Expectations, Networks, and Conventions

Benjamin Golub
Harvard
bgolub@fas.harvard.edu

Stephen Morris
Princeton
smorris@princeton.edu

University of Michigan
Consensus Expectations

- Consensus expectations
 - what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
Consensus Expectations

- Consensus expectations
 - what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
 - “average” is taken with respect to “network” weights
Consensus Expectations

- Consensus expectations
 - what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
 - “average” is taken with respect to “network” weights
 - limit of average expectations is the called the “consensus expectation”
Consensus Expectations

Consensus expectations

- what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
- “average” is taken with respect to “network” weights
- limit of average expectations is the called the “consensus expectation”
- consensus expectations exist
Consensus Expectations

- Consensus expectations
 - what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
 - “average” is taken with respect to “network” weights
 - limit of average expectations is the called the “consensus expectation”
 - consensus expectations exist

- Consensus expectations matter:
Consensus Expectations

- Consensus expectations
 - what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
 - “average” is taken with respect to “network” weights
 - limit of average expectations is the called the “consensus expectation”
 - consensus expectations exist

- Consensus expectations matter:
 - characterize equilibrium of a network game with asymmetric information, where best responses are linear and coordination motive is (arbitrarily) high: “conventions”
Consensus Expectations

- Consensus expectations
 - what is the average expectation of random variable? What is the average representation of the average expectation? And so on...
 - “average” is taken with respect to “network” weights
 - limit of average expectations is the called the “consensus expectation”
 - consensus expectations exist

- Consensus expectations matter:
 - characterize equilibrium of a network game with asymmetric information, where best responses are linear and coordination motive is (arbitrarily) high: “conventions”
 - characterize asset prizes in a (stylized) over-the-counter market with (arbitrarily) frequent trading and market segmentation
Main Contributions

- Substantive contribution: what are consensus expectations?
 - Complete Information
 - Eigenvector centrality weighted beliefs = outcome of de Groot learning (de Groot 1974, BEN: add refs vayanos et al, golub?)

- Common Prior Assumption
 - Ex ante expectation (Samet 98)

- Common Prior on Types
 - Eigenvector centrality weighted ex ante expectation

- "Compatible Marginals on Types" (to be defined)
 - "separability": Eigenvector centrality weighted pseudo (but network free) ex ante expectation

- Common Certainty of (Mild) Optimism - everyone expects others to be (a bit) more optimistic than him
 - Highest possible interim expectation

- Least Informed Agent
 - Ex ante expectation of least informed agent

- Methodological contribution: unified treatment of network structure and asymmetric information
Main Contributions

- Substantive contribution: what are consensus expectations?
 1. Complete Information
 - eigenvector centrality weighted beliefs = outcome of de Groot learning
 (de Groot 1974, BEN: add refs vayanos et al, golub?)
 2. Common Prior Assumption
 - ex ante expectation (Samet 98)
Main Contributions

- Substantive contribution: what are consensus expectations?
 1. Complete Information
 - eigenvector centrality weighted beliefs = outcome of de Groot learning (de Groot 1974, BEN: add refs vayanos et al, golub?)
 2. Common Prior Assumption
 - ex ante expectation (Samet 98)
 3. Common Prior on Types
 - eigenvector centrality weighted ex ante expectation
Main Contributions

Substantive contribution: what are consensus expectations?

1. Complete Information
 - eigenvector centrality weighted beliefs = outcome of de Groot learning (de Groot 1974, BEN: add refs vayanos et al, golub?)

2. Common Prior Assumption
 - ex ante expectation (Samet 98)

3. Common Prior on Types
 - eigenvector centrality weighted ex ante expectation

4. “Compatible Marginals on Types” (to be defined)
 - “separability”: eigenvector centrality weighted pseudo (but network free) ex ante expectation
Main Contributions

- Substantive contribution: what are consensus expectations?
 1. Complete Information
 - eigenvector centrality weighted beliefs = outcome of de Groot learning
 (de Groot 1974, BEN: add refs vayanos et al, golub?)
 2. Common Prior Assumption
 - ex ante expectation (Samet 98)
 3. Common Prior on Types
 - eigenvector centrality weighted ex ante expectation
 4. “Compatible Marginals on Types” (to be defined)
 - “separability”: eigenvector centrality weighted pseudo (but network free) ex ante expectation
 5. Common Certainty of (Mild) Optimism” - everyone expects others to be (a bit) more optimistic than him
 - highest possible interim expectation
Main Contributions

- Substantive contribution: what are consensus expectations?
 1. Complete Information
 - eigenvector centrality weighted beliefs = outcome of de Groot learning
 (de Groot 1974, BEN: add refs vayanos et al, golub?)
 2. Common Prior Assumption
 - ex ante expectation (Samet 98)
 3. Common Prior on Types
 - eigenvector centrality weighted ex ante expectation
 4. “Compatible Marginals on Types” (to be defined)
 - “separability”: eigenvector centrality weighted pseudo (but network
 free) ex ante expectation
 5. Common Certainty of (Mild) Optimism” - everyone expects others to
 be (a bit) more optimistic than him
 - highest possible interim expectation
 6. Least Informed Agent
 - ex ante expectation of least informed agent

Methodological contribution: unified treatment of network structure

and asymmetric information
Main Contributions

- Substantive contribution: what are consensus expectations?
 - Complete Information
 - eigenvector centrality weighted beliefs = outcome of de Groot learning (de Groot 1974, BEN: add refs vayanos et al, golub?)
 - Common Prior Assumption
 - ex ante expectation (Samet 98)
 - Common Prior on Types
 - eigenvector centrality weighted ex ante expectation
 - “Compatible Marginals on Types” (to be defined)
 - “separability”: eigenvector centrality weighted pseudo (but network free) ex ante expectation
 - Common Certainty of (Mild) Optimism” - everyone expects others to be (a bit) more optimistic than him
 - highest possible interim expectation
 - Least Informed Agent
 - ex ante expectation of least informed agent

- Methodological contribution: unified treatment of network structure and asymmetric information
Outline

- Define Linear Best Response game and Consensus Expectations simultaneously
Outline

- Define Linear Best Response game and Consensus Expectations simultaneously
- Characterize Consensus Expectations
Outline

- Define Linear Best Response game and Consensus Expectations simultaneously
- Characterize Consensus Expectations
- Return to Asset Market application/interpretation
Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$
Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij} (a^i - a^j)^2.$$
Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{BR} = (1 - \beta) + \beta$$

best response = weighted average of

and
Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{\text{BR}} = (1 - \beta) y^i + \beta$$

best response = weighted average of own ideal action and
Linear Best Response Network Game: A Primer

Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{BR} = (1 - \beta) y^i + \beta \sum_j \gamma^{ij} a^j$$

best response = weighted average of own ideal action and neighbors' average action
Linear Best Response Network Game: A Primer

Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{BR} = (1 - \beta) y^i + \beta \sum_j \gamma^{ij} a^j$$

best response = weighted average of own ideal action and neighbors’ average action

As $\beta \uparrow 1$, in Nash equilibrium, all $a^i \rightarrow \sum_j e^j y^j$.
Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{BR} = (1 - \beta) y^i + \beta \sum_j \gamma^{ij} a^j$$

best response = weighted average of own ideal action and neighbors' average action

As $\beta \uparrow 1$, in Nash equilibrium, all $a^i \to \sum_j e^j y^j$.

where the e is eigenvector centrality in Γ, defined by $e\Gamma = e$ — that is, $e^i = \sum_j \gamma^{ij} e^j$ — subject to $e \in \Delta(\{1, 2, \ldots, n\})$.
Linear Best Response Network Game: A Primer

Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a_{BR}^i = (1 - \beta)y^i + \beta \sum_j \gamma^{ij}a^j$$

best response = weighted average of own ideal action and neighbors’ average action

As $\beta \uparrow 1$, in Nash equilibrium, all $a^i \to \sum_j \gamma^{ij}y^j$.

where the e is eigenvector centrality in Γ, defined by $e\Gamma = e$ – that is, $e^i = \sum_j \gamma^{ij}e^j$ – subject to $e \in \Delta(\{1, 2, \ldots, n\})$.

Reason: write $a = (1 - \beta)y + \beta\Gamma a$
Linear Best Response Network Game: A Primer

Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{BR} = (1 - \beta) y^i + \beta \sum_j \gamma^{ij} a^j$$

best response = weighted average of own ideal action and neighbors' average action

As $\beta \uparrow 1$, in Nash equilibrium, all $a^i \rightarrow \sum_j e^j y^j$.

where the e is **eigenvector centrality** in Γ, defined by $e \Gamma = e$ – that is, $e^i = \sum_j \gamma^{ji} e^j$ – subject to $e \in \Delta(\{1, 2, \ldots, n\})$.

Reason: write $a = (1 - \beta) y + \beta \Gamma a$ and substitute repeatedly to get $a = (1 - \beta) \sum_{k=1}^\infty \beta^k \Gamma^k y$,

Linear Best Response Network Game: A Primer

Network is a row-stochastic Γ; each agent chooses $a^i \in \mathbb{R}$; payoffs:

$$u^i = -(1 - \beta)(a^i - y^i)^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{\text{BR}} = (1 - \beta)y^i + \beta \sum_j \gamma^{ij}a^j$$

best response = weighted average of own ideal action and neighbors' average action

As $\beta \uparrow 1$, in Nash equilibrium, all $a^i \rightarrow \sum_j e^j y^j$.

where the e is **eigenvector centrality** in Γ, defined by $e\Gamma = e$

- that is, $e^i = \sum \gamma^{ij} e^j$ – subject to $e \in \Delta(\{1, 2, \ldots, n\})$.

Reason: write $a = (1 - \beta)y + \beta \Gamma a$ and substitute repeatedly to get $a = (1 - \beta) \sum_{k=1}^{\infty} \beta^k \Gamma^k y$, which is $\approx \Gamma^\infty y$.
Linear Best Response Network Game: A Primer

Network is a row-stochastic Γ; each agent chooses $a_i \in \mathbb{R}$; payoffs:

$$u_i = -(1 - \beta)(a_i - y_i)^2 - \beta \sum_j \gamma_{ij}(a_i - a_j)^2.$$

$$a_{i}^{BR} = (1 - \beta) y_i + \beta \sum_j \gamma_{ij} a_j$$

best response = weighted average of own ideal action and neighbors' average action

As $\beta \uparrow 1$, in Nash equilibrium, all $a_i \to \sum_j e_j y_j$.

where the e is **eigenvector centrality** in Γ, defined by $e \Gamma = e$

– that is, $e^i = \sum_j \gamma_{ij} e^j$ – subject to $e \in \Delta(\{1, 2, \ldots, n\})$.

Reason: write $a = (1 - \beta)y + \beta \Gamma a$ and substitute repeatedly to get $a = (1 - \beta)\sum_{k=1}^{\infty} \beta^k \Gamma^k y$, which is $\approx \Gamma^\infty y$. Each row of Γ^∞ is the same, equal to e.

Timing for Asymmetric Information Game

1. Nature draws θ (“external state”).
Timing for Asymmetric Information Game

1. Nature draws θ ("external state").

2. Agents $i = 1, \ldots, n$ receive private signals $(t^i)_{i=1}^n$ whose joint distribution depends on θ.
Nature draws \(\theta \) (“external state”).

Agents \(i = 1, \ldots, n \) receive private signals \((t^i)_{i=1}^n \) whose joint distribution depends on \(\theta \)

- arbitrarily distributed; “higher order beliefs.”
Timing for Asymmetric Information Game

1. Nature draws θ ("external state").

2. Agents $i = 1, \ldots, n$ receive **private** signals $(t^i)_{i=1}^n$ whose joint distribution depends on θ
 - arbitrarily distributed; "higher order beliefs."

3. Agents form beliefs about θ and about others’ signals, based on their signals t^i and priors π^i.
Timing for Asymmetric Information Game

1. Nature draws θ ("external state").

2. Agents $i = 1, \ldots, n$ receive private signals $(t^i)_{i=1}^n$ whose joint distribution depends on θ
 - arbitrarily distributed; "higher order beliefs."

3. Agents form beliefs about θ and about others’ signals, based on their signals t^i and priors π^i.

4. Agents choose actions, seeking to coordinate with $y(\theta)$ and with each other.
Timing for Asymmetric Information Game

1. Nature draws θ ("external state").

2. Agents $i = 1, \ldots, n$ receive **private** signals $(t^i)_{i=1}^n$ whose joint distribution depends on θ
 - arbitrarily distributed; "higher order beliefs."

3. Agents form beliefs about θ and about others’ signals, based on their signals t^i and priors π^i.

4. Agents choose actions, seeking to coordinate with $y(\theta)$ and with each other.

5. The external state θ is revealed and payoffs are enjoyed.
Network Game with Asymmetric Information and Linear Best Response

Fix \(y : \Theta \rightarrow \mathbb{R} \), i.e., \(y \in \mathbb{R}^{\Theta} \). Agents choose \(a^i \in [y_{\min}, y_{\max}] \); ex post payoffs:

\[
u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.
\]

\[
a_{\text{BR}}^i = (1 - \beta)E^{(i)}y + \beta E^{(i)} \sum_j \gamma^{ij} a^j.
\]
Network Game with Asymmetric Information and Linear Best Response

Fix \(y : \Theta \rightarrow \mathbb{R} \), i.e., \(y \in \mathbb{R}^{\Theta} \). Agents choose \(a^i \in [y_{\text{min}}, y_{\text{max}}] \); ex post payoffs:

\[
 u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.
\]

\[
 a^{i\text{BR}} = (1 - \beta)E^{(i)}y + \beta E^{(i)} \sum_j \gamma^{ij}a^j.
\]

best response
Network Game with Asymmetric Information and Linear Best Response

Fix \(y : \Theta \to \mathbb{R} \), i.e., \(y \in \mathbb{R}^\Theta \). Agents choose \(a^i \in [y_{\text{min}}, y_{\text{max}}] \); ex post payoffs:

\[
 u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.
\]

\[
 a^i_{\text{BR}} = (1 - \beta)E^{(i)}y + \beta E^{(i)} \sum_j \gamma^{ij}a^j.
\]

best response \(= \) weighted average of

and
Network Game with Asymmetric Information and Linear Best Response

Fix $y : \Theta \to \mathbb{R}$, i.e., $y \in \mathbb{R}^{\Theta}$. Agents choose $a^i \in [y_{\min}, y_{\max}]$; ex post payoffs:

$$u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a_{BR}^i = (1 - \beta)E^{(i)}y + \beta E^{(i)} \sum_j \gamma^{ij}a^j.$$

best response $= \text{weighted average of conditional expectation of } y$ and
Network Game with Asymmetric Information and Linear Best Response

Fix $y : \Theta \rightarrow \mathbb{R}$, i.e., $y \in \mathbb{R}^{\Theta}$. Agents choose $a^i \in [y_{\text{min}}, y_{\text{max}}]$; ex post payoffs:

$$u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij} (a^i - a^j)^2.$$

$$a^i_{\text{BR}} = (1 - \beta)E(i)y + \beta \mathbb{E}(i) \sum_j \gamma^{ij} a^j.$$

best response = weighted average of conditional expectation of y and conditional expectation of neighbors’ average action
agents $i, j \in N = \{1, 2, \ldots, I\}$

states of the world, types (finite sets) $\theta \in \Theta$, $t^i \in T^i$

$T = T^1 \times T^2 \times \cdots \times T^I$
agents $i, j \in N = \{1, 2, \ldots, I\}$

states of the world, types \textit{(finite sets)} $\theta \in \Theta$, $t^i \in T^i$

belief functions $\pi^i_{t^i} \in \Delta(T \times \Theta)$

$T = T^1 \times T^2 \times \cdots \times T^I$
agents $i,j \in N = \{1,2,\ldots,I\}$

states of the world, types *(finite sets)* $\theta \in \Theta$, $t^i \in T^i$

$T = T^1 \times T^2 \times \cdots \times T^I$

belief functions $\pi^i_{t^i} \in \Delta(T \times \Theta)$

network weights $\Gamma = (\gamma^{ij})_{i,j}$, nonnegative

I-by-I, row-stochastic
agents \(i, j \in N = \{1, 2, \ldots, I\} \)

states of the world, types (finite sets) \(\theta \in \Theta, \ t^i \in T^i \)
\(T = T^1 \times T^2 \times \cdots \times T^I \)

belief functions \(\pi^i_{t_i} \in \Delta(T \times \Theta) \)
belief functions

(subjective) expectation operators

\[\pi_{ti}^i \in \Delta(T \times \Theta) \]

\[E_{ti}^{(i)} \]
e.g. for \(y \in \mathbb{R}^\Theta \), \(E^{(i)}y \in \mathbb{R}^{T^i} \)
(Interim) Environment

agents

states of the world, types \((\text{finite sets})\)

belief functions

(subjective) expectation operators

network weights

\[i, j \in N = \{1, 2, \ldots, I\} \]

\[\theta \in \Theta, \quad t^i \in T^i \]

\[T = T^1 \times T^2 \times \cdots \times T^I \]

\[\pi^i_t \in \Delta(T \times \Theta) \]

\[E_{t^i}^{(i)} \]

\[\text{e.g. for } y \in \mathbb{R}^\Theta, \quad E^{(i)} y \in \mathbb{R}^{T^i} \]

\[\Gamma = (\gamma^{ij})_{i,j}, \text{ nonnegative} \]

\[I\text{-by-}I, \text{ row-stochastic} \]
Agents have priors $\mu^i \in \Delta(T \times \Theta)$.

These priors induce belief functions:
Agents have priors $\mu^i \in \Delta(T \times \Theta)$.

These priors induce belief functions:

$$\pi^i_{\hat{t}_i}(E) = \mathbb{P}_{\mu^i}(E \mid t^i = \hat{t}^i) = \frac{\mu^i(\{t^i = \hat{t}_i\} \cap E)}{\mu^i(\{t^i = \hat{t}_i\})}.$$
A Markov Process

\[\begin{array}{cccc}
\pi^1 & w & 1 - w & \pi^3 \\
1 - \pi^1 & 1 - w & w & 1 - \pi^3 \\
\end{array} \]

black: transition probabilities
A Markov Process

\[
\frac{w\pi^1 + (1-w)\pi^3}{2}
\]

black: transition probabilities
blue: ergodic distribution

\[
\frac{w(1 - \pi^1) + (1-w)(1 - \pi^3)}{2}
\]
Four-Player Network Game

\[
\frac{w \pi^1 + (1 - w) \pi^3}{2}
\]

\[
\frac{w(1 - \pi^1) + (1 - w)(1 - \pi^3)}{2}
\]

Limit action = dot product of blue weights and ideal actions.
Four-Player Network Game

Limit action = dot product of blue weights and ideal actions.

\[
\frac{w}{2}y^1 + \frac{w\pi^1 + (1-w)\pi^3}{2}y^2 + \frac{w(1-\pi^1) + (1-w)(1-\pi^3)}{2}y^3 + \frac{1-w}{2}y^4
\]
Three-Player Game of Incomplete Information

green: subjective probabilities
red: network weights
Three-Player Game of Incomplete Information

black: network \times belief
Three-Player Game of Incomplete Information

\[w\pi^1 + (1 - w)\pi^3 \]

\[w(1 - \pi^1) + (1 - w)(1 - \pi^3) \]

black: network × belief
blue: player-type weights
Network Game with Linear Best Response in new (more explicit) notation

Fix $y \in \mathbb{R}^\Theta$. Agents choose $a^i \in [y_{\text{min}}, y_{\text{max}}]$; ex post payoffs:

$$u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a_{\text{BR}}^i = (1 - \beta)E^{(i)}y + \beta E^{(i)} \sum_j \gamma^{ij}a^j$$

The best response is defined as the weighted average of the conditional expectation of y and the conditional expectation of the neighbors' average action:

$$a_{t_i}^i = \sum_k \pi_{t_i}^i (\theta_k) \theta_k + \sum_{j \in N} \gamma^{ij} \sum_{t_j \in T_j} \pi_{t_i}^i (t^j) a_{t_j}^j$$
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x_t^i(1) = E_{t^i} y$;

- This is an expectation of an average (taken across population). It is second-order: an expectation over first-order expectations.
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable \(y \in \mathbb{R}^{\Theta} \) (measurable w.r.t. state of the world).
- Define \(x_{t_i}(1) = E_{t_i}^{(i)} y; \)
 - first-order expectations of \(y; \)
- Define
 \[
 x_{t_i}(2) = E_{t_i}^{(i)} \sum_j \gamma_{ij} x_{t_i}(1).
 \]
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^{\Theta}$ (measurable w.r.t. state of the world).

- Define $x^i_t(1) = E^{(i)}_{t} y$;
 - first-order expectations of y; a random variable measurable with respect to i's information.

- Define
 $$x^i_t(2) = E^{(i)}_{t} \sum_j \gamma^{ij} x^j(1).$$
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x_{ti}^i(1) = E_{ti}^{(i)} y$;
 - first-order expectations of y; a random variable measurable with respect to i’s information.

- Define
 \[x_{ti}^i(2) = E_{ti}^{(i)} \sum_j \gamma^{ij} x_j^i(1). \]
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x_{t_i}^i(1) = E_{t_i}^{(i)} y$;
 - first-order expectations of y; a random variable measurable with respect to i's information.

- Define
 $$x_{t_i}^i(2) = E_{t_i}^{(i)} \sum_j \gamma^{ij} x_j^i(1).$$
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x_{t_i}^i(1) = E_{t_i}^{(i)} y$;
 - first-order expectations of y; a random variable measurable with respect to i’s information.

- Define
 \[x_{t_i}^i(2) = E_{t_i}^{(i)} \sum_j \gamma^{ij} x_j^i(1). \]
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).
- Define $x_{ti}^i(1) = E_{ti}^{(i)}y$;
 - first-order expectations of y; a random variable measurable with respect to i’s information.
- Define
 $$x_{ti}^i(2) = E_{ti}^{(i)} \sum_j \gamma^{ij} x_j^i(1).$$
 - This is an expectation of an average (taken across population).
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x_{ti}^i(1) = E_{ti}^{(i)} y$;
 - first-order expectations of y; a random variable measurable with respect to i's information.

- Define

$$x_{ti}^i(2) = E_{ti}^{(i)} \sum_j \gamma^{ij} x_j^i(1).$$
 - This is an expectation of an average (taken across population).
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x^{i}_{ti}(1) = E^{(i)}_{ti} y$;
 - first-order expectations of y; a random variable measurable with respect to i’s information.

- Define
 $$x^{i}_{ti}(2) = E^{(i)}_{ti} \sum_{j} \gamma^{ij} x^{j}(1).$$
 - This is an expectation of an average (taken across population).
 - It is second-order: an expectation over first-order expectations.
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable $y \in \mathbb{R}^\Theta$ (measurable w.r.t. state of the world).

- Define $x^i_t(1) = E^{(i)}_{t_i} y$;
 - first-order expectations of y; a random variable measurable with respect to i’s information.

- Define
 $$x^i_t(2) = E^{(i)}_{t_i} \sum_j \gamma^{ij} x^j(1).$$
 - This is an expectation of an average (taken across population).
 - It is second-order: an expectation over first-order expectations.
Iterated Average Expectations (cf. Samet 98)

- Fix a random variable \(y \in \mathbb{R}^\Theta \) (measurable w.r.t. state of the world).

- Define \(x_{ti}^i(1) = E_{ti}^{(i)} y \);
 - first-order expectations of \(y \); a random variable measurable with respect to \(i \)'s information.

- Define

 \[
 x_{ti}^i(n + 1) = E_{ti}^{(i)} \sum_j \gamma_{ij} x^j(n).
 \]

 - This is an expectation of an average (taken across population).
 - It is \((n + 1)^{\text{st}}\)-order: an expectation over \(n^{\text{th}}\)-order expectations.
Professional investment may be likened to those newspaper competitions [in which] each competitor has to pick, not those faces which he himself finds prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all of whom are looking at the problem from the same point of view . . . We have reached the third degree where we devote our intelligences to anticipating what average opinion expects the average opinion to be. And there are some, I believe, who practise the fourth, fifth and higher degrees.

— Keynes, *The General Theory* . . . (1936)
Iterated Average Expectations: Example

\[y^{31} = 1 \quad y^{12} = 1 \quad y^{23} = 1 \]

\[E^{(1)}y \]
Iterated Average Expectations: Example

\[E^{(3)} E^{(1)} y \]
Iterated Average Expectations: Example

\[E^{(2)} E^{(3)} E^{(1)}y \]
Iterated Average Expectations: Example

\[E^{(1)} E^{(2)} E^{(3)} E^{(1)} y \]
Iterated Average Expectations: Example

\[
\gamma^{31} = 1 \quad \gamma^{12} = 1 \quad \gamma^{23} = 1
\]

\[
E^{(3)}E^{(1)}E^{(2)}E^{(3)}E^{(1)}y
\]
Iterated Average Expectations: Example

\[E^{(3)} E^{(1)} E^{(2)} E^{(3)} E^{(1)} y \]
Network Game with Linear Best Responses

Fix $y \in \mathbb{R}^\Theta$. Agents choose $a^i \in [y_{\text{min}}, y_{\text{max}}]$; ex post payoffs:

$$u^i = -(1 - \beta)(a^i - y(\theta))^2 - \beta \sum_j \gamma^{ij}(a^i - a^j)^2.$$

$$a^i_{\text{BR}} = (1 - \beta) E^{(i)} y + \beta E^{(i)} \sum_j \gamma^{ij} a^j$$

In any rationalizable strategy profile, actions played are

$$a^i_{t,i} = \sum_{n=0}^{\infty} (1 - \beta) \beta^n x^i_{t,i}(n + 1)$$

as $\beta \uparrow 1, a^i_{t,i} \to \lim_{n \to \infty} x^i_{t,i}(n)$ when limit exists.
Defining Consensus Expectation

For any \(y \in \mathbb{R}^{\Theta} \)

- If limit

\[
\lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_{ti} (n + 1)
\]

- Will equal (if well-defined)

\[
\lim_{\beta \uparrow 1} a^i_{ti} = \lim_{n \uparrow \infty} x^i_{ti} (n)
\]
Defining Consensus Expectation

For any $y \in \mathbb{R}^\Theta$

- If limit

 \[
 \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_{t_i} (n + 1)
 \]

 does not depend on i or on t^i (i.e., it is a degenerate random variable).

- Will equal (if well-defined)

 \[
 \lim_{\beta \uparrow 1} a^i_{t_i} = \lim_{n \uparrow \infty} x^i_{t_i}(n)
 \]
Defining Consensus Expectation

For any $y \in \mathbb{R}^\Theta$

- If limit

$$\lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_{t_i} (n + 1)$$

- does not depend on i or on t^i (i.e., it is a degenerate random variable).
-then call this the **consensus expectation**
- Will equal (if well-defined)

$$\lim_{\beta \uparrow 1} a^i_{t_i} = \lim_{n \uparrow \infty} x^i_{t_i} (n)$$
Defining Consensus Expectation

For any $y \in \mathbb{R}^\Theta$

- If limit
 $\lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_t (n + 1)$
 does not depend on i or on t^i (i.e., it is a degenerate random variable).
-then call this the **consensus expectation**
- Will equal (if well-defined)
 $\lim_{\beta \uparrow 1} a^i_t = \lim_{n \uparrow \infty} x^i_t (n)$
For any \(y \in \mathbb{R}^\Theta \)

- If limit

 \[
 \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x_{ti}^i (n + 1)
 \]

 does not depend on \(i \) or on \(t^i \) (i.e., it is a degenerate random variable).

- Then call this the **consensus expectation**

- Will equal (if well-defined)

 \[
 \lim_{\beta \uparrow 1} a_{ti}^i = \lim_{n \uparrow \infty} x_{ti}^i (n)
 \]
Convergence to a Consensus Expectation: Theorem

Suppose beliefs and interactions are jointly connected (definition to follow). Then for any $y \in \mathbb{R}^\Theta$

- The Limit

\[
c = \lim_{\beta \uparrow 1} a_i^t
\]

\[
c = \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x_i^t (n + 1)
\]

exists for every agent i and every type $t^i \in T^i$.
Convergence to a Consensus Expectation: Theorem

Suppose beliefs and interactions are jointly connected (definition to follow). Then for any \(y \in \mathbb{R}^\Theta \)

- **The Limit**
 \[
 c = \lim_{\beta \uparrow 1} d^i_t
 \]
 \[
 c = \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_{t_i} (n + 1)
 \]
 exists for every agent \(i \) and every type \(t^i \in T^i \).

- **This limit does not depend on \(i \) or on \(t^i \) (i.e., it is a degenerate random variable).**
Convergence to a Consensus Expectation: Theorem

Suppose beliefs and interactions are jointly connected (definition to follow). Then for any $y \in \mathbb{R}^{\Theta}$

- The Limit

 $$c = \lim_{\beta \uparrow 1} a^i_t$$

 $$c = \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_t (n + 1)$$

 exists for every agent i and every type $t^i \in T^i$.

- This limit does not depend on i or on t^i (i.e., it is a degenerate random variable).

- This consensus expectation is a weighted average of various types’ first-order beliefs:

 $$c = \sum_i \sum_{t^i \in T^i} p(t^i) E_t^{(i)} y,$$

 where $\sum_i \sum_{t^i \in T^i} p(t^i) = 1$ and p depends only on $\pi_t^i(t^i)$’s and Γ.
Convergence to a Consensus Expectation: Theorem

Suppose beliefs and interactions are jointly connected (definition to follow). Then for any \(y \in \mathbb{R}^\Theta \)

- **The Limit**

\[
c = \lim_{\beta \uparrow 1} d^i_t
\]

\[
c = \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i_{t_i}(n + 1)
\]

exists for every agent \(i \) and every type \(t^i \in T^i \).

- **This limit does not depend on \(i \) or on \(t^i \) (i.e., it is a degenerate random variable).**

- **This consensus expectation** is a weighted average of various types’ first-order beliefs:

\[
c = \sum_i \sum_{t^i \in T^i} p(t^i) E^{(i)}_{t^i} y,
\]

where \(\sum_i \sum_{t^i \in T^i} p(t^i) = 1 \) and \(p \) depends only on \(\pi_{t^i}^i(t^i) \)'s and \(\Gamma \).
Convergence to a Consensus Expectation: Theorem

Suppose **beliefs and interactions are jointly connected** (definition to follow). Then for any \(y \in \mathbb{R}^\Theta

- **The Limit**

\[
c = \lim_{\beta \uparrow 1} a_i^t
\]

\[
c = \lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x_i^t(n + 1)
\]

exists for every agent \(i \) and every type \(t_i \in T_i \).

- This limit does not depend on \(i \) or on \(t_i \) (i.e., it is a degenerate random variable).

- This **consensus expectation** is a weighted average of various types’ first-order beliefs:

\[
c = \sum_i \sum_{t_i \in T_i} p(t_i) E_{t_i}^{(i)} y,
\]

where \(\sum_i \sum_{t_i \in T_i} p(t_i) = 1 \) and \(p \) depends only on \(\pi_{t_i}^{(i)}(t_i) \)'s and \(\Gamma \).
Convergence Result: Proof Idea

- Define $S = \bigcup_{i \in N} T^i$, union of type spaces.
Convergence Result: Proof Idea

- Define $S = \bigcup_{i \in N} T^i$, union of type spaces.
 - $x^i(n)$ is a vector in \mathbb{R}^{T^i}—one entry per type of i, recording that type’s conditional expectation.
Convergence Result: Proof Idea

- Define $S = \bigcup_{i \in \mathbb{N}} T^i$, union of type spaces.
 - $x^i(n)$ is a vector in \mathbb{R}^{T^i}—one entry per type of i, recording that type’s conditional expectation.
 - Can stack these in a vector $x(n) \in \mathbb{R}^S$.
Convergence Result: Proof Idea

- Define $S = \bigcup_{i \in N} T^i$, union of type spaces.
 - $x^i(n)$ is a vector in \mathbb{R}^{T^i}—one entry per type of i, recording that type’s conditional expectation.
 - Can stack these in a vector $x(n) \in \mathbb{R}^S$.
 - Formula defining $x(n+1)$ is linear—in fact, “Markovian”—in $x(n)$.
Convergence Result: Proof Idea

- Define $S = \bigcup_{i \in \mathbb{N}} T^i$, union of type spaces.
 - $x^i(n)$ is a vector in \mathbb{R}^{T^i}—one entry per type of i, recording that type’s conditional expectation.
 - Can stack these in a vector $x(n) \in \mathbb{R}^S$.
 - Formula defining $x(n + 1)$ is linear—in fact, “Markovian”—in $x(n)$.
 - So we can write the iteration conveniently via an interaction structure matrix, B:

$$x(n + 1) = Bx(n).$$

Then analysis comes down to powers of this B matrix – and these are well-understood.
Convergence Result: Proof Idea

- Define $S = \bigcup_{i \in \mathbb{N}} T^i$, union of type spaces.
 - $x^i(n)$ is a vector in \mathbb{R}^{T^i}—one entry per type of i, recording that type’s conditional expectation.
 - Can stack these in a vector $x(n) \in \mathbb{R}^S$.
 - Formula defining $x(n+1)$ is linear—in fact, “Markovian”—in $x(n)$.
 - So we can write the iteration conveniently via an interaction structure matrix, B:
 \[x(n+1) = Bx(n). \]

 Then analysis comes down to powers of this B matrix – and these are well-understood.

- Alternate proof: reduction of incomplete-information to just another network game.
The Interaction Structure: The Matrix B

\[x^i_{t_i}(n+1) = \sum_j \gamma^{ij} E_{t_i}^{(i)} x^j(n) \]
The Interaction Structure: The Matrix B

\[x^i_{t_i}(n + 1) = \sum_j \gamma^{ij} E^{(i)}_{t_i} x^j(n) = \sum_{j \in N} \gamma^{ij} \sum_{t_j \in T^j} \pi^i_{t_i}(t^j) x^j_{t_j}(n) \]
The Interaction Structure: The Matrix B

\[x^i_t(n + 1) = \sum_j \gamma^{ij} E^{(i)}_{t} x^j(n) = \sum_{j \in N} \gamma^{ij} \sum_{t^j \in T^j} \pi^{i}_{t^j}(t^j)x^{j}_{t^j}(n) \]

\[x(n + 1) = B x(n). \]
The Interaction Structure: The Matrix B

$$x_{t_i}^i(n+1) = \sum_j \gamma^{ij} E_{t_i}^{(i)} x^j(n) = \sum_{j \in N} \gamma^{ij} \sum_{t_j \in T} \pi^{i}(t^j) x_{t_j}^j(n)$$

$$x(n+1) = B x(n).$$
The Interaction Structure: The Matrix B

\[x^i_t(n+1) = \sum_j \gamma^{ij} E^{(i)}_t x^j(n) = \sum_{j \in N} \sum_{i \in T_j} \pi^i_{t^j}(t^j) x^j_{t^j}(n) \]

\[x(n+1) = Bx(n). \]

⇒ \[x(\infty) = B^\infty x(1) \]
The Interaction Structure: The Matrix B

$x_{t_i}^i(n+1) = \sum_j \gamma_{ij}^{ij} E_{t_i}^{(i)} x^j(n) = \sum_{j \in N} \gamma_{ij}^{ij} \sum_{t_j \in T_j} \pi_{t_i}^i(t^j) x_{t_i}^j(n)$

$x(n+1) = B x(n)$.

$\Rightarrow x(\infty) = B^\infty x(1) = p' x(1) 1$, where p' is stationary distribution of B
The Interaction Structure: The Matrix B

$x^i_{ti}(n + 1) = \sum_j \gamma^{ij} E^{(i)}_{ti} x^j(n) = \sum_{j \in N} \sum_{t^j_i \in T^j} \pi^i_{t^j_i}(t^j_i) x^j_{ti}(n)$

$x(n + 1) = Bx(n)$.

$\Rightarrow x(\infty) = B^\infty x(1) = p'x(1)1$, so $c = \sum_i \sum_{t^i} p^i(t^i)x(1)$
Beliefs and Interactions are Jointly Connected

We say **beliefs and interactions are jointly connected** if for any nonempty proper subset of types $R \subseteq T^1 \cup T^2 \cup \cdots \cup T^I$ there is some $t^i \in R$ and $t^j \notin R$ so that $\gamma^{ij} \pi^i_{t^i}(t^j) > 0$.

![Diagram](attachment:image.png)
The Interaction Structure

Case 1: Complete Information

- Define e to be the eigenvector centrality of the network Γ: unique vector summing to 1 so that

$$e^i = \sum_j \gamma^{ji} e^j \quad \forall i$$

- If there is no incomplete information, type spaces are singletons and $B = \Gamma$. So $p = e$.

- Now consensus expectation is eigenvector weighted complete information expectation

$$c = \sum_i e^i E^i y.$$

- Ballester, Calvó-Armengol, and Zenou (06) on network games.
Case 2: Common Prior Assumption

- There exists $\mu^* \in \Delta(T \times \Theta)$ such that $\mu^1 = ... = \mu^n = \mu^*$
- Now consensus expectation is (common prior) ex ante expectation
 \[c = E^* y. \]
- implied by Samet 98
- argument to follow
Case 3: Common Prior on Types

- There exists $\mu^* \in \Delta(T \times \Theta)$ such that

$$\mu^1(\hat{T}) = \ldots = \mu^n(\hat{T}) = \mu^*(\hat{T})$$

for all $\hat{T} \subseteq T$

- Now

$$c = \sum_i e^i E^i y.$$

- argument to follow
Type Weights Sum to Agent Centralities

Proposition

total weight on i’s types $=$ i’s network centrality

$$\sum_{t^i \in T^i} p(t^i) = e^i$$
Type Weights Sum to Agent Centralities

Proposition

total weight on i’s types $= i$’s network centrality

$$
\sum_{t^i \in T^i} p(t^i) = e^i
$$

Therefore, can write

$$p(t^i) = e^i r(t^i) \quad \text{where} \quad \sum_{t^i \in T^i} r^i(t^i) = 1.
$$

$r^i(t^i)$, the type weight on t^i, can be thought of as a pseudoprior on type t^i of i.
Type Weights Sum to Agent Centralities

Proposition

\[
\sum_{t^i \in T^i} p(t^i) = e^i
\]

Therefore, can write

\[
p(t^i) = e^i r(t^i)
\]

where

\[
\sum_{t^i \in T^i} r^i(t^i) = 1.
\]

- \(r^i(t^i)\), the **type weight** on \(t^i\), can be thought of as a **pseudoprior** on type \(t^i\) of \(i\).

\[
c = \sum_{i \in N} e^i \sum_{t^i} r^i_{\pi, \Gamma}(t^i) E_{t^i} y
\]
Type Weights Sum to Agent Centralities

Proposition

total weight on \(i \)'s types = \(i \)'s network centrality

\[
\sum_{t^i \in T^i} p(t^i) = e^i
\]

Therefore, can write

\[
p(t^i) = e^i r(t^i)
\]

where

\[
\sum_{t^i \in T^i} r^i(t^i) = 1.
\]

- \(r^i(t^i) \), the **type weight** on \(t^i \), can be thought of as a **pseudoprior** on type \(t^i \) of \(i \).

\[
c = \sum_{i \in N} e^i \sum_{t^i} r^i_{i, \Gamma}(t^i) E^i_{t^i, y}
\]

- In general, \(r^i_{i, \Gamma}(t^i) \) depends on information structure \(\pi \) and the network \(\Gamma \).
Separating Effects of Network and Beliefs

Definition

Beliefs \(\pi = (\pi^i)_{i \in N} \) have **compatible marginals** if there is a profile \((\tilde{r}^i \in \Delta(T^i))_{i \in N} \) such that for any \(i \), any \(t^i \in T^i \), and any \(j \in N \)

\[
\tilde{r}^i(t^i) = \sum_{t^j \in T^j} \tilde{r}^j(t^j) \pi^j_{ij}(t^i).
\]
Separating Effects of Network and Beliefs

Definition

Beliefs $\pi = (\pi^i)_{i \in N}$ have **compatible marginals** if there is a profile $(\tilde{r}^i \in \Delta(T^i))_{i \in N}$ such that for any i, any $t^i \in T^i$, and any $j \in N$

$$\tilde{r}^i(t^i) = \sum_{t^i \in T^j} \tilde{r}^j(t^j) \pi^j_{t^j}(t^i).$$

Weaker than assuming beliefs arise from a common prior over T.
Separating Effects of Network and Beliefs

Definition

Beliefs $\pi = (\pi^i)_{i \in N}$ have **compatible marginals** if there is a profile $(\tilde{r}^i \in \Delta(T^i))_{i \in N}$ such that for any i, any $t^i \in T^i$, and any $j \in N$

$$\tilde{r}^i(t^i) = \sum_{t^j \in T^j} \tilde{r}^j(t^j) \pi^j_{t^i}(t^i).$$

Weaker than assuming beliefs arise from a common prior over T.
Separating Effects of Network and Beliefs

Definition

Beliefs \(\pi = (\pi^i)_{i \in N} \) have **compatible marginals** if there is a profile \((\tilde{r}^i \in \Delta(T^i))_{i \in N} \) such that for any \(i \), any \(t^i \in T^i \), and any \(j \in N \)

\[
\tilde{r}^i(t^i) = \sum_{t^j \in T^j} \tilde{r}^j(t^j) \pi^j_{t^j}(t^i).
\]

Weaker than assuming beliefs arise from a common prior over \(T \).

Proposition

The following are equivalent:

1. Beliefs \(\pi \) have compatible marginals.
2. For all irreducible \(\Gamma \), type weights \((r_{\pi,\Gamma^i})_{i \in N} \) are the same, \((\tilde{r}_\pi^i)_{i \in N} \).
Separating Effects of Network and Beliefs

Definition

Beliefs $\pi = (\pi^i)_{i \in N}$ have **compatible marginals** if there is a profile $(\tilde{r}^i \in \Delta(T^i))_{i \in N}$ such that for any i, any $t^i \in T^i$, and any $j \in N$

$$\tilde{r}^i(t^i) = \sum_{t^j \in T^j} \tilde{r}^j(t^j) \pi^j_{t^j} (t^i).$$

Weaker than assuming beliefs arise from a common prior over T.

Proposition

The following are equivalent:

1. Beliefs π have compatible marginals.
2. For all irreducible Γ, type weights $(\bar{r}_{\pi,\Gamma^i})_{i \in N}$ are the same, $(\bar{r}_{\pi^i})_{i \in N}$.

If either condition holds, then $\tilde{r}^i = \bar{r}^i$ for each i.
Case 4: Compatible Marginals

- So compatible marginals implies:

\[c = \sum_{i \in N} e^i \sum_{t^i \in T^i} \bar{r}_{\pi^i}(t^i) E^i_{t^i} y \]
So compatible marginals implies:

\[c = \sum_{i \in N} e^i \sum_{t^i \in T^i} \bar{r}_{\pi^i}(t^i) E^i_{t^i} y = \sum_{i \in N} e^i \cdot "i’s prior expectation of y." \]
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation \(c = \sum_{i \in N} e^i \sum_{t_i \in T^i} \bar{r}_\pi (t^i) E^i_{t_i y} \).

- An agent observing signal \(g \) assigns probability \(p \) to state \(G \).
- An agent observing signal \(b \) assigns probability \(1 - p \) to state \(G \).
- An agent observing signal \(g \) assigns ...
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation
\[c = \sum_{i \in \mathbb{N}} e^i \sum_{t^i \in T^i} \bar{r}_\pi^i (t^i) E_{t^i}^i. \]

- An agent observing signal g assigns probability p to state G.
- An agent observing signal b assigns probability $1 - p$ to state G.
- An agent observing signal g assigns ...
 - ...probability $1 - \varepsilon$ to agent $i + 1$ observing signal g;
 - ...probability $\frac{1}{2}$ to agent $i - 1$ observing signal g.
- An agent observing signal b assigns ...
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation
\[c = \sum_{i \in N} e^i \sum_{t^i \in T^i} \tilde{r}_\pi^i(t^i) E^i_{t^i y}. \]

- An agent observing signal g assigns probability p to state G.
- An agent observing signal b assigns probability $1 - p$ to state G.
- An agent observing signal g assigns...
 - ...probability $1 - \varepsilon$ to agent $i + 1$ observing signal g;
 - ...probability $\frac{1}{2}$ to agent $i - 1$ observing signal g.
- An agent observing signal b assigns...
 - ...probability $\frac{1}{2}$ to agent $i + 1$ observing signal g;
 - ...probability ε to agent $i - 1$ observing signal g.

\[
\gamma^{31} = 1 \quad \gamma^{12} = 1 \quad \gamma^{23} = 1
\]
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation

\[c = \sum_{i \in N} e^i \sum_{t^i \in T^i} \tilde{r}_\pi^i(t^i) E^i_{t^i} y. \]

- An agent observing signal \(g \) assigns probability \(p \) to state \(G \).
- An agent observing signal \(b \) assigns probability \(1 - p \) to state \(G \).
- An agent observing signal \(g \) assigns . . .
 - . . . probability \(1 - \varepsilon \) to agent \(i+1 \)
 observing signal \(g \);
 - . . . probability \(\frac{1}{2} \) to agent \(i-1 \)
 observing signal \(g \).
- An agent observing signal \(b \) assigns . . .
 - . . . probability \(\frac{1}{2} \) to agent \(i+1 \)
 observing signal \(g \);
 - . . . probability \(\varepsilon \) to agent \(i-1 \)
 observing signal \(g \).

\[\gamma^{31} = 1 \quad \gamma^{12} = 1 \quad \gamma^{23} = 1 \]
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation $c = \sum_{i\in N} e^i \sum_{t^i \in T^i} \tilde{r}^i(\pi^i)E^i_t y$.

- An agent observing signal g assigns probability p to state G.
- An agent observing signal b assigns probability $1 - p$ to state G.
- An agent observing signal g assigns...
 - ...probability $1 - \varepsilon$ to agent $i+1$ observing signal g;
 - ...probability $\frac{1}{2}$ to agent $i-1$ observing signal g.
- An agent observing signal b assigns...
 - ...probability $\frac{1}{2}$ to agent $i+1$ observing signal g;
 - ...probability ε to agent $i-1$ observing signal g.
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation

\[c = \sum_{i \in N} e^i \sum_{t^i \in T^i} \bar{r}^{i}(t^i) E^{i}_{t^i} y. \]

- An agent observing signal \(g \) assigns probability \(p \) to state \(G \).
- An agent observing signal \(b \) assigns probability \(1 - p \) to state \(G \).
- An agent observing signal \(g \) assigns...
 - ...probability \(1 - \varepsilon \) to agent \(i + 1 \) observing signal \(g \);
 - ...probability \(\frac{1}{2} \) to agent \(i - 1 \) observing signal \(g \).
- An agent observing signal \(b \) assigns...
 - ...probability \(\frac{1}{2} \) to agent \(i + 1 \) observing signal \(g \);
 - ...probability \(\varepsilon \) to agent \(i - 1 \) observing signal \(g \).

Under the above (clockwise) network the consensus expectation is

\[
\frac{p + 2\varepsilon (1 - p)}{1 + 2\varepsilon} \approx p
\]
Losing Separability and Optimism: A Counterexample

Without type-consistency, no separation
\[c = \sum_{i \in N} e_i \sum_{t_i \in T^i} \bar{r}_{\pi^i}(t^i) E_{t^i}^i. \]

- An agent observing signal \(g \) assigns probability \(p \) to state \(G \).
- An agent observing signal \(b \) assigns probability \(1 - p \) to state \(G \).
- An agent observing signal \(g \) assigns...
 - ... probability \(1 - \varepsilon \) to agent \(i + 1 \) observing signal \(g \);
 - ... probability \(\frac{1}{2} \) to agent \(i - 1 \) observing signal \(g \).
- An agent observing signal \(b \) assigns...
 - ... probability \(\frac{1}{2} \) to agent \(i + 1 \) observing signal \(g \);
 - ... probability \(\varepsilon \) to agent \(i - 1 \) observing signal \(g \).

\[\gamma_{13} = 1 \quad \gamma_{21} = 1 \quad \gamma_{32} = 1 \]

Under the above (counterclockwise) network the consensus expectation is
\[\frac{1 - p + 2\varepsilon p}{1 + 2\varepsilon} \approx 1 - p \]
Cyclic Optimism

- Each agent has ex ante probability $\frac{1}{2}$ of state G
Cyclic Optimism

- Each agent has ex ante probability $\frac{1}{2}$ of state G
- Consensus probability is higher (or lower) than any agent’s ex ante probability
Cyclic Optimism

- Each agent has ex ante probability $\frac{1}{2}$ of state G
- Consensus probability is higher (or lower) than any agent’s ex ante probability
- “Second order optimism (or pessimism)”
Cyclic Optimism

- Each agent has ex ante probability $\frac{1}{2}$ of state G
- Consensus probability is higher (or lower) than any agent’s ex ante probability
- “Second order optimism (or pessimism)”
Case 5: Optimism

- Each agent is sure that each other agent is at least as optimistic as him
- Type weight must put mass only on the more optimistic types
- Consensus expectation is the highest possible interim expectation
- Can approximate
Case 6: One Least Informed Player

- Suppose that one agent knows (or believes that he knows) nothing while other agents all know (or believe that they know) something.
- Consensus expectation is the *ex ante* expectation of the least informed agent.
- Can approximate.
Whose Beliefs Matter?

- Work with explicit ex ante stage.

- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \varepsilon^i$, and erroneous with probability ε^i.
Whose Beliefs Matter?

- Work with explicit ex ante stage.
- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \varepsilon^i$, and erroneous with probability ε^i.
- Common interpretation of signals:
Whose Beliefs Matter?

- Work with explicit ex ante stage.
- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \varepsilon^i$, and erroneous with probability ε^i.
- Common interpretation of signals:
 - agree about distribution of signals given the state;
Whose Beliefs Matter?

- Work with explicit ex ante stage.

- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \varepsilon^i$, and erroneous with probability ε^i.

- Common interpretation of signals:
 - agree about distribution of signals given the state;
 - but may disagree about prior probabilities of states.
Whose Beliefs Matter?

- Work with explicit ex ante stage.

- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \epsilon^i$, and erroneous with probability ϵ^i.

- Common interpretation of signals:

 ▶ agree about distribution of signals given the state;

 ▶ but may disagree about prior probabilities of states.

- If all $\epsilon^i \downarrow 0$, but one of them (j) much slower than the others, then only j’s priors over states will matter.
Whose Beliefs Matter?

- Work with explicit ex ante stage.

- Suppose agents \(i \) receive signals of what the state is, equal to the true state with probability \(1 - \varepsilon^i \), and erroneous with probability \(\varepsilon^i \).

- Common interpretation of signals:
 - agree about distribution of signals given the state;
 - but may disagree about prior probabilities of states.

- If all \(\varepsilon^i \downarrow 0 \), but one of them (\(j \)) much slower than the others, then only \(j \)'s priors over states will matter.
 - How much slower it has to be depends on the beliefs in a subtle way.
Whose Beliefs Matter?

- Work with explicit ex ante stage.

- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \varepsilon^i$, and erroneous with probability ε^i.

- Common interpretation of signals:
 - agree about distribution of signals given the state;
 - but may disagree about prior probabilities of states.

- If all $\varepsilon^i \downarrow 0$, but one of them ($j$) much slower than the others, then only j’s priors over states will matter.
 - How much slower it has to be depends on the beliefs in a subtle way.
 Must assume
 $$\lim \frac{\varepsilon^i}{(\varepsilon^j)^m} \to 0,$$
 where m depends on structure of uncertainty near certainty.
Whose Beliefs Matter?

- Work with explicit ex ante stage.

- Suppose agents i receive signals of what the state is, equal to the true state with probability $1 - \epsilon^i$, and erroneous with probability ϵ^i.

- Common interpretation of signals:
 - agree about distribution of signals given the state;
 - but may disagree about prior probabilities of states.

- If all $\epsilon^i \downarrow 0$, but one of them (j) much slower than the others, then only j’s priors over states will matter.
 - How much slower it has to be depends on the beliefs in a subtle way. Must assume
 $$\lim \frac{\epsilon^i}{(\epsilon^j)^m} \rightarrow 0,$$
 where m depends on structure of uncertainty near certainty.
 - Study limits of ergodic distribution of B as some edges are going to 0.
Consider $B(\zeta)$ where ε^i is a function of ζ.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.

$B(0)$ is disconnected.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.

$B(0)$ is disconnected.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.

$B(0)$ is disconnected.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.

$B(0)$ is disconnected.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.

$B(0)$ is disconnected.
Consider $B(\zeta)$ where ε^i is a function of ζ.

Consensus depends on ergodic distribution of $B(\zeta)$.

$B(0)$ is disconnected.

Skeleton of “leading edges” will determine stationary distribution in the low-ζ limit.
Whose Beliefs Matter? Via Limits of Interaction Structures

- Consider $B(\zeta)$ where ε_i is a function of ζ.

- Consensus depends on ergodic distribution of $B(\zeta)$.

- $B(0)$ is disconnected.

- Skeleton of “leading edges” will determine stationary distribution in the low-ζ limit.

- Argument is via Markov chain tree lemma.
Other Related Literature

- de Martí and Zenou (2014) “Network Games with Incomplete Information.”

- Bergemann, Heumann, and Morris (JET 2015), “Information and Volatility.”

Connections with DeGroot Updating (DeGroot 1974)

\[x^i(t + 1) = \sum_j W_{ij}x^j(t) \]

- DeGroot and his literature (Delphi method, Lehrer and Wagner 1981) were seeking a normatively justified way to pool different estimates or forecasts.

Looks crazy to us in view of Aumann's (1976), "Agreeing to Disagree," Geanakoplos Polemarchakis (1982), "We Can't Disagree Forever." But there is a way to reconcile their approach with standard treatment of beliefs: make it about aggregating priors rather than posteriors. Somewhat related to Harsanyi's thoughts about coming up with a common prior from expert views.
Connections with DeGroot Updating (DeGroot 1974)

\[x^i(t + 1) = \sum_j W_{ij} x^j(t) \]

- DeGroot and his literature (Delphi method, Lehrer and Wagner 1981) were seeking a normatively justified way to pool different estimates or forecasts.

- In different ways they defended this dynamic process as a normatively reasonable scheme to allocate weights to initial views.
Connections with DeGroot Updating (DeGroot 1974)

\[x^i(t + 1) = \sum_j W_{ij} x^j(t) \]

- DeGroot and his literature (Delphi method, Lehrer and Wagner 1981) were seeking a normatively justified way to pool different estimates or forecasts.

- In different ways they defended this dynamic process as a normatively reasonable scheme to allocate weights to initial views.

Connections with DeGroot Updating (DeGroot 1974)

\[x^i(t + 1) = \sum_j W_{ij} x^j(t) \]

- DeGroot and his literature (Delphi method, Lehrer and Wagner 1981) were seeking a normatively justified way to pool different estimates or forecasts.
- In different ways they defended this dynamic process as a normatively reasonable scheme to allocate weights to initial views.
- But there is a way to reconcile their approach with standard treatment of beliefs: make it about aggregating priors rather than posteriors. Somewhat related to Harsanyi’s thoughts about coming up with a common prior from expert views.
An Over-the-Counter Market

- I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.

- With probability $1 - \beta$, state is realized and the agent consumes the realization of the asset.

- If not, then with (subjective) probability γ_{ij} agent i must sell the asset in a market where he faces population j.

- Competitive market, so the price is equal to population j’s subjective valuation.

- As $\beta \uparrow 1$, valuation of agent i tends to $\lim_{\beta \uparrow 1} (1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i (n + 1)$.

An Over-the-Counter Market

- I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.
- All agents are risk-neutral and there is no discounting.
An Over-the-Counter Market

- \(I \) populations of agents: continuum of each population, with each individual in population \(i \) having the same type or signal \(t^i \).
- All agents are risk-neutral and there is no discounting.
- They are trading an asset \(Y \).
An Over-the-Counter Market

- I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.
- All agents are risk-neutral and there is no discounting.
- They are trading an asset Y.
- Suppose that an agent in population i holds the asset.
An Over-the-Counter Market

- I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.
- All agents are risk-neutral and there is no discounting.
- They are trading an asset Y.
- Suppose that an agent in population i holds the asset.
 - With probability $1 - \beta$, state is realized and the agent consumes the realization of the asset.
An Over-the-Counter Market

- I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.
- All agents are risk-neutral and there is no discounting.
- They are trading an asset Y.
- Suppose that an agent in population i holds the asset.
 - With probability $1 - \beta$, state is realized and the agent consumes the realization of the asset.
 - If not, then with (subjective) probability γ^{ij} agent i must sell the asset in a market where he faces population j.

$\lim_{\beta \to 1} \left(1 - \beta\right) \sum_{n=0}^{\infty} \beta^n x^i (n+1)$.
An Over-the-Counter Market

- I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.
- All agents are risk-neutral and there is no discounting.
- They are trading an asset Y.
- Suppose that an agent in population i holds the asset.
 - With probability $1 - \beta$, state is realized and the agent consumes the realization of the asset.
 - If not, then with (subjective) probability γ^{ij} agent i must sell the asset in a market where he faces population j.
 - Competitive market, so the price is equal to population j’s subjective valuation.
An Over-the-Counter Market

- There are I populations of agents: continuum of each population, with each individual in population i having the same type or signal t^i.
- All agents are risk-neutral and there is no discounting.
- They are trading an asset Y.
- Suppose that an agent in population i holds the asset.
 - With probability $1 - \beta$, state is realized and the agent consumes the realization of the asset.
 - If not, then with (subjective) probability γ_{ij} agent i must sell the asset in a market where he faces population j.
 - Competitive market, so the price is equal to population j’s subjective valuation.
- As $\beta \uparrow 1$, valuation of agent i tends to
 \[
 \lim_{\beta \uparrow 1}(1 - \beta) \sum_{n=0}^{\infty} \beta^n x^i(n + 1).
 \]
Conclusion

- Consensus expectations exist and have economically interesting properties, interpretations and applications.

- By studying “interaction structure” B that treats network and beliefs symmetrically (à la Morris 2000, “Contagion”), can generalize both classical beauty contest results and complete-information network results.

- Compatible Beliefs is a nice middle ground between common priors and “anything goes.”
 - Reduces “whose priors matter” question to network centrality.
 - Has implications also for Samet iterated expectations (separate paper).

- Can use “physical” intuitions about Markov chains to understand, e.g., whose priors matter.
Separability of Network Structure and Type Weights: Proof

1. \(p \in \Delta(S) \) defined by \(pB = p \).
2. \(p(t^i) = e^i r^i(t^i) \) by the proposition.
3. Plug (2) into (1) to reduce characterization of \(p \) to finding weights \(r^i(t^i) \in \Delta(T^i) \) such that

\[
e^i r^i(t^i) = \sum_{j \in N} \gamma_{ji} e^j \sum_{t^j \in T^j} r^j(t^j) \pi_{t^j}(t^i).
\]

\((*)\)
Separability of Network Structure and Type Weights: Proof

1. $p \in \Delta(S)$ defined by $pB = p$.

2. $p(t^i) = e^i r^i(t^i)$ by the proposition.

3. Plug (2) into (1) to reduce characterization of p to finding weights $r^i(t^i) \in \Delta(T^i)$ such that

$$e^i r^i(t^i) = \sum_{j \in N} \gamma^i_j e^j \sum_{t^j \in T^j} r^j(t^j) \pi^j_{t^j}(t^i). \quad (*)$$

4. Assume π have consistent marginals. Set $r^i = \tilde{r}^i \in \Delta(T^i)$ to be the marginals in the definition of type-consistency. Then (*) boils down to $e = \Gamma e$, which holds by definition.
Separability of Network Structure and Type Weights: Proof

1. $p \in \Delta(S)$ defined by $pB = p$.

2. $p(t^i) = e^i r^i(t^i)$ by the proposition.

3. Plug (2) into (1) to reduce characterization of p to finding weights $r^i(t^i) \in \Delta(T^i)$ such that

$$e^i r^i(t^i) = \sum_{j \in N} \gamma^i e^j \sum_{t^j \in T^j} r^j(t^j) \pi^j_{ti}(t^i).$$

4. Assume π have consistent marginals. Set $r^i = \bar{r}^i \in \Delta(T^i)$ to be the marginals in the definition of type-consistency. Then (*) boils down to $e = \Gamma e$, which holds by definition.

5. Conversely, suppose that $r^i(t) = \bar{r}^i(t)$, independent of Γ. Then use $e^i = \sum_{j \in N} \gamma^i e^j$ to write

$$\sum_{j \in N} \gamma^i e^j \bar{r}^i(t^i) = \sum_{j \in N} \gamma^i e^j \sum_{t^j \in T^j} \bar{r}^j(t^j) \pi^j_{ti}(t^i).$$

6. Because we can vary $\gamma^i e^j$ freely, this implies type-consistency.
Convergence Result: Proof

\[x^i_k(n + 1) = \sum_j \gamma^{ij} \mathbb{E}^i [x^j(n) | t^i_k] \]

Introduce a vector stacking expectations by agent and type:

\[
\begin{bmatrix}
 x^1_1 \\
 \vdots \\
 x^1_K \\
 \vdots \\
 x^I_1 \\
 \vdots \\
 x^I_K \\
\end{bmatrix}
\]

\[Bx(n) \]

Exactly the DeGroot theory without DeGroot goofiness.
Convergence Result: Proof

\[x_k^i(n + 1) = \sum_j \gamma^{ij} \mathbb{E}^i [x^j(n) \mid t_k^i] \]

\[= \sum_j \sum_\ell \gamma^{ij} \pi^i(t_\ell^j \mid t_k^i) x_\ell^j(n). \]
Convergence Result: Proof

\[x_k^i (n + 1) = \sum_j \gamma^{ij} \mathbb{E}^i [x^i(n) \mid t_k^i] \]

\[= \sum_j \sum_\ell \gamma^{ij} \pi^i (t_\ell^i \mid t_k^i) x_\ell^j (n). \]

Introduce a vector stacking expectations by agent and type:

\[
x(n) = \begin{bmatrix}
 x_1^1 \\
 \vdots \\
 x_K^1 \\
 \hline
 x_1^K \\
 \vdots \\
 x_K^K
\end{bmatrix}
\]
Convergence Result: Proof

\[x^i_k(n + 1) = \sum_j \gamma^{ij} \mathbb{E}^i [x^j(n) \mid t^i_k] \]

\[= \sum_j \sum_\ell \gamma^{ij} \pi^i (t^j_\ell \mid t^i_k) x^j_\ell(n). \]

Introduce a vector stacking expectations by agent and type:

\[
x(n) = \begin{bmatrix}
 x_1^1 \\
 \vdots \\
 x_K^1 \\
 \hline
 \vdots \\
 \hline
 x_1^l \\
 \vdots \\
 x_K^l
\end{bmatrix}
\]

\[x(n + 1) = Bx(n) \]
Convergence Result: Proof

\[x_k^i(n + 1) = \sum_j \gamma^{ij} \mathbb{E}^i [x^j(n) | t_k^i] \]

\[= \sum_j \sum_\ell \gamma^{ij} \pi^i (t_\ell^j | t_k^i) x_\ell^j(n). \]

Introduce a vector stacking expectations by agent and type:

\[x(n) = \begin{bmatrix} x_1^1 \\ \vdots \\ x_K^1 \\ \vdots \\ x_1^K \\ \vdots \\ x_1^L \\ \vdots \\ x_K^L \end{bmatrix} \]

\[x(n + 1) = Bx(n) \]

where

\[B_{(i,k),(j,\ell)} = \gamma^{ij} \pi^i (t_\ell^j | t_k^i) \]
Convergence Result: Proof

\[x_k^i(n + 1) = \sum_j \gamma^{ij} \mathbb{E}^i [x^j(n) | t_k^i] \]

\[= \sum_j \sum_\ell \gamma^{ij} \pi^i(t_\ell^j | t_k^i) x_\ell^j(n). \]

Introduce a vector stacking expectations by agent and type:

\[x(n) = \begin{bmatrix} x_1^1 \\ \vdots \\ x_K^1 \\ \vdots \\ x_1^{K'} \\ \vdots \\ x_K^{K'} \end{bmatrix} \]

\[x(n + 1) = B x(n) \]

where \(B_{(i,k),(j,\ell)} = \gamma^{ij} \pi^i(t_\ell^j | t_k^i) \)

Exactly the DeGroot theory without DeGroot goofiness.
Proof Using B Matrix

Consider the simple case where B^n converges.

$$B^n \rightarrow \begin{bmatrix} p & & & \\ & p & & \\ & & p & \\ & & & \ddots \\ & & & & p \end{bmatrix}$$
Proof Using B Matrix

Consider the simple case where B^n converges.

$B^n \rightarrow \begin{bmatrix} p & \cdots & p \\ p & \cdots & p \\ \vdots \\ p & \cdots & p \end{bmatrix}$

$x_k^i(n + 1) \rightarrow pf = \sum_i \sum_k p_k^i \mathbb{E}[Y | t_k^i]$
Proof Using B Matrix

Consider the simple case where B^n converges.

\[B^n \rightarrow \begin{bmatrix} p & \cdots & p \\ p & \cdots & p \\ \vdots \\ p & \cdots & p \end{bmatrix} \]

\[x_k^i(n + 1) \rightarrow pf = \sum_i \sum_k p_k^i \mathbb{E}[Y | t_k^i] \]

p is a vector of player-type weights
Proof Using B Matrix

Consider the simple case where B^n converges.

$$B^n \rightarrow \begin{bmatrix} p & p & \cdots & p \\ p & p & \cdots & p \\ \vdots \\ p & p & \cdots & p \\ \end{bmatrix}$$

$$x_k^i(n+1) \rightarrow pf = \sum_i \sum_k p_k^i \mathbb{E}[Y | t_k^i]$$

p is a vector of player-type weights

$$pB = p,$$ so p is a left-hand eigenvector of B w/ eigenvalue 1