Crises: Equilibrium Shifts and Large Shocks

Stephen Morris (Princeton) and Muhamet Yildiz (MIT)

UCLA November 2016
On July 26th, 2012, Mario Draghi gave a speech in which he promised "...to do whatever it takes to preserve the euro. And believe me, it will be enough...."
On July 26th, 2012, Mario Draghi gave a speech in which he promised "....to do whatever it takes to preserve the euro. And believe me, it will be enough...."

Widely credited with having shifted the Eurozone economy from a "bad equilibrium" (high sovereign debt spreads and growing fiscal deficits mutually reinforcing each other); to a "good equilibrium" (with low spreads and sustainable fiscal policy).

Earlier - sometime in 2010? - there was a shift from the good equilibrium to the bad equilibrium

How to explain the these shifts?
• On July 26th, 2012, Mario Draghi gave a speech in which he promised "...to do whatever it takes to preserve the euro. And believe me, it will be enough...."

• Widely credited with having shifted the Eurozone economy from a "bad equilibrium" (high sovereign debt spreads and growing fiscal deficits mutually reinforcing each other); to a "good equilibrium" (with low spreads and sustainable fiscal policy).

• Earlier - sometime in 2010? - there was a shift from the good equilibrium to the bad equilibrium
On July 26th, 2012, Mario Draghi gave a speech in which he promised "...to do whatever it takes to preserve the euro. And believe me, it will be enough...."

Widely credited with having shifted the Eurozone economy from a "bad equilibrium" (high sovereign debt spreads and growing fiscal deficits mutually reinforcing each other); to a "good equilibrium" (with low spreads and sustainable fiscal policy).

Earlier - sometime in 2010? - there was a shift from the good equilibrium to the bad equilibrium

How to explain the these shifts?
This paper is not about the European sovereign debt crisis or sovereign debt crises more generally but rather about the generic issue of equilibrium shifts in many settings:

1. Sovereign Debt Crises
Equilibrium shifts lack good explanations

This paper is not about the European sovereign debt crisis or sovereign debt crises more generally but rather about the generic issue of equilibrium shifts in many settings:

1. Sovereign Debt Crises
2. Business Cycles
This paper is not about the European sovereign debt crisis or sovereign debt crises more generally but rather about the generic issue of equilibrium shifts in many settings:

1. Sovereign Debt Crises
2. Business Cycles
3. Financial Crises
Equilibrium shifts lack good explanations

This paper is not about the European sovereign debt crisis or sovereign debt crises more generally but rather about the generic issue of equilibrium shifts in many settings:

1. Sovereign Debt Crises
2. Business Cycles
3. Financial Crises
4. Revolution
This paper is not about the European sovereign debt crisis or sovereign debt crises more generally but rather about the generic issue of equilibrium shifts in many settings:

1. Sovereign Debt Crises
2. Business Cycles
3. Financial Crises
4. Revolution
5. And so on....
We will consider a model with...
- We will consider a model with...
 - a coordination game whose payoffs depend on a "fundamental state"
• We will consider a model with...

 • a coordination game whose payoffs depend on a "fundamental state"
 • the fundamental state follows a random walk
• We will consider a model with...
 • a coordination game whose payoffs depend on a "fundamental state"
 • the fundamental state follows a random walk
 • there is incomplete information
We will consider a model with...

- a coordination game whose payoffs depend on a "fundamental state"
- the fundamental state follows a random walk
- there is incomplete information
- there is *hysterisis*: agents keep playing the same action unless it is no longer rationalizable
We will consider a model with...

- a coordination game whose payoffs depend on a "fundamental state"
- the fundamental state follows a random walk
- there is incomplete information
- there is *hysterisis*: agents keep playing the same action unless it is no longer rationalizable

Equilibrium will shift when....
• We will consider a model with...
 • a coordination game whose payoffs depend on a "fundamental state"
 • the fundamental state follows a random walk
 • there is incomplete information
 • there is *hysteresis*: agents keep playing the same action unless it is no longer rationalizable

• Equilibrium will shift when....
 1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
We will consider a model with...

- a coordination game whose payoffs depend on a "fundamental state"
- the fundamental state follows a random walk
- there is incomplete information
- there is *hysterisis*: agents keep playing the same action unless it is no longer rationalizable

Equilibrium will shift when....

1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
2. There is a large enough shock to fundamentals - even if it does not take us to the critical boundary (we will see how big this jump must be)
a continuum of players
Static Complete Information Game

- a continuum of players
- each player decides to "invest" or "not invest"
• a continuum of players
• each player decides to "invest" or "not invest"
 • payoff to not investing is 0
• a continuum of players
• each player decides to "invest" or "not invest"
 • payoff to not investing is 0
 • payoff to investing is $\theta + \alpha - 1$, where...
Static Complete Information Game

- a continuum of players
- each player decides to "invest" or "not invest"
 - payoff to not investing is 0
 - payoff to investing is $\theta + \alpha - 1$, where...
 - θ is the fundamental state or "fundamentals"
Static Complete Information Game

- a continuum of players
- each player decides to "invest" or "not invest"
 - payoff to not investing is 0
 - payoff to investing is $\theta + \alpha - 1$, where...
 - θ is the fundamental state or "fundamentals"
 - α is the proportion of other players investing
Static Complete Information Game Equilibrium

• Equilibria...
Equilibria...

- if $\theta > 1$, players have a dominant strategy to invest
Equilibria...

- if $\theta > 1$, players have a dominant strategy to invest
- if $\theta < 0$, players have a dominant strategy to not invest
Equilibria...

- if $\theta > 1$, players have a dominant strategy to invest
- if $\theta < 0$, players have a dominant strategy to not invest
- if $0 \leq \theta \leq 1$, "all invest" and "all not invest" are both equilibria
• Equilibria...
 • if $\theta > 1$, players have a dominant strategy to invest
 • if $\theta < 0$, players have a dominant strategy to not invest
 • if $0 \leq \theta \leq 1$, "all invest" and "all not invest" are both equilibria

• Terminology: the \textit{latent} action is the one that would be played if you had a uniform belief over the proportion of others who will invest.....
Equilibria...

- If $\theta > 1$, players have a dominant strategy to invest.
- If $\theta < 0$, players have a dominant strategy to not invest.
- If $0 \leq \theta \leq 1$, "all invest" and "all not invest" are both equilibria.

Terminology: the *latent* action is the one that would be played if you had a uniform belief over the proportion of others who will invest.

- If $\theta > \frac{1}{2}$, "all invest" is the latent equilibrium.
Static Complete Information Game Equilibrium

- Equilibria...
 - if $\theta > 1$, players have a dominant strategy to invest
 - if $\theta < 0$, players have a dominant strategy to not invest
 - if $0 \leq \theta \leq 1$, "all invest" and "all not invest" are both equilibria

- Terminology: the *latent* action is the one that would be played if you had a uniform belief over the proportion of others who will invest.....
 - if $\theta > \frac{1}{2}$, "all invest" is the latent equilibrium
 - if $\theta < \frac{1}{2}$, "all not invest" is the latent equilibrium
• fundamentals evolve according to a random walk

\[\theta_t = \theta_{t-1} + \sigma \eta_t; \]

where \(\eta_t \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks
Dynamic Complete Information Game

- Fundamentals evolve according to a random walk

\[\theta_t = \theta_{t-1} + \sigma \eta_t; \]

where \(\eta_t \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks

- Static coordination game is played in every period
Dynamic Complete Information Game

- Fundamentals evolve according to a random walk
 \[\theta_t = \theta_{t-1} + \sigma \eta_t; \]
 where \(\eta_t \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks.
- Static coordination game is played in every period.
- Equilibrium play can depend on history in an arbitrary way; in particular, as long as \(\theta_t \) remains in the interval \([0, 1]\), we can jump around as much as we like....
Dynamic Complete Information Game

- Fundamentals evolve according to a random walk

\[\theta_t = \theta_{t-1} + \sigma \eta_t; \]

where \(\eta_t \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks.

- Static coordination game is played in every period.

- Equilibrium play can depend on history in an arbitrary way; in particular, as long as \(\theta_t \) remains in the interval \([0, 1] \), we can jump around as much as we like.

- Equilibrium selection strawmen?
Dynamic Complete Information Game

- Fundamentals evolve according to a random walk

\[\theta_t = \theta_{t-1} + \sigma \eta_t; \]

where \(\eta_t \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks.

- Static coordination game is played in every period.

- Equilibrium play can depend on history in an arbitrary way; in particular, as long as \(\theta_t \) remains in the interval \([0, 1]\), we can jump around as much as we like....

- Equilibrium selection strawmen?
 - Play latent action in every period.
Dynamic Complete Information Game

- Fundamentals evolve according to a random walk

\[\theta_t = \theta_{t-1} + \sigma \eta_t; \]

where \(\eta_t \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks

- Static coordination game is played in every period

- Equilibrium play can depend on history in an arbitrary way; in particular, as long as \(\theta_t \) remains in the interval \([0, 1]\), we can jump around as much as we like....

- Equilibrium selection strawmen?
 - Play latent action in every period
 - (Hysterisis) play what was played last period as long as it is still an equilibrium
At each date,

- current common fundamental is chosen according to
 \[\theta = \theta_{-1} + \sigma \eta; \]

where "common shock" \(\eta \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks.
At each date,

- current common fundamental is chosen according to

\[\theta = \theta_{-1} + \sigma \eta; \]

where "common shock" \(\eta \) is distributed according to p.d.f. \(g \) and \(\sigma \) parameterizes the size of shocks

- each player has own payoff type

\[x_i = \theta + \sigma \varepsilon_i \]

where "idiosyncratic shock" \(\varepsilon_i \) is distributed according to p.d.f. \(f \)
• Rank belief: if player i observes own payoff state x_i, what probability does he assign to player j observing a lower payoff state x_j?
- Rank belief: if player i observes own payoff state x_i, what probability does he assign to player j observing a lower payoff state x_j?
- Player i’s normalized payoff state is

$$z_i = \frac{(x_i - \theta_{-1})}{\sigma} = \varepsilon_i + \eta$$
• Rank belief: if player i observes own payoff state x_i, what probability does he assign to player j observing a lower payoff state x_j?

• Player i’s normalized payoff state is

$$z_i = \frac{(x_i - \theta_1)}{\sigma} = \epsilon_i + \eta$$

• Player i’s rank belief is now

$$R(z) \equiv \Pr(x_j \leq x_i|z_i = z) = \frac{\int F(\epsilon)f(\epsilon)g(z - \epsilon)\,d\epsilon}{\int f(\epsilon)g(z - \epsilon)\,d\epsilon}$$
A Leading Example

- f is standard normal distribution $N(0, 1)$
• f is standard normal distribution $N(0,1)$
• g is Student’s t-distribution
A Leading Example

- f is standard normal distribution $N(0, 1)$
- g is Student’s t-distribution
 - variance of η_t is unknown and distributed with inverse χ^2
Figure: Rank belief function R.
Key Thick Tails Assumption

- g has regularly-varying tails,

$$\lim_{\lambda \to \infty} \frac{g(\lambda \eta)}{g(\lambda \eta')} \in (0, \infty) \text{ for all } \eta, \eta' \in \mathbb{R}_+,$$ \hfill (1)
Key Thick Tails Assumption

- g has regularly-varying tails,

$$\lim_{\lambda \to \infty} \frac{g(\lambda \eta)}{g(\lambda \eta')} \in (0, \infty) \text{ for all } \eta, \eta' \in \mathbb{R}_+, \quad (1)$$

- and f has thinner tails:

$$\lim_{\lambda \to \infty} \frac{f(\lambda \varepsilon)}{g(\lambda \eta)} = 0 \text{ for all } \varepsilon, \eta \in \mathbb{R}_+. \quad (2)$$
Key Thick Tails Assumption

- g has regularly-varying tails,
 \[
 \lim_{\lambda \to \infty} \frac{g(\lambda \eta)}{g(\lambda \eta')} \in (0, \infty) \text{ for all } \eta, \eta' \in \mathbb{R}_+, \tag{1}
 \]

- and f has thinner tails:
 \[
 \lim_{\lambda \to \infty} \frac{f(\lambda \varepsilon)}{g(\lambda \eta)} = 0 \text{ for all } \varepsilon, \eta \in \mathbb{R}_+. \tag{2}
 \]

- this is maintained assumption
• they are empirically common in relevant applications
Why Thick Tails?

- they are empirically common in relevant applications
- additional elements easily generate thick tails
Why Thick Tails?

- they are empirically common in relevant applications
- additional elements easily generate thick tails
 - variance uncertainty + normal \Rightarrow t distribution
Why Thick Tails?

- they are empirically common in relevant applications
- additional elements easily generate thick tails
 - variance uncertainty + normal \Rightarrow t distribution
- model uncertainty
R is differentiable and satisfies:

- **symmetry**: $R(-z) = 1 - R(z)$; in particular, $R(0) = 1/2$.

R is differentiable and satisfies:

- **symmetry**: $R(-z) = 1 - R(z)$; in particular, $R(0) = 1/2$.
- **single crossing at $1/2$**: $R(z) > 1/2 > R(-z)$ whenever $z > 0$.

Properties of Rank Beliefs

R is differentiable and satisfies:

- **symmetry**: $R(-z) = 1 - R(z)$; in particular, $R(0) = 1/2$.
- **single crossing at 1/2**: $R(z) > 1/2 > R(-z)$ whenever $z > 0$.
- **uniform rank beliefs**: $R(z) \to \frac{1}{2}$ as $z \to \infty$.
Figure: Rank belief function under normal idiosyncratic shocks and normal or exponential common shocks
Now consider one shot Bayesian game where we fix θ_{-1}, draw players’ payoff types as described above, and let each player’s payoff now depend on his payoff type, i.e., payoff to investing is $x_i + \alpha - 1$.
Now consider one shot Bayesian game where we fix θ_{-1}, draw players' payoff types as described above, and let each player’s payoff now depend on his payoff type, i.e., payoff to investing is $x_i + \alpha - 1$.

Suppose that each player follows a "cutoff" strategy, investing if his normalized payoff type z is above some critical threshold z^*.

So a necessary condition for this to be an equilibrium is $R(z) = z + \alpha - 1$.

This is also sufficient as long as higher payoff types lead to higher beliefs about fundamental state, i.e., $F_j(x_i; \alpha)$ is decreasing in x_i.

Equilibria of the One-shot Bayesian Game
Equilibria of the One-shot Bayesian Game

- Now consider one shot Bayesian game where we fix θ_{-1}, draw players’ payoff types as described above, and let each player’s payoff now depend on his payoff type, i.e., payoff to investing is $x_i + \alpha - 1$
- Suppose that each player follows a "cutoff" strategy, investing if his normalized payoff type z is above some critical threshold z^*
- for player with type z^*, the payoff to investing is

$$\sigma z^* + \theta_{-1} + \left(1 - R\left(z^*\right)\right) - 1$$
Now consider one shot Bayesian game where we fix θ_{-1}, draw players’ payoff types as described above, and let each player’s payoff now depend on his payoff type, i.e., payoff to investing is $x_i + \alpha - 1$.

Suppose that each player follows a "cutoff" strategy, investing if his normalized payoff type z is above some critical threshold z^*.

For player with type z^*, the payoff to investing is

$$\sigma z^* + \theta_{-1} + \left(1 - R(z^*)\right) - 1$$

So a necessary condition for this to be an equilibrium is

$$R(z^*) = \sigma z^* + \theta_{-1}$$
Now consider one shot Bayesian game where we fix θ_{-1}, draw players’ payoff types as described above, and let each player’s payoff now depend on his payoff type, i.e., payoff to investing is $x_i + \alpha - 1$.

Suppose that each player follows a "cutoff" strategy, investing if his normalized payoff type z is above some critical threshold z^*.

For player with type z^*, the payoff to investing is

$$\sigma z^* + \theta_{-1} + 1 - R(z^*) - 1$$

So a necessary condition for this to be an equilibrium is

$$R(z^*) = \sigma z^* + \theta_{-1}$$

This is also sufficient as long as higher payoff types lead to higher beliefs about fundamental state, i.e., $F_{\theta|X}(\theta|x_i, \theta_{-1})$ is decreasing in x_i.

Equilibria of the One-shot Game in Picture

- red line is $R(z)$, blue line is $\sigma z + \theta_{-1}$
Let $z^{**} (\theta_{-1})$ be the largest solution to

$$R(z) = \sigma z + \theta_{-1}.$$

and $x^{**} (\theta_{-1}) = \sigma z^{**} (\theta_{-1}) + \theta_{-1}.$
Let \(z^{**}(\theta_{-1}) \) be the largest solution to

\[
R(z) = \sigma z + \theta_{-1}.
\]

and \(x^{**}(\theta_{-1}) = \sigma z^{**}(\theta_{-1}) + \theta_{-1} \).

Because the game is supermodular... invest is uniquely rationalizable for types \(x_i > x^{**}(\theta_{-1}) \).
Let $z^{**}(\theta_{-1})$ be the largest solution to

$$R(z) = \sigma z + \theta_{-1}. $$

and $x^{**}(\theta_{-1}) = \sigma z^{**}(\theta_{-1}) + \theta_{-1}$.

Because game is supermodular... invest is uniquely rationalizable for types $x_i > x^{**}(\theta_{-1})$

With analogous definitions, not invest is uniquely rationalizable for types $x_i < x^*(\theta_{-1})$.
Let $z^{**}(\theta_{-1})$ be the largest solution to

\[R(z) = \sigma z + \theta_{-1}. \]

and $x^{**}(\theta_{-1}) = \sigma z^{**}(\theta_{-1}) + \theta_{-1}$.

Because game is supermodular... invest is uniquely rationalizable for types $x_i > x^{**}(\theta_{-1})$.

With analogous definitions, not invest is uniquely rationalizable for types $x_i < x^{*}(\theta_{-1})$.

If $x_i \in [x^{*}(\theta_{-1}), x^{**}(\theta_{-1})]$, both actions are rationalizable.
Fundamental Cutoffs and Discontinuity

- From the picture, define $\bar{\theta} \in (0, \bar{R})$ where $\bar{R} = \max R$
From the picture, define $\bar{\theta} \in (0, \bar{R})$ where $\bar{R} = \max R$

Key discontinuity:
• From the picture, define $\bar{\theta} \in (0, \bar{R})$ where $\bar{R} = \max R$

• Key discontinuity:
 • as θ_{-1} increases to $\bar{\theta}$, $x^{**}(\theta_{-1}) > 0$ decreases continuously
• From the picture, define \(\bar{\theta} \in (0, \bar{R}) \) where \(\bar{R} = \max R \)
• Key discontinuity:
 • as \(\theta_{-1} \) increases to \(\bar{\theta} \), \(x^{**}(\theta_{-1}) > 0 \) decreases continuously
 • at \(\theta_{-1} = \bar{\theta} \), \(x^{**}(\theta_{-1}) \) drops discontinuously and equals \(x^{**}(\theta_{-1}) \)
- We have completely characterized individual rationalizable behavior.
We have completely characterized individual rationalizable behavior.

An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...
• We have completely characterized individual rationalizable behavior

• An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...

• This is important because....
• We have completely characterized individual rationalizable behavior

• An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...

• This is important because....
 - we are interested in aggregate behavior...
• We have completely characterized individual rationalizable behavior

• An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...

• This is important because....

 • we are interested in aggregate behavior...

 • depends only on fundamentals not on idiosyncratic shocks
• We have completely characterized individual rationalizable behavior

• An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...

• This is important because....

 • we are interested in aggregate behavior...
 • depends only on fundamentals not on idiosyncratic shocks

• Majority Uniquely Rationalizable $=$ Median Player Uniquely Rationalizable
- We have completely characterized individual rationalizable behavior.
- An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...
- This is important because...
 - we are interested in aggregate behavior...
 - depends only on fundamentals not on idiosyncratic shocks
- Majority Uniquely Rationalizable \equiv Median Player Uniquely Rationalizable
- If an action is MUR, the analyst can be sure that the majority play that action independent of equilibrium selection.
• We have completely characterized individual rationalizable behavior
• An action is *majority uniquely rationalizable* (MUR) given θ_{-1} and θ if it is uniquely rationalizable for a majority of players...
• This is important because....
 • we are interested in aggregate behavior...
 • depends only on fundamentals not on idiosyncratic shocks
• Majority Uniquely Rationalizable $=$ Median Player Uniquely Rationalizable
• If an action is MUR, the analyst can be sure that the majority play that action independent of equilibrium selection
• MAIN QUESTION: How does MUR depend on θ_{-1}, θ and thus on $\theta - \theta_{-1}$?
Equilibria of the One-shot Game in Picture

- red line is $R(z)$, blue line is $\sigma z + \theta_{-1}$
• invest is MUR $\iff \theta > x^{**}(\theta_{-1})$, and
• invest is MUR $\iff \theta > x^{**} (\theta_{-1})$, and
• not invest is MUR $\iff \theta < x^* (\theta_{-1})$.
• What if $|\theta - \theta_{-1}|$ is small?
Majority Play with Small Shocks

- What if $|\theta - \theta_{-1}|$ is small?
- We need a strictly positive z in order for invest to be uniquely rationalizable for a player.
• What if $|\theta - \theta_{-1}|$ is small?
• we need a strictly positive z in order for invest to be uniquely rationalizable for a player
• so we need a strictly positive $\theta - \theta_{-1}$ for invest to MUR
• What if $|\theta - \theta_{-1}|$ is small?
• we need a strictly positive z in order for invest to be uniquely rationalizable for a player
• so we need a strictly positive $\theta - \theta_{-1}$ for invest to MUR
• can show that "strictly positive" is uniformly strictly positive
Majority Play with Small Shocks

• What if $|\theta - \theta_{-1}|$ is small?
• we need a strictly positive z in order for invest to be uniquely rationalizable for a player
• so we need a strictly positive $\theta - \theta_{-1}$ for invest to MUR
• can show that "strictly positive" is uniformly strictly positive
• so there exists $\Delta > 0$ such that whenever $|\theta - \theta_{-1}| \leq \Delta$, invest is MUR if and only if $\theta_{-1} > \bar{\theta}$
Majority Play with a Large Shock: How Large is Large?

- If $\frac{1}{2} < \theta_{-1} < \bar{\theta}$, then a common shock of size $z^{**} (\theta_{-1})$ will make invest MUR
Majority Play with a Large Shock: How Large is Large?

- If $\frac{1}{2} < \theta_{-1} < \bar{\theta}$, then a common shock of size $z^{**}(\theta_{-1})$ will make invest MUR
- What can we say about $z^{**}(\theta_{-1})$?
Majority Play with a Large Shock: How Large is Large?

- If $\frac{1}{2} < \theta_{-1} < \bar{\theta}$, then a common shock of size $z^{**}(\theta_{-1})$ will make invest MUR
- What can we say about $z^{**}(\theta_{-1})$?
- Want to show that $z^{**}(\theta_{-1})$ is not too high...
Figure: An upper bound for $z^{**}(\theta_{t-1})$ for $\theta_{t-1} > 1/2$.
Majority Play with a Large Shock: How Large is Large?

\[z^{**}(\theta_{-1}) \leq \bar{z}(\theta_{-1}) = \max R^{-1}(\theta_{-1}) \]

- Independent of \(\sigma \), it is enough to have a shock of size \(\max R^{-1}(\theta_{-1}) \)
$z^{**} (\theta_{-1}) \leq \tilde{z} (\theta_{-1}) = \max R^{-1} (\theta_{-1})$

- Independent of σ, it is enough to have a shock of size $\max R^{-1} (\theta_{-1})$
- "large but not too large"
Majority Play with a Large Shock

Proposition

Invest is majority uniquely rationalizable if it was latent under the prior mean (i.e. $\theta_{-1} > 1/2$) and

$$\theta - \theta_{-1} > \sigma\bar{Z}(\theta_{-1});$$
• Now consider the dynamic incomplete information model...
Now consider the dynamic incomplete information model...

- requires careful definition of game, strategies, solution concept (public perfect Bayesian equilibrium)...

That’s It! (Almost)
Now consider the dynamic incomplete information model...

- requires careful definition of game, strategies, solution concept (public perfect Bayesian equilibrium)...

- In each period, an equilibrium of the static game is played
Now consider the dynamic incomplete information model...

- requires careful definition of game, strategies, solution concept (public perfect Bayesian equilibrium)...

- In each period, an equilibrium of the static game is played

- Equilibria may have arbitrary history dependence
Equilibria may have arbitrary history dependence

Nonetheless there are things we can say independent of history;

1. If fundamentals are above the critical boundary at date t_1, then there is majority investment at date t_1.
2. If investment is latent at date t_1 ($t_1 = 2$) and there is a large enough shock $t_1_{\text{max}} R_1(t_1)$, then there is majority investment at date t_1.

Define hysterisis equilibrium (a selection from dynamic game equilibria) to be one where players invest if (i) a majority invested in the previous period and (ii) it is rationalizable to invest.

Now we switch from minority investment to majority investment only if one of the two triggers above occur.
• Equilibria may have arbitrary history dependence

• Nonetheless there are things we can say independent of history;

 1 if fundamentals are above the critical boundary at date $t - 1$, $\theta_{t-1} \geq \bar{\theta}$, then there is majority investment at date t.

• Equilibria may have arbitrary history dependence

• Nonetheless there are things we can say independent of history;

1 if fundamentals are above the critical boundary at date $t - 1$, $\theta_{t-1} \geq \bar{\theta}$, then there is majority investment at date t.

• the critical boundary $\bar{\theta}$ is bounded above by the maximum rank belief
• Equilibria may have arbitrary history dependence

• Nonetheless there are things we can say independent of history;

 1. if fundamentals are above the critical boundary at date \(t - 1 \), \(\theta_{t-1} \geq \bar{\theta} \), then there is majority investment at date \(t \).
 - the critical boundary \(\bar{\theta} \) is bounded above by the maximum rank belief

 2. if invest is latent at date \(t - 1 \) (\(\theta_{t-1} \geq 1/2 \)) and there is a large enough shock \(\theta_t - \theta_{t-1} \geq \max R^{-1}(\theta_{t-1}) \), then there is majority investment at date \(t \).
• Equilibria may have arbitrary history dependence

• Nonetheless there are things we can say independent of history;
 1. if fundamentals are above the critical boundary at date $t - 1$, $\theta_{t-1} \geq \bar{\theta}$, then there is majority investment at date t.
 • the critical boundary $\bar{\theta}$ is bounded above by the maximum rank belief
 2. if invest is latent at date $t - 1$ ($\theta_{t-1} \geq 1/2$) and there is a large enough shock $\theta_t - \theta_{t-1} \geq \max R^{-1}(\theta_{t-1})$, then there is majority investment at date t.

• Define hysteresis equilibrium (a selection from dynamic game equilibria) to be one where players invest if (i) a majority invested in the previous period and (ii) it is rationalizable to invest.
Equilibria may have arbitrary history dependence

Nonetheless there are things we can say independent of history;

1. if fundamentals are above the critical boundary at date $t-1$, $\theta_{t-1} \geq \bar{\theta}$, then there is majority investment at date t.
 - the critical boundary $\bar{\theta}$ is bounded above by the maximum rank belief

2. if invest is latent at date $t-1$ ($\theta_{t-1} \geq 1/2$) and there is a large enough shock $\theta_t - \theta_{t-1} \geq \max R^{-1}(\theta_{t-1})$, then there is majority investment at date t.

Define hysterisis equibrium (a selection from dynamic game equilibria) to be one where players invest if (i) a majority invested in the previous period and (ii) it is rationalizable to invest.

Now we switch from minority investment to majority investment only if one of the two triggers above occur.
• If a "good" equilibrium is being played, and fundamentals are on the way down, it is better to have fundamentals drift down slowly (or bad news to be released gradually)
Implications

- If a "good" equilibrium is being played, and fundamentals are on the way down, it is better to have fundamentals drift down slowly (or bad news to be released gradually).
- If a bad equilibrium is being played, and fundamentals are heading up, it is better to have fundamentals jump up (or good news released in chunks).
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur which triggered by common knowledge events
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur which triggered by common knowledge events
 - folk argument
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur which triggered by common knowledge events
 - folk argument
 - Michael Chwe "Coordination, Ritual and Common Knowledge"
Equilibrium shifts occur which triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
- (some of my earlier work)
Equilibrium shifts occur which triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
- (some of my earlier work)

Questions:
Equilibrium shifts occur which triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
- (some of my earlier work)

Questions:

- If going from multiplicity to multiplicity, what explains direction of shift?
Equilibrium shifts occur which triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
- (some of my earlier work)

Questions:

- If going from multiplicity to multiplicity, what explains direction of shift?
- Similarly, if going from uniqueness to multiplicity (c.f., global game arguments)
Equilibrium shifts occur which triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
- (some of my earlier work)

Questions:

- If going from multiplicity to multiplicity, what explains direction of shift?
- Similarly, if going from uniqueness to multiplicity (c.f., global game arguments)
- Feels like we go from multiplicity to uniqueness?
shift occurs to latent equilibrium not because it has become (approximate) common knowledge that things are better....
shift occurs to latent equilibrium not because it has become (approximate) common knowledge that things are better....

but because shock creates lack of common knowledge that things are not good and thus strategic uncertainty (shorting market participants no longer confident that others are shorting)
• shift occurs to latent equilibrium not because it has become (approximate) common knowledge that things are better....
• but because shock creates lack of common knowledge that things are not good and thus strategic uncertainty (shorting market participants no longer confident that others are shorting)
• shock would not have worked unless good equilibrium had already become latent equilibrium
Analysis is essentially as before, except that the big shock effect goes away.
Analysis is essentially as before, except that the big shock effect goes away.

Compare (first generation) global games:
Analysis is essentially as before, except that the big shock effect goes away.

Compare (first generation) global games:

- adding similar incomplete information
1 Analysis is essentially as before, except that the big shock effect goes away.

2 Compare (first generation) global games:
 - adding similar incomplete information
 - focus on globally unique equilibrium
1. Analysis is essentially as before, except that the big shock effect goes away.

2. Compare (first generation) global games:
 - adding similar incomplete information
 - focus on globally unique equilibrium
 - all (?) analysis away from the limit done for (silly?) normal normal case
Analysis is essentially as before, except that the big shock effect goes away.

Compare (first generation) global games:

- adding similar incomplete information
- focus on globally unique equilibrium
- all (?) analysis away from the limit done for (silly?) normal normal case

- this paper: sometimes multiplicity (resolved by hysterisis) sometimes uniqueness, intuitive rank beliefs