagram of GarbageDetector is shown in Fig-
ure 1.

2.1 Parsing
Automatic validity classification of student short-answer responses
is difficult for two primary reasons. First, as the name implies,
these responses are extremely short (generally less than 10 words).
Second, the vocabulary for a given student may be quite distinct
from others. This results in a very sparse, high dimensional feature
space that ultimately leads to poor classification accuracy. To over-
come this challenge, we need to construct a parser that reduces the
size of this feature space while retaining the information needed for
classification.

To accomplish this feature space reduction, we first create a dictio-
nary of acceptable words that are appropriate to use in responses,
collected from both the general english language corpora as well as
the domain-specific textbooks used in a given course. We then use
this dictionary to automatically correct misspelled words, which
are very common in student responses. While a human is able to
identify these misspellings easily, it is more difficult for a machine
to recognize that a word is misspelled or if it is simply a nonsensi-
cal word that does not appear in the dictionary. To combat this, we
train a domain-specific spelling corrector similar to the work in [8]
using our dictionary. This method combines the prior probability of
seeing a given word as well as the edit distance [17] of the observed
word from the set of all words in our dictionary. GarbageDetector
does not correct to a word with an edit distance larger than 2 from
every word in the dictionary to avoid false correction of nonsensical
words, such as random character strings.

After spelling correction, the parser then removes any stop words
(e.g., “the”, “of”, “is”, etc.) from the response, since these words
carry little semantic information regarding the validity of the re-
sponse and greatly increase the size of the overall feature space.
Following stop word removal, all words not found in our vocab-
ulary dictionary are mapped together and replaced with a special
label denoting that the words are unknown. As a final measure to
reduce the feature space, the parser stems all recognized words us-
ing the Snowball stemmer [20]. As a concrete example, the words
“biology” and “biological” are both reduced to the common stem
“biolog”.
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Figure 1: A block diagram of GarbageDetector. In this example, the students initial response to a question about why the moon doesn’t
revolve in a circle around the sun is “because of the ravity [sic] of the earth” which, after parsing and classification, is determined to be valid.

2.2 Feature Construction
After the response is parsed, GarbageDetector converts it into a
numerical feature vector using a simple bag of words (BOW) model
[4], where each entry denotes the number of times a particular word
is present in a response. Our method includes all 1-grams and 2-
gram counts.

2.3 Classification
GarbageDetector employs a random forest classifier [9] trained on
prior student responses. A random forest consists of a family of
decision trees [21]. Each decision tree is trained on a subset of
the data and learns a series of rules that help distinguish between
valid and garbage short-answer responses. After each decision tree
has classified the response, the results are aggregated and the most
common label proposed by the individual decision trees is chosen
for the final classification label. The overall accuracy of the ran-
dom forest classifier is generally much higher than the accuracy of
any one single decision tree. While training the random forest, we
further make use of variable selection techniques [5] to reduce the
feature space by selecting the most predictive features for classifi-
cation.

2.4 Validation and Discussion
To validate the performance of GarbageDetector we employed a
simple dataset consisting of student responses to questions in high
school advanced placement (AP) Biology and standard (non-AP)
high school Physics. This dataset consisted of over 20,000 short-
answer responses that were manually labeled as valid or garbage
by subject matter experts. We used leave-one-out cross validation
to assess performance and trained aggregate all training examples
separately at the chapter level. Our results are displayed in Fig-
ure 2, where we see an overall classification accuracy of 92%. We
further quantified the importance of each step of the parser, by re-
peating the experiment without each individual step. We found that
leaving out each any one step in the parser significantly reduced the
overall classification accuracy. This results justifies the use of our
full parser. Finally, we compared our classifier against a method

that used our full parsing scheme but replaced the random forest
classifier with a classifier that simply calculates the cosine simi-
larity between the feature vectors of parsed student response and
the text of the corresponding chapter. We then label a response as
valid or garbage by comparing it against a threshold. We manually
tuned this threshold to optimize performance and yet still experi-
enced a 10% accuracy loss compared to the full GarbageDetector.
This result justifies the use of the supervised classification method.

3. BENEFITS OF ENTERING VALID
SHORT-ANSWER RESPONSES

We now turn our attention to evaluating the impact of providing
valid short-answer responses on future learning outcomes using
real-world educational data.

3.1 Dataset details
Our dataset is taken from the pilot run of our online learning plat-
form, OpenStax Tutor [19], which was conducted during the 2015–
2016 academic year. Tutor enables instructors to create retrieval
practice assignments for their students as their classes progress. It
has two important features relevant to the context of this paper.
First, the questions use a hybrid answering format, consisting of
first prompting the student to enter a short-answer response to the
question and then, after the short-answer response has been submit-
ted, prompting the student to select the correct answer to the ques-
tion from a list of multiple-choice options. This feature provides
students the opportunity to craft either a valid or garbage response
to the question. The second important feature of our learning plat-
form is that it automatically selects questions from previous assign-
ments for spaced practice (see Figure 3 for an example). Briefly,
spaced practice refers to spreading out learning over time, which
has been known to improve long-term retention [7]. On any given
assignment, in additional to the questions selected by the instructor,
our online platform automatically presents questions from topics
introduced on previous assignments. The purpose of this feature is
to ultimately improve long-term knowledge retention, but we lever-
age these spaced practice observations as an opportunity to observe
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Figure 2: Comparison of classification accuracy for GarbageDe-
tector (GD) along with parsing schemes that removed certain key
features (Stop Word Removal, Spelling Correction, etc). We ad-
ditionally compared against an unsupervised method that simply
examined cosine similarity between the student response and the
corresponding section in the textbook, tuned for optimal perfor-
mance. GarbageDetector achieved the best performance against all
of the other methods.

the effects of entering valid short-answer responses during earlier
assignments on later spaced practice.

Our pilot study administered courses in AP Biology and standard
(non-AP) Physics at 7 high schools in two separate school districts.
A total of 207 students (74 AP Biology, 154 Physics) and 8 instruc-
tors (4 AP Biology, 4 Physics) participated in the pilot. While we
do not have individual statistics on the students, aggregate statis-
tics at the school level show that 85% of students are from mi-
nority populations, with 50% of students considered at-risk, and
60% considered economically underprivileged. AP Biology stu-
dents were predominantly high school seniors, while Physics stu-
dents were predominantly high school juniors. There are a total
of 10,972 practice questions selected by instructors and a total of
1,644 spaced practice questions selected by Tutor in the dataset. All
data was collected in accordance with the American Psychological
Associations’s Ethics Code.

3.2 Training and Classification
Since the number of responses is too large to be effectively labeled
by humans, we automatically classify each short-answer response
as either valid or garbage using the GarbageDetector method devel-
oped in Section 2. Our training data was obtained from a team of
7 subject matter experts – 6 on AP Biology and 1 on Physics who
each labeled a subset of the responses as either valid or garbage.
For AP Biology, 30% of the short-answer responses were labeled,
for Physics only 5% of the short-answer responses were labeled.
We train a separate classifier for each chapter of each textbook.

3.3 Analysis and Results
The setup of our analysis is visualized in Figure 3. Each section
of an OpenStax textbook has a bank of associated practice ques-
tions, and each retrieval practice assignment in our dataset consists
of some subset of textbook sections and their associated questions.

We denote the initial questions when a student first does retrieval
practice from a particular section as their core questions and use
the term spaced question to denote the first time that a student en-
counters a question from a previously introduced textbook section
during spaced practice. We hypothesize that entering valid short-
answer responses during the initial core questions will improve per-
formance on the topic when it is presented as spaced practice on a
future assignment. We note that due to some degree of randomiza-
tion different students in a class may receive spaced practice ques-
tions from different textbook sections, and there is no guarantee
that each student will encounter a spaced question for every text-
book section. In total, we have 1987 student-section observations
for AP Biology and 4000 student-section observations for Physics.
The median time between the last core question and the first spaced
question for each topic is roughly 3 weeks.

We adopt a mixed effect logistic regression model [2, 16] for our
analysis. This model uses two different sets of variables, termed
random effects and fixed effects, to model a binary outcome vari-
able. In our case, the binary outcome corresponds to whether the
student selected the correct multiple-choice option on their spaced
practice question for a given topic. The random effects correspond
to nuisance quantities that are specific to each entity involved in the
model, i.e., the individual student and textbook section effects. The
random effects are modeled as simple intercept terms. The fixed
effects correspond to the parameters of interest and, in our case,
correspond to the number of correct multiple-choice responses and
the number of valid responses on the initial core questions. The
fixed effects are modeled as slope terms.

In summary, our model can be expressed mathematically as:

P(Yi,s = 1) = Φ

(
∑

j
α j f i

j +∑
k

ri
k

)
,

where Yi,s ∈ {0,1} denotes the binary-valued graded response of
student i to the first spaced practice question from section s (with
1 denoting a correct response), f i

j denotes the jth fixed effect for
student i, α j denotes the slope term of the jth fixed effect, ri

k de-
notes the intercept term of the kth random effect for student i, and
Φ(x) = 1

1+e−x denotes the inverse logit link function. Concretely,
we will consider 4 models:

• M1 considers only the random effects. This is an effective
control model that we can use as a baseline for comparison.

• M2 considers the random effects and the number of correct
multiple-choice responses that the student provided on their
initial core questions for the given topic as a fixed effect.

• M3 considers the random effects and the number of valid
responses that the student provided on their initial core ques-
tions for the given topic as a fixed effect.

• M4 considers the random effects and both the number of
valid responses and number of correct multiple-choice re-
sponses that the student provided on their initial core ques-
tions as fixed effects.

We fit all four models to the AP Biology and Physics datasets sep-
arately. The results for AP Biology and Physics are shown on
Table 2 and Table 3, respectively. In order to determine which



Figure 3: Overview of our analysis. Students respond to questions (boxes) across a series of topics (colors). On their first exposure to a topic,
students provide either valid (V) or garbage (G) short-answer responses to the questions. Later, the students are presented with a spaced
practice question drawn from a previous topic (dashed box) and provide either a correct (1) or incorrect (0) multiple-choice selection.

model provided the best fit, we used the Akaike information cri-
terion (AIC) metric [1], which imposes a penalty that penalizes
modes with too many parameters to prevent overfitting. Models
with lower AIC values are deemed better than models with higher
AIC values.

For AP Biology, M3 provided a reduction in AIC compared to M2,
implying that the number of valid responses provided a better pre-
dictor of success than the number of correct multiple-choice selec-
tions. The coefficient for the number of valid responses is posi-
tive and statistically significant, which matches our hypothesis that
more valid responses improves student retention. Moreover, M4
provides a reduction in AIC over M2 but not M3. This result im-
plies that adding valid responses improves the model fit compared
to using number of correct responses alone. We note however that
for M4 the coefficient for the number of correct responses is essen-
tially 0, again implying that M3 is the best model for this subject
domain, i.e., the number of valid responses is a better predictor than
the number of correct multiple-choice selections.

For Physics, we note that M3 does not reduce the AIC over M2,
meaning that the number of correct responses alone does provide
higher predictive power than the number of valid responses alone.
However, the AIC of M4 is less than M2, and both coefficients are
positive and statistically significant. This result implies that both
factors together produce better modeling fitting.

Finally, to illustrate the effect of producing a valid free-form re-
sponse on learning, we produced a visualization using the best
models from AP Biology and Physics (M3 and M4, respectively).
To produce this visualization, we took each student in the dataset
and set their number of valid responses for each topic to some
constant value. We then used our model to predict whether each
student would have answered their spaced practice problem cor-
rectly as a function of the number of valid responses as well as the
student-specific random effects. We repeated this procedure over a

reasonable range corresponding to the actual number of exercises
on assignments. The resulting visualization is shown on Figure 4,
which shows a significant difference between a hypothetical stu-
dent who makes no effort to provide valid responses during their
core retrieval exercise and those who provide valid responses to
all questions. Concretely, students who who provide all valid re-
sponses are predicted to have a 20% improvement to their chance
of answering their spaced practice exercise correctly.

Table 2: Summary of AP Biology Data Models

Dependent variable:

Correct on Spaced Practice

(1) (2) (3) (4)

Number Core Correct 0.030∗ −0.009
(0.016) (0.027)

Number Core Valid 0.034∗∗ 0.040∗

(0.013) (0.023)

Constant 0.613∗∗∗ 0.467∗∗∗ 0.427∗∗∗ 0.437∗∗∗

(0.075) (0.107) (0.105) (0.109)

Observations 1,987 1,987 1,987 1,987
Log Likelihood −1,278.010 −1,276.102 −1,274.653 −1,274.599
Akaike Inf. Crit. 2,562.019 2,560.203 2,557.305 2,559.199

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4. CONCLUSIONS
We have developed GarbageDetector for classifying student open-
form responses to questions as being either valid (on-topic) or
garbage (off-topic) using a combination of intelligent parsing and
supervised classification. We have shown that this method works
well and can accurately classify student short-answer responses
across two separate subject domains.

We have also presented evidence that students who spend time
crafting thoughtful responses show improved learning outcomes,
measured by performance on later spaced repetition of the same
topic.
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Figure 4: Predictive modeling showing the relationship between the number of valid short-answer responses and the probability of success
on later spaced practice exercises. The bold line shows the average across all students, the shaded region shows confidence intervals.
GarbageDetector predicts grade differences of up to 20% between students who never enter in valid responses and those who always do.



Table 3: Summary of Physics Data Models

Dependent variable:

Correct on Spaced Practice

(1) (2) (3) (4)

Number Core Correct 0.082∗∗∗ 0.076∗∗∗

(0.013) (0.013)

Number Core Valid 0.097∗∗∗ 0.078∗∗∗

(0.023) (0.022)

Constant 0.002 −0.316∗∗∗ −0.105 −0.377∗∗∗

(0.074) (0.087) (0.079) (0.089)

Observations 4,000 4,000 4,000 4,000
Log Likelihood −2,703.761 −2,682.312 −2,693.697 −2,675.836
Akaike Inf. Crit. 5,413.522 5,372.623 5,395.394 5,361.672

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results that we have derived in this work are the result of

searching for patterns in existing data and relied on students de-
ciding of their own volition whether or not to enter a valid short-
answer response. Future research in this area will involve more
highly controlled study in which the opportunity to enter a short-
answer response will be controlled by our learning system. This
will allow us to create two test cohorts of students, namely those
who had the opportunity to enter a short-answer response and those
that did not. This will allow us greater control over our experimen-
tal setup and aid in the interpretation of our final result.
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