Stochastic Volatility: Modeling and Asymptotic Approaches to Option Pricing & Portfolio Selection

Matthew Lorig * Ronnie Sircar †

July 2014; revised February 2, 2015

Abstract

Empirical evidence from equity markets clearly shows that the volatility of asset returns varies randomly in time. Typically, this randomness is referred to as stochastic volatility. In this article, we review how stochastic volatility can be modeled, and the use of asymptotic analysis to quantify (i) how the presence of stochastic volatility affects option prices, and (ii) how stochastic volatility affects investment strategies.

1 Introduction

Understanding and measuring the inherent uncertainty in market volatility is crucial for portfolio optimization, risk management and derivatives trading. The problem is made difficult since volatility is not directly observed. Rather, volatility is a statistic of the observable returns of, for example, a stock, and so estimates of it are at best noisy. Among the major empirical challenges have been separating contributions of diffusive and jump components of log returns, typical time-scales of fluctuation and memory effects. Until recently, data was limited to low frequencies, typically daily. The availability of high-frequency data over the past twenty years brings with it issues of deciphering market micro-structure effects such as bid-ask bounce, which contaminate the potential usefulness of such large data sets, and we refer to the recent book Aït-Sahalia and Jacod (2014) for an overview of the difficulties.

The major problem that has been the driver of stochastic volatility models is the valuation and hedging of derivative securities. This market grew in large part from the landmark paper by Black and Scholes (1973), which showed how to value simple options contracts when volatility is constant. Even at the time of their paper, Black and Scholes realized that the constant volatility assumption was a strong idealization. In an empirical paper Black and Scholes (1972), the authors tested their option price formulas and concluded: “we found that using past data to estimate the variance caused the model to overprice options on high-variance stocks and underprice options on low-variance stocks.” Indeed the overwhelming evidence from time-series data reveals that volatility exhibits unpredictable variation. In addition, as we will describe below, option prices exhibit a significant departure from the Black-Scholes (constant volatility) theory, the “implied volatility skew”, which can be explained by allowing volatility to vary randomly in time.

*Department of Applied Mathematics, University of Washington, Seattle, USA. Work partially supported by NSF grant DMS-0739195.
†ORFE Department, Princeton University, Princeton, USA. Work partially supported by NSF grant DMS-1211906.
A second important problem is portfolio optimization: namely how to optimally invest capital between a risky stock and a riskless bank account. In a continuous time stochastic model with constant volatility, the pioneering work was by Robert Merton (Merton (1969) and Merton (1971), reprinted in the book Merton (1992)). Since then, understanding the effect of volatility uncertainty, stochastic growth rate, transaction costs, price impact, illiquidity and other frictions on the portfolio choice problem has generated considerable research. Here we will focus on the effect of stochastic volatility and present some new results in Section 3.

The increased realism obtained by allowing volatility to be stochastic comes with increased computational difficulties. Moreover, there is no broad consensus concerning how to best model volatility. Here we will discuss some computationally efficient approaches, focusing particularly on asymptotic approximations.

1.1 Options and Implied Volatility

The most liquidly traded derivatives contracts are call and put options, which give the option holder the right to buy (in the case of a call) or sell (in the case of a put) one unit of the underlying security at a fixed strike price K on a fixed expiration date T. Here we are focusing specifically on European-style options (i.e., no early exercise), which are typically traded on indices such as the S&P500. If S_t represents the price of a stock or index at time t, then a European-style derivative has a payoff at time T which is a function h_t of S_T. In the case of calls and puts the payoff functions are $h(S) = (S - K)^+$ and $h(S) = (K - S)^+$ respectively.

1.1.1 Black-Scholes model

In the Black-Scholes model, the stock price S is a geometric Brownian motion described by the following stochastic differential equation (SDE)

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t,$$

(1.1)

where W is a standard Brownian motion with respect to a historical (or real world or physical) probability measure \mathbb{P}. Here the parameters are the expected growth rate μ and the volatility σ, both assumed constant. The remarkable finding of Black and Scholes (1973) is that the no-arbitrage price of an option does not depend on μ, and so, to price an option, the only parameter that needs to be estimated from data is the volatility σ. Unless otherwise stated, we shall assume throughout this article that interest rates are zero.

It will be convenient to introduce the following notation:

$$\tau := T - t, \quad x := \log S_t, \quad k := \log K,$$

where t is the current time, and K and T are the strike and expiration date respectively of a call or put option. Then, for fixed (t, T, x, k), the Black-Scholes pricing formula for a call option with time to expiration $\tau > 0$ is given by

$$u^{BS}(\sigma) := e^x N(d_+(\sigma)) - e^k N(d_-(\sigma)), \quad d_{\pm}(\sigma) := \frac{1}{\sigma \sqrt{\tau}} \left(x - k \pm \frac{\sigma^2 \tau}{2}\right), \quad (1.2)$$
where N is the CDF of a standard normal random variable, and we have stressed the volatility argument σ in the notation.

It turns out that the Black-Scholes price (1.2) can be expressed as the expected payoff of the option, but where the expectation is taken with respect to a different probability measure Q under which the stock price is a martingale (that is, it is a pure fluctuation process with no trend or growth rate). This means that there is a so-called risk-neutral world in which the stock price follows the dynamics

$$\frac{dS_t}{S_t} = \sigma_t dW^Q_t,$$

where W^Q is a Brownian motion under Q, and the call option price (1.2) can be expressed as the conditional expectation

$$u^{\text{BS}}(\sigma) = \mathbb{E}^Q[(S_T - K)^+ \mid \log S_t = x],$$

where \mathbb{E}^Q denotes that the expectation is taken under the probability measure Q.

1.1.2 Implied Volatility

The implied volatility of a given call option with price u (which is either observed in the market or computed from a model) is the unique positive solution I of

$$u^{\text{BS}}(I) = u. \quad (1.3)$$

It is the volatility parameter that has to be put into the Black-Scholes formula to match the observed price u.

Note that the implied volatility I depends implicitly on the maturity date T and the log strike k as the option price u will depend on these quantities. The map $(T, k) \mapsto I(T, k)$ is known as the implied volatility surface. If market option prices reflected Black-Scholes assumptions, I would be constant and equal to the stock’s historical volatility σ. However, in equities data, the function $I(T, \cdot)$ exhibits downward sloping behavior in k, whose slope varies with the option maturities T, as illustrated in Figure 1. This downward slope is known as the implied volatility skew.

These features of the implied volatility surface can be reproduced by enhancing the Black-Scholes model (1.1) with stochastic volatility and/or jumps. One focus of this chapter will be to survey some approaches taken to capturing the implied volatility skew.

1.2 Volatility Modeling

While the overwhelming evidence from time-series and option price data indicates that the volatility σ in (1.1) should be allowed to vary stochastically in time:

$$\frac{dS_t}{S_t} = \mu dt + \sigma_t dW_t,$$

there is no consensus as to how exactly the (stochastic) volatility σ_t should be modeled.
Figure 1: Implied volatility from S&P 500 index options on May 25, 2010, plotted as a function of log-moneyness to maturity ratio: \((k - x)/(T - t)\). DTM = “days to maturity.”
1.2.1 No-arbitrage Pricing and Risk-Neutral Measure

In standard option-pricing theory, it is assumed that markets do not admit arbitrage. No-arbitrage pricing implies that all traded asset prices (after discounting) are martingales under some probability measure Q, typically referred to as a risk-neutral measure. Consequently, the price u_t of an option at time t with payoff $\varphi(S_T)$ at time T is given by

$$u_t = \mathbb{E}^Q[h(S_T)|\mathcal{F}_t],$$

(1.4)

where \mathcal{F}_t is the history of the market up to time t. Typically there are non-traded sources of randomness such as jumps or stochastic volatility. As a result, there exist infinitely many risk-neutral measures. The non-uniqueness of these measures is often referred to as market incompleteness, meaning not every derivative asset can be perfectly hedged. In practice, one assumes that the market has chosen a specific risk-neutral measure, which is consistent with observed option prices.

In what follows, we will model asset dynamics under a unique risk-neutral pricing measure Q, which we assume has been chosen by the market. Under Q, we have

$$S_t = e^{X_t}, \quad dX_t = -\frac{1}{2}\sigma^2_t dt + \sigma_t dW^Q_t,$$

(1.5)

which describes the dynamics of $X_t = \log S_t$. Below, we review some of the most common models of volatility and discuss some of their advantages and disadvantages.

1.2.2 Local Volatility Models

In local volatility (LV) models, the volatility σ_t of the underlying is modeled as a deterministic function $\sigma(\cdot, \cdot)$ of time t, and the time-t value of the underlying X_t. That is,

$$dX_t = -\frac{1}{2}\sigma^2(t, X_t) dt + \sigma(t, X_t) dW^Q_t,$$

(local volatility)

Typically, one assumes that the function $\sigma(t, \cdot)$ increases as x decreases in order to capture the leverage effect, which refers to the tendency for the value of an asset to decrease as its volatility increases.

One advantage of local volatility models is that markets remain complete, meaning that derivatives written on S can be hedged perfectly – just as in the Black-Scholes model. While market completeness is convenient from a theoretical point of view, it is not necessarily a realistic property of financial markets. Indeed, if markets are complete, then one can ask: why do we need derivatives?

Another advantage of local volatility models is that they can provide a very tight fit to option prices quoted on the market. In fact, Dupire (1994) shows that there exists a local volatility model that can exactly match option prices quoted on the market and that there is an explicit formula for how to construct this model from observed call and put prices under the assumption that they can be interpolated across continuous strikes and maturities. However, a tight fit must be balanced with stability: local volatility models are notoriously bad at providing stability and typically need to be re-calibrated hourly.
1.2.3 Stochastic Volatility Models

In a stochastic volatility (SV) model, promoted in the late 1980s by Hull and White (1987), Scott (1987) and Wiggins (1987), the volatility σ_t of the underlying is modeled as a deterministic function $\sigma(\cdot)$ of some auxiliary process Y, which is usually modeled as a diffusion:

$$dX_t = -\frac{1}{2} \sigma^2(Y_t) dt + \sigma(Y_t) dW^Q_t,$$
$$dY_t = \alpha(Y_t) dt + \beta(Y_t) dB^Q_t,$$

(stochastic volatility) \hspace{1cm} (1.6)

$$d\langle W^Q, B^Q \rangle_t = \rho \, dt,$$

with $|\rho| < 1$. Here, B^Q is a Brownian motion that is correlated with W^Q. One typically takes the correlation ρ to be negative in order to capture the empirical observation that when volatility goes up, stock prices tend to go down, the leverage effect. In a single factor stochastic volatility setting such as described by (1.6), derivatives written on S cannot be perfectly hedged by continuously trading a bond and the underlying S alone. However, a derivative written on S can be perfectly replicated by continuously trading a bond, the underlying S and single option on S. Thus, assuming options can be traded continuously can complete the market. However, as transaction costs on options are much higher than on stocks, and as their liquidity is typically lower, this assumption typically is not made. Unlike the local volatility case, there is no explicit formula for constructing Y dynamics and a volatility function $\sigma(\cdot)$ so that model-induced option prices fit observed market prices exactly.

It is common to assume that the volatility driving process Y is mean-reverting, or ergodic, meaning there exists a distribution Π such that the ergodic theorem holds:

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t g(Y_s) ds = \int g(y) \Pi(dy),$$

for all bounded functions g.

Equation (1.6) actually refers specifically to one-factor stochastic volatility models. One can always introduce another auxiliary process Z, and model the volatility σ_t as a function $\sigma(\cdot,\cdot)$ of both Y and Z. If S, Y and Z are driven by three distinct Brownian motions, then continuously trading a bond, the underlying S and two options on S would be required to perfectly hedge further options on S. Multi-factor stochastic volatility models have the ability of fit option prices better than their one-factor counterparts. But, each additional factor of volatility brings with it additional computational challenges. Multi-factor and multiscale stochastic volatility models are discussed at length in Fouque et al. (2011).

1.2.4 Local-Stochastic Volatility Models

As the name suggests, local-stochastic volatility (LSV) models combine features of both local volatility and stochastic volatility models by modeling the volatility σ_t as a function $\sigma(\cdot,\cdot,\cdot)$ of time t, the underlying X and an auxiliary process Y (possibly multidimensional). For example

$$dX_t = -\frac{1}{2} \sigma^2(t, X_t, Y_t) dt + \sigma(t, X_t, Y_t) dW^Q_t,$$
$$dY_t = f(t, X_t, Y_t) dt + \beta(t, X_t, Y_t) dB^Q_t,$$

(local-stochastic volatility) \hspace{1cm} (1.7)

$$d\langle W^Q, B^Q \rangle_t = \rho \, dt,$$
where $|\rho| < 1$. Note that the class of models described by (1.7) nests all LV models and all (one-factor) SV models. However, while LSV models offer more modeling flexibility than LV or SV models separately, these models also present new computational challenges. Indeed, while there exists LV and SV models for which option prices can be computed in closed form (or semi-closed form, for instance up to Fourier inversion), explicit formulas for option prices are available in an LSV setting only when $\rho = 0$. We remark that having a closed form formula or a fast approximation is crucial for the inverse problem of calibrating an LSV model from observed option prices.

1.2.5 Models with Jumps

Some authors argue that diffusion models of the form (1.5) are not adequate to capture the complex dynamics of stock price processes because diffusion models do not allow stock prices to jump. Discontinuities in the stock price process can be modeled by adding a jump term dJ_t to the process (1.5) as follows

$$dX_t = \left(-\frac{1}{2}\sigma^2_t - \lambda \int (e^z - 1)F(dz)\right) dt + \sigma dW^Q_t + dJ_t,$$

and this type of model dates back to Merton (1976). Here, jumps arrive as a Poisson process with intensity λ and have distribution F, and the drift of X is compensated to ensure that $S = e^X$ is a martingale under Q. As with SV models, jumps render a market incomplete. Adding jumps also to volatility can help fit the strong implied volatility smile that is commonly observed for short maturity options, and we refer to Bakshi et al. (1997) for an analysis.

1.2.6 ARCH & GARCH Models

Although our focus will be on the continuous-time models, it is worth mentioning that discrete-time models for stock returns are widely studied in econometrics literature. A large class of discrete-time models are the autoregressive conditional heteroskedasticity (ARCH) processes introduced by Engle (1982), later generalized under the name GARCH. The discrete-time models that are closest to the type of continuous-time stochastic volatility models (1.6) driven by diffusions are the EGARCH models developed in Nelson (1991, 1990). Those papers also discuss convergence of the discrete-time EGARCH process to an exponential Ornstein-Uhlenbeck continuous-time stochastic volatility model.

2 Asymptotic Regimes and Approximations

Given a model and its parameters, computing expectations of the form (1.4) one time is straightforward using Monte Carlo methods or a numerical solution of the associated pricing partial integro-differential equation (PIDE). However, when the computation is part of an iterative procedure to calibrate the model to the observed implied volatility surface, it becomes important to have a fast method of computing option prices or model-induced implied volatilities. As a result, a number of different efficient approximation methods have developed.

Broadly speaking, there are two methods of setting up asymptotic expansions for option pricing and implied volatility. In *contract asymptotics*, one considers extreme regimes specific to the option contract, in other words, large or small time-to-maturity $(T - t)$, or large or small strikes K. In the
model asymptotics approach, one views the complicated incomplete market model as a perturbation around a more tractable model, often the Black-Scholes model (1.1).

2.1 Contract Asymptotics

The foundational papers in this approach appeared in 2004. The main result from Lee (2004), commonly referred to as the moment formula relates the implied volatility slope at extreme strikes to the largest finite moment of the stock price. We refer to the recent book Gulisashvili (2012) for an overview of this and related asymptotics.

The approach pioneered by Berestycki et al. (2004) uses large deviation calculations for the short-time regime. The regime where the time-to-maturity is large is studied by Tehranchi (2009). However, for the rest of this article we concentrate on model asymptotics as they are adaptable to other option contracts and, moreover, are amenable to nonlinear portfolio optimization problems as we discuss in Section 3.

2.2 Model Asymptotics

We will present the analysis in terms of the log-stock price $X_t = \log S_t$, and consider a European option with payoff $\varphi(X_T)$ at time T, where $\varphi(x) = h(e^x)$. There may be other factors such as stochastic volatility driving the stock price dynamics, and we denote these by the (possibly multi-dimensional) process Y. If (X,Y) is (jointly) a Markov process, then the time t price $u(t,x,y)$ of the European option is an expectation of the form

$$u(t,x,y) = \mathbb{E}_Q[\varphi(X_T)|X_t = x, Y_t = y].$$

Here, we are using the Markov property of (X,Y) to replace the filtration \mathcal{F}_t in (1.4) with the time-t values of (X,Y).

Under mild conditions on the processes (X,Y) and the payoff function φ, the function $u(t,x,y)$ is sufficiently smooth to be the solution of the Kolmogorov backward equation (KBE)

$$(\partial_t + A(t))u = 0, \quad u(T,x) = \varphi(x), \quad (2.1)$$

where the operator $A(t)$ is the generator of (X,Y) (which may have t-dependence from the coefficients of (X,Y)). The operator $A(t)$ is, in general, a second order partial integro-differential operator. Unfortunately, equation (2.1) rarely has a closed-form solution – especially when we include realistic features such as jumps and stochastic volatility. As such, one typically seeks an approximate solution to (2.1). We will discuss an approach to this using perturbation theory (also referred to as asymptotic analysis).

Perturbation theory is a classical tool developed to solve problems arising in physics and engineering. We describe its use here to find an approximate solution to (typically) a PIDE starting from the exact solution of a related PIDE. More specifically, suppose the integro-differential operator $A(t)$ in (2.1) can be written in the form

$$A(t) = \sum_{n=0}^{\infty} \varepsilon^n A_n(t), \quad (2.2)$$
where each $A_n(t)$ in the sequence $(A_n(t))$ is an integro-differential operators, and $\varepsilon > 0$ is a (typically small) parameter. Formally, one seeks an approximate solution to (2.1) by expanding the function u as a power series in the parameter ε

$$u = \sum_{n=0}^{\infty} \varepsilon^n u_n. \tag{2.3}$$

Inserting the expansion (2.2) for $A(t)$ and the expansion (2.3) for u into the PIDE (2.1), and collecting like powers of ε, one finds

$$\mathcal{O}(1): \quad (\partial_t + A_0(t))u_0 = 0, \quad u_0(T, x, y) = \varphi(x),$$

$$\mathcal{O}(\varepsilon): \quad (\partial_t + A_0(t))u_1 = -A_1(t)u_0, \quad u_1(T, x, y) = 0,$$

$$\vdots$$

$$\mathcal{O}(\varepsilon^n): \quad (\partial_t + A_0(t))u_n = -\sum_{k=1}^{\infty} A_k(t)u_{n-k}, \quad u_n(T, x, y) = 0.$$

The approximating sequence of functions (u_n) are then found by solving the above nested sequence of PIDEs.

This method is most useful when the fundamental solution Γ_0 (also referred to as the Green’s function) corresponding to the operator $A_0(t)$, is available in closed form. It is the solution of

$$(\partial_t + A_0(t))\Gamma_0(t, x, y; T, \xi, \omega) = 0, \quad \Gamma_0(T, x, y; T, \xi, \omega) = \delta(x - \xi)\delta(y - \omega),$$

where $\delta(\cdot)$ is the Dirac delta function (or point mass at zero).

Upon finding Γ_0, the approximating sequence of functions (u_n) can be written down directly:

$$u_0(t, x, y) = \mathcal{P}_0(t, T)\varphi(x) := \int d\xi d\omega \Gamma_0(t, x, y; T, \xi, \omega)\varphi(\xi), \tag{2.4}$$

$$u_n(t, x, y) = \int_t^T dt_1 \mathcal{P}_0(t, t_1)\sum_{k=1}^{n} A_k u_{n-k}(t_1, x, y). \tag{2.5}$$

Here the operator $\mathcal{P}_0(t, T)$ is referred to as the semigroup generated by $A_0(t)$.

Finding an appropriate decomposition of the generator $A(t) = \sum_{n=0}^{\infty} A_n(t)$ is a bit of an art. In general the most appropriate decomposition will depend strongly on the underlying process X (from which $A(t)$ is derived). As a starting point, it will help to identify operators A_0 for which the fundamental solution Γ_0 can be written in closed form or semi-closed form, and we shall discuss some examples in Section 2.4.

2.3 Implied Volatility Asymptotics

Models are typically calibrated to implied volatilities rather than to prices directly. As such, it is useful to have closed-form approximations for model-induced implied volatilities. In this section, we will show how to translate an expansion for option prices into an expansion for implied volatilities. Throughout this section we fix a model for $X = \log S$, a time t, a maturity date $T > t$, the initial values $X_t = x$ and a call option payoff $\varphi(X_T) = (e^{X_T} - e^k)^+$. Our goal is to find the implied
volatility for this particular call option. To ease notation, we will suppress much of the dependence on \((t, T, x, k)\). However, the reader should keep in mind that the implied volatility of the option under consideration does depend on \((t, T, x, k)\), even if this is not explicitly indicated.

Assume that the option price \(u\) has an expansion of the form

\[
u = u_0 + \sum_{n=1}^\infty \varepsilon^n u_n, \quad \text{where} \quad u_0 = u^{\text{BS}}(\sigma_0), \text{ for some } \sigma_0 > 0. \tag{2.6}\]

We wish to find the implied volatility \(I\) corresponding to \(u\), which is the unique positive solution of (1.3). To find the unknown implied volatility \(I\), we expand it in powers of \(\varepsilon\) as follows:

\[I = I_0 + E^\varepsilon, \quad \text{where} \quad E^\varepsilon = \sum_{n=1}^\infty \varepsilon^n I_n.\]

Expanding \(u^{\text{BS}}(I)\) about the point \(I_0\) we find

\[
u^{\text{BS}}(I) = u^{\text{BS}}(I_0 + E^\varepsilon) = u^{\text{BS}}(I_0) + \sum_{n=1}^\infty \frac{(E^\varepsilon)^n}{n!} \partial_\sigma u^{\text{BS}}(I_0) + \varepsilon^2 \left(2 I_0 \partial_\sigma + \frac{1}{4} I_0^2 \partial_\sigma^2\right) u^{\text{BS}}(I_0) + \cdots. \tag{2.7}\]

Inserting the expansion (2.6) for \(u\) and the expansion (2.7) for \(u^{\text{BS}}(I)\) into equation (1.3), and collecting like powers of \(\varepsilon\) we obtain

\[
\mathcal{O}(1) : \quad u_0 = u^{\text{BS}}(I_0), \\
\mathcal{O}(\varepsilon) : \quad u_1 = I_1 \partial_\sigma u^{\text{BS}}(I_0), \\
\mathcal{O}(\varepsilon^2) : \quad u_2 = (I_2 \partial_\sigma + \frac{1}{4} I_0^2 \partial_\sigma^2) u^{\text{BS}}(I_0), \\
\mathcal{O}(\varepsilon^3) : \quad u_3 = (I_3 \partial_\sigma + \frac{1}{4} I_2 I_0 \partial_\sigma^2 + \frac{1}{3} I_0^3 \partial_\sigma^3) u^{\text{BS}}(I_0).
\]

Using \(u_0 = u^{\text{BS}}(\sigma_0)\), we can solve for the sequence \((I_n)\) recursively. We have

\[
\mathcal{O}(1) : \quad I_0 = \sigma_0, \tag{2.8} \\
\mathcal{O}(\varepsilon) : \quad I_1 = \frac{1}{\partial_\sigma u^{\text{BS}}(I_0)} u_1, \\
\mathcal{O}(\varepsilon^2) : \quad I_2 = \frac{1}{\partial_\sigma u^{\text{BS}}(I_0)} \left(u_2 - \left(\frac{1}{4} I_0^2 \partial_\sigma^2\right) u^{\text{BS}}(I_0)\right), \\
\mathcal{O}(\varepsilon^3) : \quad I_3 = \frac{1}{\partial_\sigma u^{\text{BS}}(I_0)} \left(u_3 - \left(\frac{1}{4} I_2 I_0 \partial_\sigma^2 + \frac{1}{3} I_0^3 \partial_\sigma^3\right) u^{\text{BS}}(I_0)\right). \tag{2.9}
\]

Note that the implied volatility expansion involves both model independent and model dependent terms:

\[
\text{model independent} : \quad \frac{\partial_\sigma^n u^{\text{BS}}(I_0)}{\partial_\sigma u^{\text{BS}}(I_0)}, \quad \text{model dependent} : \quad \frac{u_n}{\partial_\sigma u^{\text{BS}}(I_0)}. \tag{2.10}
\]
The model independent terms are always explicit. For example, using (1.2), a direct computation reveals
\[
\frac{\partial^2 u_{BS}(\sigma)}{\partial \sigma^2} = \frac{(k - x)^2}{t \sigma^3}, \quad \frac{\partial^3 u_{BS}(\sigma)}{\partial \sigma^3} = -\frac{t}{4} + \frac{(k - x)^4}{t^2 \sigma^6} - \frac{3(k - x)^2}{t \sigma^4} - \frac{(k - x)^2}{2 \sigma^2} + \frac{t^2 \sigma^2}{16}.
\]

Higher order terms are also explicit. Whether or not the model dependent terms in (2.10) can be computed explicitly (i.e., meaning without numerical integration or special functions) depends on the specific form the sequence \((u_n) \) takes.

2.4 Tractable models

We say that a model \(X \) is \textit{tractable} if its generator \(A_0(t) \) admits a closed-form (or semi-closed form) fundamental solution \(\Gamma_0 \). A large class of tractable models are the exponential Lévy models. In this class, a traded asset \(S = e^X \) is described by the following Lévy-Itô SDE
\[
dX_t = \mu dt + \sigma dW^Q_t + \int_{\mathbb{R}} z d\widetilde{N}_t(dz).
\]
(2.11)

Here, \(W^Q \) is a standard Brownian motion and \(\widetilde{N} \) is an independent compensated Poisson random measure
\[
d\widetilde{N}_t(dz) = dN_t(dz) - \nu(dz)dt.
\]

The last term in (2.11) can be understood as follows: for any Borel set \(A \) the process \(N_A(t) \) is a Poisson process with intensity \(\nu(A) \). Thus, the probability that \(X \) experiences a jump of size \(z \in A \) in the time interval \([t, t+dt)\) is \(\nu(A)dt \). In order for \(S \) to be a martingale, the drift \(\mu \) must be given by
\[
\mu = -\frac{1}{2} \sigma^2 - \int_{\mathbb{R}} \nu(dz)(e^z - 1 - z).
\]

The generator \(A_0 \) of \(X \) is given by
\[
A_0 = \mu \partial_x + \frac{1}{2} \sigma^2 \partial^2_{xx} + \int_{\mathbb{R}} \nu(dz)(\theta_z - 1 - z \partial_x),
\]
(2.12)

where the operator \(\theta_z \) is a shift operator: \(\theta_z f(x) = f(x+z) \).

When \(X \) has no jump component (i.e., when \(\nu \equiv 0 \)), the generator \(A_0 \) has a fundamental solution \(\Gamma_0 \) that can be written in closed-form as a Gaussian kernel:
\[
\Gamma_0(t,x;T,y) = \frac{1}{\sqrt{2 \pi \sigma^2(T-t)}} \exp \left(-\frac{(x-y+\mu(T-t))^2}{2 \sigma^2(T-t)} \right).
\]

More generally, when jumps are present, the generator \(A_0 \) has a fundamental solution \(\Gamma_0 \) which is available in semi-closed form as a Fourier transform:
\[
\Gamma_0(t,x;T,y) = \frac{1}{2\pi} \int d\xi e^{i\xi(x-y)+(T-t)\Phi_0(\xi)},
\]
(2.13)
where
\[\Phi_0(\xi) = i\mu\xi - \frac{1}{2}\sigma^2\xi^2 + \int \nu(dz)(e^{i\xi z} - 1 - i\xi z). \]

The function \(\Phi_0 \) is referred to as the characteristic exponent of \(X \), since it satisfies
\[\mathbb{E}^Q[e^{i\xi X_T} | X_t = x] = e^{i\xi x + (T-t)\Phi_0(\xi)}. \]

Using (2.4) and (2.13) we can express the action of the semigroup operator \(P_0(t,T) \) on a general function \(\psi \) as follows:
\[
P_0(t,T)\psi(x) = \int dy \Gamma_0(t,x;T,y)\psi(y) = \frac{1}{2\pi} \int dy \int d\xi \ e^{i\xi(x-y)+(T-t)\Phi_0(\xi)}\psi(y) \]
\[
= \frac{1}{2\pi} \int d\xi \ e^{i\xi x + (T-t)\Phi_0(\xi)}\widehat{\psi}(\xi),
\]
where \(\widehat{\psi} \) is the Fourier transform of \(\psi \):
\[\widehat{\psi}(\xi) := \int dy \ e^{-i\xi y}\psi(y). \]

Because the semigroup operator \(P_0(t,T) \) corresponding to \(A_0 \) is well-understood in the exponential Lévy setting, if one can write the generator \(A \) of a process \(X \) as \(A = \sum_{n=0}^{\infty} \epsilon_n A_n \) with \(A_0 \) given by (2.12), then one can use (2.4)-(2.5) to find approximate solutions to the full pricing PIDE
\[\partial_t + A \psi = 0. \]

2.5 Model Coefficient Polynomial Expansions

Model coefficient expansions are developed in a series of papers Lorig et al. (2015c, 2014a, 2015b, 2014b, 2015a). The authors’ method (which we shall henceforth refer to as “LPP”) can be used to find closed-form asymptotic approximations for option prices and implied volatilities in a general \(d \)-dimensional Markov setting. Here, for simplicity, we focus on two simple cases: (i) general 2-dimensional local-stochastic volatility (LSV) models, and (ii) general scalar Lévy-type models.

2.5.1 LSV models

We consider a general class of models, in which an asset \(S = e^X \) is modeled as the exponential of a Markov diffusion process \(X \) that satisfies the SDEs
\[
dx_t = -\frac{1}{2}\sigma^2(X_t,Y_t) \ dt + \sigma(X_t,Y_t) \ dW^Q_t, \\
dY_t = f(X_t,Y_t) \ dt + \beta(X_t,Y_t) \ dB^Q_t, \\
d\langle W^Q, B^Q \rangle_t = \rho \ dt,
\]
where \(W^Q \) and \(B^Q \) are correlated Brownian motions. This is as in the model discussed in Section 1.2.4 except we remove the explicit \(t \)-dependence in the coefficients for simplicity. Note that the drift of \(X \) is \(-\frac{1}{2}\sigma^2 \), which ensures that \(S = e^X \) is a \(Q \)-martingale and so the stock price is arbitrage free.
The generator A of X is given by
\[A = a(x, y)(\partial^2_{xx} - \partial_x) + f(x, y)\partial_y + b(x, y)\partial^2_{yy} + c(x, y)\partial^2_{xy}, \] (2.14)
where we have defined
\[a(x, y) := \frac{1}{2}\sigma^2(x, y), \quad b(x, y) := \frac{1}{2}\beta^2(x, y), \quad c(x, y) := \rho\sigma(x, y)\beta(x, y). \]

For general coefficients (σ, β, f) there is no closed form (or even semi-closed form) expression of Γ the fundamental solution corresponding to A. Thus, we seek a decomposition of $A = \sum_{n=0}^{\infty} A_n$ for which the order zero operator A_0 admits a closed form fundamental solution Γ_0.

The LPP approach is to expand the coefficients of A in polynomial basis functions where the zeroth order terms in the expansion are constant. Specifically,
\[\chi(x, y) = \sum_{n=0}^{\infty} \chi_n(x, y), \quad \chi \in \{a, b, c, f\}, \]
where χ_0 is a constant and $\chi_n(x, y)$ depends polynomially on x and y for every $n \geq 1$. For example, Taylor series:
\[\chi_n(x, y) = \sum_{k=0}^{n} \chi_{k,n-k}(x-\bar{x})^k(y-\bar{y})^{n-k}, \quad X_{k,n-k} = \frac{1}{k!(n-k)!}\partial^k_x\partial^n_y \chi(\bar{x}, \bar{y}), \] (2.15)
or Hermite polynomials:
\[\chi_n(x, y) = \sum_{k=0}^{n} \chi_{k,n-k}H_{k,n-k}(x, y), \quad \chi_{k,n-k} = \langle H_{k,n-k}, \chi \rangle. \]

In the Taylor series example, (\bar{x}, \bar{y}) is a fixed point in \mathbb{R}^2. In the Hermite polynomial example, the brackets $\langle \cdot, \cdot \rangle$ indicate an L^2 inner product with a Gaussian weighting. The Hermite polynomials $(H_{n,m})$ form a complete basis in this space and (properly weighted) are orthonormal $\langle H_{n,m}, H_{i,j} \rangle = \delta_{n,i}\delta_{m,j}$.

Upon expanding the coefficients of A in polynomial basis functions, one can formally write the operator A as
\[A = \sum_{n=0}^{\infty} A_n, \quad \text{with} \quad A_n = \sum_{k=0}^{n} A_{k,n-k}, \] (2.16)
where
\[A_{k,n-k} = a_{k,n-k}(x, y)(\partial^2_{xx} - \partial_x) + f_{k,n-k}(x, y)\partial_y + b_{k,n-k}(x, y)\partial^2_{yy} + c_{k,n-k}(x, y)\partial^2_{xy}. \]

Note that the operator A in (2.16) is of the form (2.2) if one sets $\varepsilon = 1$.

Moreover, the order zero operator
\[A_0 = A_{0,0} = a_{0,0}(\partial^2_{xx} - \partial_x) + f_{0,0}\partial_y + b_{0,0}\partial^2_{yy} + c_{0,0}\partial^2_{xy}. \]
has a fundamental solution Γ_0 which is a Gaussian density:

$$
\Gamma_0(t, x, y; T, \xi, \omega) = \frac{1}{2\pi \sqrt{|C|}} \exp \left(-\frac{1}{2} (\eta - \mathbf{m})^T C^{-1} (\eta - \mathbf{m}) \right), \quad \eta = \left(\begin{array}{c} \xi \\ \omega \end{array} \right),
$$

with covariance matrix C and mean vector \mathbf{m} given by

$$
C = (T - t) \begin{pmatrix} 2a_{0,0} & c_{0,0} \\ c_{0,0} & 2b_{0,0} \end{pmatrix}, \quad \mathbf{m} = \left(\begin{array}{c} x - (T - t)a_{0,0} \\ y + (T - t)f_{0,0} \end{array} \right).
$$

Since Γ_0 is available in closed form, one can use (2.4) and (2.5) to find u_0 and the sequence of functions $(u_n)_{n \geq 1}$ respectively. After a bit of algebra, one can show that

$$
u_n(t, x, y) = L_n u_0(t, x, y), \quad (2.17)
$$

where the operator L_n is of the form

$$
L_n = \sum_{k,m} \eta_{k,m}^{(n)}(t, x, y) \partial_y^k \partial_x^m (\partial^2_x - \partial_x).
$$

The precise form of the coefficients $(\eta_{k,m}^{(n)})$ will depend on the choice of polynomial basis function. If the coefficients of A are smooth and bounded, then the small-time-to-maturity accuracy of the price approximation is

$$
\sup_{x,y} |u(t, x, y) - \bar{u}_n(t, x, y)| = O((T - t)^{(n+3)/2}), \quad \bar{u}_n(t, x, y) := \sum_{k=0}^n u_k(t, x, y).
$$

The proof can be found in Lorig et al. (2015a).

The LPP price expansion also leads to closed-form expressions for implied volatility. Indeed, for European call options, one can easily show that $u_0 = u_{BS}^\mathcal{Q}(\sqrt{2a_{0,0}})$. Therefore, the series expansion for u is of the form (2.6), and hence (I_0, I_1, I_2, I_3) can be computed using (2.8) – (2.9). Moreover, the model dependent terms $(u_n/\partial_\sigma u_{BS})$ appearing in (2.8) – (2.9) can be computed explicitly with no numerical integration. This is due to the fact that u_n can be written in the form (2.17). For details, we refer the reader to Lorig et al. (2015b).

Example: Heston

Consider the Heston (1993) model, under which the risk-neutral dynamics of X are given by

$$
dX_t = -\frac{1}{2} e^{Y_t} dt + e^{Y_t/2} dW_t^\mathcal{Q},
$$

$$
dY_t = \left((\kappa \theta - \frac{1}{2} \delta^2) e^{-Y_t} - \kappa \right) dt + \delta e^{-Y_t/2} dB_t^\mathcal{Q},
$$

$$
d\langle W^\mathcal{Q}, B^\mathcal{Q} \rangle_t = \rho \, dt.
$$

The generator of (X, Y) is given by

$$
A = \frac{1}{2} e^y \left(\partial_x^2 - \partial_x \right) + \left((\kappa \theta - \frac{1}{2} \delta^2) e^{-y} - \kappa \right) \partial_y + \frac{1}{2} \delta^2 e^{-y} \partial_y^2 + \rho \delta \partial_x \partial_y.
$$
Thus, using (2.14), we identify
\[
a(x, y) = \frac{1}{2} e^y, \quad b(x, y) = \frac{1}{2} \delta^2 e^{-y}, \quad c(x, y) = \rho \delta, \quad f(x, y) = \left((\kappa \theta - \frac{1}{2} \delta^2) e^{-y} - \kappa\right).
\]

We fix a time to maturity \(\tau \) and log-strike \(k \). Assuming a Taylor series expansion (2.15) of the coefficients of \(\mathcal{A} \) with \(\bar{x}, \bar{y} = (x, y) \), the time \(t \) levels of \((X, Y)\), one computes
\[
I_0 = e^{y/2},
\]
\[
I_1 = \frac{1}{8} e^{-y/2} \tau \left(-\delta^2 + 2(-e^y + \theta) \kappa + e^y \delta \rho \right) + \frac{1}{4} e^{-y/2} \delta \rho(k - x),
\]
\[
I_2 = -\frac{e^{-3y/2}}{128} \tau^2 \left(\delta^2 - 2\theta \kappa \right)^2 + \frac{e^{y/2}}{96} \tau^2 \left(5\kappa^2 - 5\delta \kappa \rho + \delta^2 \right) (1 + 2\rho^2)
\]
\[
+ \frac{e^{-y/2}}{192} \tau \left(-4\tau \kappa^2 \rho - \tau \kappa - \tau \delta \kappa \rho - 2\delta \kappa \rho + 2\delta^2 (8 + \tau \kappa + \rho^2) \right)
\]
\[
+ \frac{1}{96} e^{-3y/2} \tau \delta \rho (5\delta^2 + 2(e^y - 5\theta) \kappa - e^y \delta \rho) (k - x) + \frac{1}{48} e^{-3y/2} \delta^2 (2 - 5\rho^2) (k - x)^2.
\]

The expression for \(I_3 \) is also explicit, but omitted for brevity. In Figure 2 we plot the approximate implied volatility \((I_0 + I_1 + I_2 + I_3)\) as well as the exact implied volatility \(I \), which can be computed using the pricing formula given in Heston (1993) and then inverting the Black-Scholes formula numerically.

2.5.2 Lévy-type models

In this Section, we explore how the LPP method can be applied to compute approximate option prices in a one-dimensional Lévy-type setting. Specifically, we consider an asset \(S = e^X \), where \(X \) is a scalar Lévy-type Markov process. Under some integrability conditions on the size and intensity of jumps, every scalar Markov process on \(\mathbb{R} \) can be expressed as the solution of a Lévy-Itô SDE of the form:
\[
dX_t = \mu(X_t)dt + \sqrt{2a(X_t)}dW_t^Q + \int zd\tilde{N}_t(X_{t-}, dz),
\]
where \(W^Q \) is a standard Brownian motion and \(\tilde{N} \) is a state-dependent compensated Poisson random measure
\[
d\tilde{N}_t(x, dz) = dN_t(x, dz) - \nu(x, dz)dt.
\]
Note that jumps are now described by a Lévy kernel \(\nu(x, dz) \), which is a Lévy measure for every \(x \in \mathbb{R} \). In order for \(S \) to be a martingale, the drift \(\mu \) must be given by
\[
\mu(x) = -a(x) - \int_{\mathbb{R}} \nu(x, dz)(e^z - 1 - z).
\]
The generator \(\mathcal{A} \) of \(X \) is
\[
\mathcal{A} = \mu(x) \partial_x + a(x) \partial_x^2 + \int \nu(x, dz)(\theta_z - 1 - z \partial_z).
\]
Figure 2: Exact (solid) and approximate (dashed) implied volatilities in the Heston model. The horizontal axis is log-moneyness \((k - x)\). Parameters: \(\kappa = 1.15\), \(\theta = 0.04\), \(\delta = 0.2\), \(\rho = -0.40\) \(x = 0.0\), \(y = \log \theta\).
For general drift $\mu(x)$ variance $a(x)$ and Lévy kernel $\nu(x,dz)$ there is no closed form (or even semi-closed form) expression for the fundamental solution Γ corresponding to A. Thus we seek a decomposition of generator $A = \sum_n A_n$ for which A_0 has a fundamental solution Γ_0 available in semi-closed form.

Once again, the LPP approach of expanding the coefficients and Levy kernel of A in polynomial basis functions will lead to the desired form for the expansion of A. Specifically, let

$$
\mu(x) = \sum_{n=0}^{\infty} \mu_n(x), \quad a(x) = \sum_{n=0}^{\infty} a_n(x), \quad \nu(x,dz) = \sum_{n=0}^{\infty} \nu_n(x,dz),
$$

where $\mu_0(x) = \mu_0$, $a_0(x) = a_0$ and $\nu_0(x,dz) = \nu_0(dz)$, and higher order terms $\mu_n(x)$, $a_n(x)$ and $\nu_n(x,dz)$ depend polynomially on x. For example

Taylor series : \quad \quad \quad \quad a_n(x) = \frac{1}{n!} \partial_x^n a(\bar{x}) \cdot (x - \bar{x})^n,

Hermite polynomial : \quad a_n(x) = \langle H_n, a \rangle \cdot H_n(x),

and similarly for μ and ν. Upon expanding the coefficients of A in polynomial basis functions, one can formally write the operator A as $A = \sum_{n=0}^{\infty} A_n$, where A_0 is given by

$$
A_0 = \mu_0 \partial_x + a_0 \partial_x^2 + \int \nu_0(dz)(e^{z\partial_x} - 1 - z\partial_x),
$$

(2.18)

and each A_n for $n \geq 0$ is of the form

$$
A_n = \mu_n(x) \partial_x + a_n(x) \partial_x^2 + \int \nu_n(x,dz)(\theta_z - 1 - z\partial_z).
$$

Comparing (2.18) with (2.12), we see that A_0 is the generator of a Lévy process. Thus, using (2.13), the fundamental solution Γ_0 corresponding to A_0 can be written as a Fourier integral

$$
\Gamma_0(t,x;T,y) = \frac{1}{2\pi} \int d\xi \ e^{i\xi(x-y)+(T-t)\Phi_0(\xi)},
$$

where

$$
\Phi_0(\xi) = i \mu_0 \xi - a_0 \xi^2 + \int \nu_0(dz)(e^{i\xi z} - 1 - i\xi z).
$$

Since Γ_0 is available in closed form, one can use (2.4) and (2.5) to find u_0 and u_n respectively. Explicit computations are carried out in Lorig et al. (2015c).

In this case, it is convenient to express $u_n(t,x)$ as an (inverse) Fourier transform of $\tilde{u}_n(t,x)$. Defining

\begin{align*}
\text{Fourier transform} : \quad \tilde{u}_n(t,x) &= \mathcal{F}[u_n(t,\cdot)](\xi) := \int dx \ e^{-i\xi x} u_n(t,x), \\
\text{Inverse transform} : \quad u_n(t,x) &= \mathcal{F}^{-1}[\tilde{u}_n(t,\cdot)](x) := \frac{1}{2\pi} \int d\xi \ e^{i\xi x} \tilde{u}_n(t,\xi),
\end{align*}

17
we have

\[\tilde{u}_n(t, \xi) = \sum_{k=1}^{n} \int_{t}^{T} dt_1 e^{(t_1-t)\Phi_0(\xi)} \int_{\mathbb{R}^d} \nu_k(i\partial_{\xi}, dz) \left(e^{i\xi z} - 1 - i\xi z \right) \tilde{u}_{n-k}(t_1, \xi) \]

\[+ \sum_{k=1}^{n} \int_{t}^{T} dt_1 e^{(t_1-t)\Phi_0(\xi)} \left(\mu_k(i\partial_{\xi})(i\xi) \tilde{u}_{n-k}(t_1, \xi) + a_k(i\partial_{\xi})(i\xi)^2 \tilde{u}_{n-k}(t_1, \xi) \right), \]

where \(\tilde{u}_0(t, \xi) \) is given by

\[\tilde{u}_0(t, \xi) = e^{t\xi x + (T-t)\Phi_0(\xi) \tilde{\varphi}(\xi)}. \]

2.6 Small ‘vol of vol’ expansion

Lewis (2000) considers a stochastic volatility model of the form

\[dX_t = -\frac{1}{2} Y_t dt + \sqrt{Y_t} dW_t^Q, \]
\[dY_t = \alpha(Y_t) dt + \varepsilon \beta(Y_t) dB_t^Q, \]
\[d\langle W^Q, B^Q \rangle_t = \rho dt. \]

The parameter \(\varepsilon \) is referred to as the volatility of volatility or vol of vol for short. The generator \(\mathcal{A} \) of \((X, Y) \) is given by

\[\mathcal{A} = \mathcal{A}_0 + \varepsilon \mathcal{A}_1 + \varepsilon^2 \mathcal{A}_2, \]

where

\[\mathcal{A}_0 = Y \left(\partial_x^2 - \partial_x \right) + \alpha(y) \partial_y, \quad \mathcal{A}_1 = \rho \sqrt{y} \beta(y) \partial_x \partial_y, \quad \mathcal{A}_2 = \frac{1}{2} \beta^2(y) \partial_y^2. \]

Thus, \(\mathcal{A} \) is of the form (2.2). Moreover, the solution of

\[(\partial_t + \mathcal{A}_0) \Gamma_0 = 0, \quad \Gamma_0(T, x, y; T, \xi) = \delta(x - \xi), \]

is given by a Gaussian

\[\Gamma_0(t, x, y; T, \xi, \zeta) = \frac{1}{\sqrt{2\pi \sigma^2(t, T)}} \exp \left(-\frac{(\xi - x - \sigma^2(t, T)/2)^2}{2 \sigma^2(t, T)} \right) \delta(\zeta - \eta(t)), \]

where \(\sigma^2(t, T) = \int_t^{T} \eta(s) \, ds \), and \(\eta(s) \) is the solution of the following ODE:

\[\frac{d\eta(s)}{ds} = \alpha(\eta(s)), \quad \eta(t) = y. \]

Since \(\Gamma_0 \) is available in closed form up to finding \(\eta \), one can use (2.4) and (2.5) to find \(u_0 \) and the sequence of functions \((u_n) \) respectively. In particular, for European calls one finds

\[u_0 = u_{BS}(\hat{\sigma}(t, T)), \quad \hat{\sigma}(t, T) = \sqrt{\frac{\sigma^2(t, T)}{T-t}} \]

As the order zero price is equal to the Black-Scholes price, computed with volatility \(\hat{\sigma}(t, T) \), one can apply the implied volatility asymptotics of Section 2.3 to find approximate implied volatilities. Explicit expressions for approximate implied vols are given in Lewis (2000) for the case \(\alpha(y) = \kappa(\theta - y) \) and \(\beta(y) = y^\gamma \).
2.7 Separation of time-scales approach

In Fouque et al. (2000, 2011), the authors develop analytic price approximations for interest rate, credit and equity derivatives. The authors’ approach (henceforth referred to as FPSS) exploits the separation of time-scales that is observed in volatility time-series data. More specifically, the authors consider a class of *multiscale* diffusion models in which the volatility of an underlying is driven by two factors, \(Y \) and \(Z \), operating on fast and slow time-scales respectively. Lorig and Lozano-Carbassé (2015) extend the FPSS method to models with jumps. Here, for simplicity we consider an exponential Lévy-type model with a single slowly-varying factor, which drives both the volatility and jump-intensity.

Consider a model for a stock \(S = e^X \), where \(X \) is modeled under the risk-neutral pricing measure as the solution of the following Lévy-Itô SDE

\[
\begin{align*}
 dX_t &= \mu(Z_t) dt + \sigma(Z_t) dW^Q_t + \int_{\mathbb{R}} s \, d\tilde{N}_t(Z_{t-}, ds), \\
 dZ_t &= \left(\varepsilon^2 c(Z_t) - \varepsilon \Gamma(Z_t) g(Z_t) \right) dt + \varepsilon g(Z_t) dB^Q_t; \quad \text{(risk-neutral measure } Q) \\
 d\langle W^Q, B^Q \rangle_t &= \rho dt.
\end{align*}
\]

Here, \(W^Q \) and \(B^Q \) are correlated Brownian motions and \(\tilde{N} \) is a compensated state-dependent Poisson random measure with which we associate a Lévy kernel \(\zeta(z) \nu(ds) \). The drift \(\mu(z) \) is fixed by the Lévy kernel and volatility so that \(S = e^X \) is a martingale:

\[
\mu(z) = -\frac{1}{2} \sigma^2(z) - \zeta(z) \int_{\mathbb{R}} \nu(ds) \left(e^s - 1 - s \right).
\]

Note that the volatility \(\sigma \) and Lévy kernel \(\zeta \nu \) are driven by \(Z \), which is *slowly-varying* in the following sense. Under the physical measure \(P \), the dynamics of \(Z \) are given by

\[
\begin{align*}
 dZ_t &= \varepsilon^2 c(Z_t) dt + \varepsilon g(Z_t) d\tilde{B}_t, \quad \text{(physical measure } P)
\end{align*}
\]

where \(\tilde{B}_t = B^Q_t - \int_0^t \Gamma(Z_s) \, ds \) is a standard \(P \)-Brownian motion (\(\Gamma \) is known as the *market price of risk* associated with \(\tilde{B} \)). The infinitesimal generator of \(Z \) under the physical measure

\[
\mathcal{A}_Z = \varepsilon^2 \left(\frac{1}{2} \sigma^2(z) \partial_x^2 + c(z) \partial_x \right)
\]

is scaled by \(\varepsilon^2 \), which is assumed to be a small parameter: \(\varepsilon^2 \ll 1 \). Thus, \(Z \) fluctuates over an intrinsic time-scale \(1/\varepsilon^2 \), which is large.

Due to the separation of time-scales the \((X, Z)\) process has a generator that naturally factors into three terms of different powers of \(\varepsilon \), just as in (2.2):

\[
\mathcal{A} = \mathcal{A}_0 + \varepsilon \mathcal{A}_1 + \varepsilon^2 \mathcal{A}_2,
\]

where \(\mathcal{A}_0, \mathcal{A}_1 \) and \(\mathcal{A}_2 \) are given by

\[
\begin{align*}
 \mathcal{A}_0 &= \mu(z) \partial_x + \frac{1}{2} \sigma^2(z) \partial_x^2 + \zeta(z) \int_{\mathbb{R}} \nu(ds) (\theta_s - 1 - s \partial_x), \quad \text{(2.19)}
\end{align*}
\]
\[A_1 = -\Gamma(z)g(z)\partial_z + \rho g(z)\sigma(z)\partial_x\partial_z, \]
\[A_2 = \frac{1}{2}g^2(z)\partial_x^2 + c(z)\partial_z. \]

Here, the shift operator \(\theta_s \) acts on the \(x \) variable. Comparing equations (2.12) and (2.19), we observe that, for fixed \(z \), the operator \(A_0 \) above is the generator of a Lévy process. As the operator \(A_0 \) in (2.19) acts only on the variable \(x \), the variable \(z \) serves only as a parameter. Thus we have

\[\Gamma_0(t, x, z; T, y) = \frac{1}{2\pi} \int d\xi \, e^{i\xi(x-y)+(T-t)\Phi_0(\xi,z)}, \]

where

\[\Phi_0(\xi, z) := i\mu(z)\xi - \frac{1}{2}\sigma^2(z)\xi^2 + \zeta(z) \int \nu(ds)(e^{i\xi s} - 1 - i\xi s). \]

Because \(A \) is of the form (2.2) (set \(A_n = 0 \) for \(n \geq 3 \)), and since the fundamental solution \(\Gamma_0 \) corresponding to \(A_0 \) is known, we can use (2.4) and (2.5) to write \(u_0 \) and \(u_1 \) explicitly. For an option with payoff \(\varphi(X_T) \) we have

\[u_0(t, x, z) = \int dx \varphi(y) \frac{1}{2\pi} \int d\xi \, e^{i\xi(x-y)+(T-t)\Phi_0(\xi,z)} = \frac{1}{2\pi} \int d\xi \, e^{i\xi(x-y)+(T-t)\Phi_0(\xi,z)} \tilde{\varphi}(\xi), \]

where \(\tilde{\varphi} \) is the Fourier transform of \(\varphi \).

A similar computation yields the following expression for \(u_1 \):

\[u_1(t, x, z) = \frac{(T-t)/2}{2\pi} \int_{\mathbb{R}} d\xi \, e^{i\xi x + t\Phi_0(\xi,z)} \tilde{\varphi}(\xi) M_\xi(z), \]

where

\[M_\xi(z) = V_1(z)(-i\xi^3 + \xi^2) + U_1(z) \left(\xi^2 \int_{\mathbb{R}} \nu(ds)(e^s - 1 - s) + i\xi \int_{\mathbb{R}} \nu(ds)(e^{i\xi s} - 1 - i\xi s) \right) \]
\[+ V_0(z)(-\xi^2 - i\xi) + U_0(z) \left(-i\xi \int_{\mathbb{R}} \nu(ds)(e^s - 1 - s) + \int_{\mathbb{R}} \nu(ds)(e^{i\xi s} - 1 - i\xi s) \right), \]

and

\[V_1(z) = \frac{1}{2}g(z)\rho\sigma(z)\partial_x\sigma^2(z), \quad V_0(z) = -\frac{1}{2}g(z)\Gamma(z)\partial_x\sigma^2(z), \]
\[U_1(z) = g(z)\rho\sigma(z)\partial_x\zeta(z), \quad U_0(z) = -g(z)\Gamma(z)\partial_x\zeta(z). \]

If the coefficients of \(A \) and the payoff function are smooth and bounded, then one can establish the following accuracy for the first order price approximation

\[|u(t, x, z) - (u_0(t, x, z) + \varepsilon u_1(t, x, z))| = O(\varepsilon^2), \]

which holds pointwise. Note that, to compute the approximate price of an option \(u_0 + \varepsilon u_1 \), one does not need full knowledge of \((g, \sigma, \Gamma, \zeta, \rho, z, \varepsilon) \). Rather, at order \(\varepsilon \), the information contained in these five functions and two variables is entirely captured by four group parameters \((\varepsilon U_1(z), \varepsilon U_0(z), \varepsilon V_1(z), \varepsilon V_0(z)) \). The values of these four parameters can be obtained by calibrating to observed call and put prices, as described in detail in Lorig and Lozano-Carbassé (2015).
2.8 Comparison of the Expansion schemes

The approximation methods presented in Sections 2.5, 2.6 and 2.7 exploit different small parameters in A and therefore work best (i.e., provide the most accurate approximations) in different regimes. Rigorous accuracy results must be obtained on a case-by-case basis. However, it is generally true that the accuracy of $\tilde{a}_n := \sum_{k=0}^n u_k$ depends on how well $\tilde{A}_n := \sum_{k=0}^n \approximates A$.

For example, the Taylor series expansion described in Section 2.5 works best if the coefficients of A are slowly varying. In this case, the coefficients can be well-approximated by a Taylor series of low order. Thus, a highly accurate approximation of A can be obtained with only a few terms.

The approximation considered in Section 2.6 works best when the diffusion coefficient of the volatility-driving process Y is small in comparison to the drift coefficient of Y and the drift and diffusion coefficients of X.

Finally, the approximation considered in Section 2.7 when the drift coefficient of the volatility-driving process Z is small in comparison to the diffusion coefficient of Z, which in turn is small in comparison to the drift and diffusion coefficients of X. As previously mentioned, this means that the intrinsic time-scale of Z must be slow in comparison to the intrinsic time-scale of X.

3 Merton Problem with Stochastic Volatility: Model Coefficient Polynomial Expansions

A landmark pair of papers on optimal investment strategy by Robert Merton analyzed the problem of how an investor should optimally allocate his wealth between a riskless bond and some risky assets, in order to maximize his expected utility of wealth. This problem, and its variation are now referred to as the Merton problem.

In the original papers, each of the risky assets follows geometric Brownian motion with constant volatility. This modeling assumption is convenient from the standpoint of analytic tractability, but is not realistic in practice, as it does not allow for stochastic volatility. Because of this, there has been much interest in analyzing how an investor’s optimal investment strategy changes in the presence of stochastic volatility. Here we focus on asymptotic methods for analyzing the stochastic control problem associated with portfolio optimization.

Analysis with multiscale stochastic volatility models described in Section 2.7 was presented in the case of simple power utilities in (Fouque et al., 2000, Section 10.1), and expansions for a hedging problem in Jonsson and Sircar (2002b,a) in the dual optimization problem, both for fast mean-reverting stochastic volatility. In Fouque et al. (2012), expansions are constructed directly in the primal problem under both fast and slow volatility fluctuations. Indifference pricing approximations with exponential utility and fast volatility were studied in Sircar and Zariphopoulou (2005). In this section, we present some new approximations for the Merton problem with stochastic volatility.

3.1 Models & Dynamic Programming Equation

The polynomial expansion techniques outlined in Section 2.5 can be extended to find explicit asymptotic solutions to the Merton problem in a general local-stochastic volatility (LSV) setting, i.e., $\sigma_t = \sigma(t, S_t, Y_t)$. To fix ideas, however, we consider the simpler stochastic volatility (SV) setting, in which a risky asset S, under the physical probability measure \mathbb{P}, is the solution of the
following SDE
\[dS_t = \mu(Y_t)S_t \, dt + \sigma(Y_t)S_t \, dB_t^S, \quad dY_t = c(Y_t) \, dt + \beta(Y_t) \, dB_t^Y, \quad d(B_t^S, B_t^Y) = \rho \, dt. \]
Here, \(B^S\) and \(B^Y\) are standard Brownian motions with correlation \(\rho\). Let \(W\) denote the wealth process of an investor who holds \(\pi_t\) units worth of currency in \(S\) at time \(t\), and has \((W_t - \pi_t)\) units of currency in a bond. For simplicity, we assume the risk-free rate of interest is zero. As such, the wealth process \(W\) satisfies
\[dW_t = \frac{\pi_t}{S_t} \, dS_t = \pi_t \mu(Y_t) \, dt + \pi_t \sigma(Y_t) \, dB_t^S. \]
Observe that \(S\) does not appear in the dynamics of the wealth process \(W\).

An investor chooses \(\pi_t\) to maximize his expected utility of wealth at a time \(T\) in the future, where utility is measure by a smooth, increasing and strictly concave function \(U : \mathbb{R}_+ \to \mathbb{R}\), and the objective to maximize is \(\mathbb{E} U(W_T)\). Increasing describes preference for more wealth than less, while concavity captures risk aversion, more concave being more risk averse. The analysis is illustrated with power utility functions in Section 3.3.

We define the investor’s value function \(u\) by
\[u(t, y, w) := \sup_{\pi \in \Pi} \mathbb{E}[U(W_T)|Y_t = y, W_t = w], \]
where \(\Pi\) the set of admissible strategies:
\[\Pi := \{ \pi \text{ adapted } : \mathbb{E} \int_0^T \pi_t^2 \sigma^2(Y_t) \, dt < \infty \text{ and } W_t \geq 0 \text{ a.s.} \}, \]
where adapted means adapted to the filtration generated by \((B^S, B^Y)\).

Assuming that \(u \in C^{1,2}([0, T], \mathbb{R}, \mathbb{R}_+)\), the value function solves the Hamilton-Jacobi-Bellman partial differential equation (HJB-PDE) problem
\[(\partial_t + \mathcal{A}^Y)u + \max_{\pi \in \mathbb{R}} \mathcal{A}^\pi u = 0, \quad u(T, y, w) = U(w), \tag{3.1} \]
where \((\mathcal{A}^Y + \mathcal{A}^\pi)\) is the generator of \((Y, W)\) assuming a Markov investment strategy \(\pi_t = \pi(t, Y_t, W_t)\). Specifically, the operators \(\mathcal{A}^Y\) and \(\mathcal{A}^\pi\) are given by
\[\mathcal{A}^Y = c(y)\partial_y + \frac{1}{2}\beta^2(y)\partial_y^2, \]
\[\mathcal{A}^\pi = \pi(t, y, w)\mu(y)\partial_w + \frac{1}{2}\pi^2(t, y, w)\sigma^2(y)\partial_w^2 + \pi(t, y, w)\rho\sigma(y)\beta(y)\partial_y \partial_w. \]

The optimal strategy \(\pi^*\) is given by
\[\pi^* = \arg \max_{\pi \in \mathbb{R}} \mathcal{A}^\pi u = -\frac{\mu(\partial_w u) + \rho\beta \sigma(\partial_y \partial_w u)}{\sigma^2(\partial_w^2 u)}, \tag{3.2} \]
where, for simplicity (and from now on), we have omitted the arguments \((t, y, w)\).

Inserting the optimal strategy \(\pi^*\) into the HJB-PDE (3.1) yields
\[(\partial_t + \mathcal{A}^Y) u + N(u) = 0, \tag{3.3} \]
where \(N(u)\) is a nonlinear term:
\[N(u) = -\frac{1}{2} \lambda^2 (\partial_w u)^2 - \rho \beta \lambda (\partial_u u) (\partial_y \partial_w u) - \frac{1}{2} \rho^2 \beta^2 (\partial_y \partial_w u)^2. \]
Here, we have introduced the Sharpe ratio \(\lambda(y) := \mu(y)/\sigma(y)\).
3.2 Asymptotic Approximation

For general \(\{\beta, c, \lambda\} \) there is no closed form solution of (3.3). Hence, we seek an asymptotic approximation for \(u \). To this end, using equation (2.15) from Section 2.5.1 as a guide, we expand the coefficients in (3.3) in a Taylor series about an arbitrary point \(\bar{y} \). Specifically, for any function \(\chi : \mathbb{R} \to \mathbb{R} \) we may formally write

\[
\chi(y) = \sum_{n=0}^{\infty} \varepsilon^n \chi_n(y), \quad \chi_n(y) := \frac{1}{n!} \partial_y^n \chi(\bar{y}) \cdot (y - \bar{y})^n, \quad \varepsilon = 1, \tag{3.4}
\]

where we have once again introduced \(\varepsilon \) for purposes of accounting. We also expand the function \(u \) as a power series in \(\varepsilon \)

\[
u = \sum_{n=0}^{\infty} \varepsilon^n u_n, \quad \varepsilon = 1. \tag{3.5}
\]

Now for each group of coefficients appearing in (3.3), we insert an expansion of the form (3.4), and we define

\[
A_n := c_n \partial_y + \left(\frac{1}{2} \beta^2 \right)_n \partial_y^2, \quad n \in \{0\} \cup \mathbb{N}. \tag{3.6}
\]

We also insert into (3.3) our expansion (3.5) for \(u \).

Next, collecting terms of like powers of \(\varepsilon \), we obtain at lowest order

\[
(\partial_t + A_0)u_0 - \left(\frac{1}{2} \lambda^2 \right)_0 \left(\frac{\partial w u_0}{\partial w} \right)^2 - (\rho \beta \lambda)_0 \left(\frac{\partial w u_0}{\partial w} \right) \left(\frac{\partial \beta}{\partial w} u_0 \right) = 0,
\]

with \(u_0(T, y, w) = U(w) \). We can look for a solution \(u_0 = u(t, w) \) that is independent of \(y \), and then we have

\[
\partial_t u_0 - \left(\frac{1}{2} \lambda^2 \right)_0 \left(\frac{\partial w u_0}{\partial w} \right)^2 = 0, \quad u_0(T, w) = U(w). \tag{3.7}
\]

We observe that (3.7) is the same nonlinear PDE problem that arises when one considers an underlying that has a constant drift \(\mu_0 = \mu(\bar{y}) \), diffusion coefficient \(\sigma_0 = \sigma(\bar{y}) \) and Sharpe ratio \(\lambda_0 = \lambda(\bar{y}) = \mu(\bar{y})/\sigma(\bar{y}) \).

It is convenient to define the risk-tolerance function

\[
R_0 := -\frac{\partial_w u_0}{\partial_w^2 u_0},
\]

and the operators

\[
D_k = R_0^k \partial_w^k, \quad k = 1, 2, \ldots .
\]

We now proceed to the order \(\mathcal{O}(\varepsilon) \) terms. Using \(u_0 = u_0(t, w) \) and (3.7) we obtain

\[
(\partial_t + A_0)u_1 + \left(\frac{1}{2} \lambda_0^2 \right) D_2 u_1 + \lambda_0^2 D_1 u_1 + (\rho \beta \lambda)_0 D_1 \partial_y u_1 = -\left(\frac{1}{2} \lambda^2 \right)_1 D_1 u_0, \quad u_1(T, y, w) = 0,
\]

which is a linear PDE problem for \(u_1 \).
We can re-write equations (3.8)-(3.9) more compactly as
\[
(\partial_t + \mathcal{A}_0 + \mathcal{B}_0(t))u_1 + H_1 = 0, \quad u_1(T, y, w) = 0,
\]
where the linear operator \(\mathcal{B}(t)\) and the source term \(H_1\) are given by
\[
\mathcal{B}_0(t) = \frac{1}{2} \lambda_0^2 D_2 + \lambda_0^2 D_1 + (\rho \beta \lambda_0) D_1 \partial_y, \quad H_1 = (\frac{1}{2} \lambda^2) R_0 \partial_w u_0.
\]
Observe that (3.10) is a linear PDE for \(u_1\).

The following change of variables (see Fouque et al. (2012)) will be useful for solving the PDE problem (3.10). Define
\[
u_1(t, y, w) = q_1(t, y, z(t, w)), \quad z(t, w) = -\log \partial_w u_0(t, w) + \frac{1}{2} \lambda_0^2 (T - t).
\]
Inserting (3.11) into (3.10), we find that \(q_1\) satisfies
\[
0 = (\partial_t + \mathcal{A}_0 + \mathcal{C}_0)q_1 + Q_1, \quad q_1(T, y, z) = 0,
\]
where the operator \(\mathcal{C}_0\) is given by
\[
\mathcal{C}_0 = \frac{1}{2} \lambda_0^2 \partial_z^2 + (\rho \beta \lambda_0) \partial_y \partial_z,
\]
and the function \(Q_1\) satisfies \(H_1(t, y, w) = Q_1(t, y, z(t, w))\).

Now, from (3.6) and (3.13), we observe that the operator \((\mathcal{A}_0 + \mathcal{C}_0)\) is the infinitesimal generator of a diffusion in \(\mathbb{R}^2\) whose drift vector and covariance matrix are constant. The semigroup \(P_0(t, t')\) generated by \((\mathcal{A}_0 + \mathcal{C}_0)\) is given by
\[
P_0(t, T) G(y, z) := \int_{\mathbb{R}^2} d\eta d\zeta \Gamma_0(t, y, z; T, \eta, \zeta) G(\eta, \zeta),
\]
where \(\Gamma_0\), the fundamental solution corresponding to \((\partial_t + \mathcal{A}_0 + \mathcal{C}_0)\), is a Gaussian kernel:
\[
\Gamma_0(t, y, z; T, \eta, \zeta) = \frac{1}{\sqrt{(2\pi)^4 |C|}} \exp \left(-\frac{1}{2} m^T C^{-1} m \right),
\]
with covariance matrix \(C\) and vector \(m\) given by
\[
C = (T - t) \begin{pmatrix} (\beta^2) & (\rho \beta \lambda_0) \\ (\rho \beta \lambda_0) & (\lambda^2) \end{pmatrix}, \quad m = \begin{pmatrix} \eta - y - (T - t) c_0 \\ \zeta - z \end{pmatrix}.
\]
By Duhamel’s principle, the unique classical solution to (3.12) is given by
\[
q_1(t) = \int_t^T ds P_0(t, s) Q_1(s),
\]
In the case of a general utility function, (3.7) is easily solved numerically, for instance by solving the fast diffusion (or Black’s) equation for the risk tolerance function \(R_0\) (see Fouque et al. (2012)). Then \(u_1\) can also be computed numerically using the formulas above. In the case of power utility there are explicit formulas, as given in Section 3.3.
Having obtained an approximation for the value function \(u \approx u_0 + u_1 \) we now seek an expansion for the optimal control \(\pi^* \approx \pi_0^* + \pi_1^* \). Inserting the expansion (3.4) of the coefficients and the expansion (3.5) for \(u \) into (3.2), and collecting terms of like powers of \(\varepsilon \) we obtain

\[
\mathcal{O}(1) : \quad \pi_0 = -\frac{\mu_0(\partial_w u_0)}{(\sigma^2)_0(\partial_{w}^2 u_0)},
\]

\[
\mathcal{O}(\varepsilon) : \quad \pi_1 = -\pi_0 \frac{\sigma^2_1}{(\sigma^2)_0} - \pi_0 \frac{\partial_w^2 u_1}{(\partial_w^2 u_0)} - \frac{\mu_1(\partial_w u_0)}{(\sigma^2)_0(\partial_w^2 u_0)} - \frac{\mu_0(\partial_w u_1)}{(\sigma^2)_0(\partial_w^2 u_0)} - \frac{\rho \beta \sigma_0}{(\sigma^2)_0(\partial_w^2 u_0)}.
\]

Higher order terms for both the value function \(u \) and the optimal control \(\pi^* \) can be obtained in the same manner as \(u_1 \) and \(\pi_1 \). Analysis of the asymptotic formulas for different utility functions and stochastic volatility models is presented in more detail in Lorig and Sircar (2014).

3.3 Power Utility

Finally, we consider a utility function \(U \) from the Constant Relative Risk Aversion (CRRA), or power family:

\[
\text{CRRA utility} : \quad U(w) := \frac{w^{1-\gamma}}{1-\gamma}, \quad w > 0, \quad \gamma > 0, \gamma \neq 1,
\]

where \(\gamma \) is called the risk aversion coefficient. Here all the quantities above can be computed explicitly.

The explicit solution \(u_0 \) to (3.7) is

\[
u_0(t, w) = U(w) \exp \left(\frac{1}{2} \lambda_0^2 \left(\frac{1 - \gamma}{\gamma} \right) (T - t) \right).
\]

The risk-tolerance function is \(R_0 = \frac{w}{\gamma} \), and the transformation in (3.11) is then

\[
\pi(t, w) = \gamma w + (T - t) \left(\frac{2 - 1}{\gamma} \right) \frac{1}{2} \lambda_0^2.
\]

An explicit computation reveals that \(u_1 \) is given by

\[
u_1(t, y, w) = q_1(t, y, z(t, w)) = \frac{1 - \gamma}{\gamma} u_0(t, w) \left(\frac{1}{2} \lambda^2(\tilde{y}) \right)^{\prime} \left((T - t)(y - \tilde{y}) + \frac{1}{2} (T - t)^2 \left(c_0 + \frac{1 - \gamma}{\gamma} \rho \beta_0 \lambda_0 \right) \right).
\]

For the specific case \(\tilde{y} = y \), the above expression simplifies to

\[
u_1(t, y, w) = \frac{1 - \gamma}{\gamma} u_0(t, w) \left(\frac{1}{2} \lambda^2(y) \right)^{\prime} \left(\frac{1}{2} (T - t)^2 \left(c_0 + \frac{1 - \gamma}{\gamma} \rho \beta_0 \lambda_0 \right) \right).
\]

Using these explicit representations of \(u_0 \) and \(u_1 \) the expressions (3.14) and (3.15) for the optimal stock holding approximations become

\[
\pi_0^* = \frac{\mu_0}{\gamma \sigma_0^2},
\]
\[\pi_1^*(t, y) = (y - \bar{y}) \left(\frac{\mu' (\bar{y})}{\gamma \sigma_0^2} - \frac{\mu_0}{\gamma \sigma_0^2} (\sigma^2 (\bar{y}))' \right) + \frac{(1 - \gamma) (T - t)}{\gamma \sigma_0} \left(\rho \beta_0 \frac{1}{\gamma} \left(\frac{1}{2} \lambda^2 (\bar{y}) \right)' \right). \]

For the specific case \(\bar{y} = y \), the formula for \(\pi_1^* \) simplifies to

\[\pi_1^*(t, y) = \frac{(1 - \gamma) (T - t)}{\gamma \sigma_0} \rho \beta_0 \frac{1}{\gamma} \left(\frac{1}{2} \lambda^2 (y) \right)'. \]

4 Conclusion

Asymptotic methods can be used to analyze and simplify pricing and portfolio optimization problems, and we have presented some examples and methodologies. A key insight is to perturb problems with stochastic volatility around their constant volatility counterparts to obtain the principle effect of volatility uncertainty.

These approaches reduce the dimension of the effective problems that have to be solved, and often lead to explicit formulas that can be analyzed for intuition. In the context of portfolio problems accounting for stochastic volatility, recent progress has been made in cases where there are transaction costs (Bichuch and Sircar (2014); Kallsen and Muhle-Karbe (2013)), stochastic risk aversion that varies with market conditions (Dong and Sircar (2014)), and under more complex local-stochastic volatility models (Lorig and Sircar (2014)).
References

27

