Abstract

When traders with asymmetric information act strategically, public announcements can convey crucial information concerning the higher order beliefs of other traders. This is so even though the public announcement is uninformative concerning the fundamentals of the market. We exhibit a case of trade which is fragile to the announcement of a fact which is already known to all market participants.

Keywords: Volume of Trade, Bayesian Games, Common Knowledge.

1. Introduction

Our understanding of the workings of financial markets has been greatly enhanced by the significant advances made in the theory of asset pricing. However, the lack of any convincing theory of the volume of trade remains a serious gap in our understanding. Ross (1989) laments this state of affairs, and notes that any such theory of trading volume will be difficult to reconcile with existing theories of intertemporal asset pricing, since these theories are based on price taking behaviour aimed at incremental and gradual portfolio rebalancing in the face of news. Events such as the crash of 1987, as well as the magnitude of day to day fluctuations in trading volume sit uncomfortably with the elegant, yet inadequate theories of asset pricing.

The literature generated by the 1987 crash has had some success in showing how prices may be volatile, but has had little to say on trading volume. For Gennotte and

*We are grateful to John Vickers and seminar participants at UCL and ANU for comments on a preliminary version of this paper.
Leland (1990), for example, the introduction of non-linear hedging strategies in an otherwise linear, price-taking world introduces discontinuities in prices. Grossman (1988) and Jacklin, Kleidon and Pfleiderer (1992) also emphasize the role of hedging strategies and program trading. For Romer (1993), a discrete probability distribution over types of traders with varying qualities of news means that one round of trading reveals information concerning the quality of traders' information. Bulow and Klemperer (1994) is an exception to the rule that competitive price taking behaviour is assumed. They examine price volatility in an auction market with fully sophisticated traders.

Our paper is a product of the view that the fluctuations in the volume of trade can only be addressed adequately if account is taken of the strategic nature of trade, and when the interaction of the beliefs of the traders is modelled explicitly. Our aims in this paper are modest, and our arguments are based on a specialized asset structure. Nevertheless, we point to suggestive features which deserve further investigation. In particular, we will show how the arrival of apparently uninformative news can propagate large fluctuations in the volume of trade. Indeed, we can claim that in some cases the public announcement of a fact which is already known by all traders can cause large changes in trading volume. Although these announcements may seem at first sight to be uninformative, they convey crucial information about the beliefs of others when placed in the context of a game.

To elucidate this point, it is instructive to contrast the role of uncertainty in games from that in single person decision theory. Suppose that the uncertainty concerning the fundamentals of the economy is represented by a state space Ω, and a trader has an information partition over this space. At some state ω, the trader knows that the true state is in the cell of his information partition which contains ω. Suppose now that there is a public announcement to the effect that the true state is in some subset A of Ω, but that A does not intersect with the cell of the trader’s partition containing ω. Suppose now that there is a public announcement to the effect that the true state is in some subset A of Ω, but that A does not intersect with the cell of the trader’s partition containing ω. In single person decision theory, this announcement is completely uninformative to the decision maker, since the decision maker’s private information dominates the information conveyed by the announcement.

However, if trade is strategic, the optimal action of a trader at one state depends on the actions of other traders at that state, and this raises the issue of what other traders believe at that state. With asymmetric information, the beliefs of traders in neighbouring states then become relevant. But then, the reasoning does not stop there, since the beliefs of traders at these neighbouring states will depend on their beliefs about the beliefs of other traders at a further set of states, and so on. Rubinstein’s (1989) ‘electronic mail game’ is an example of such an effect, and Monderer and Samet (1990) and Geanakoplos (1992) discuss related examples.

The key to understanding the impact of a public announcement is that the announce-
ment conveys information by virtue of the fact that it is public, and hence its content becomes common knowledge among the traders. Thus, although the announcement may reveal nothing new in terms of the "fundamentals" to any of the traders, it often conveys information concerning the higher order beliefs concerning these fundamentals. In these circumstances, a public announcement which may seem uninformative can, nevertheless, generate a significant impact. We exhibit a case of trade which is fragile to such an 'apparently uninformative' public announcement and diagnose the reasons for the fragility in subsequent sections. We begin with our model.

2. The Model

Two manufacturers of lightbulbs are in competition to meet a sizeable order for long-life lightbulbs from a government department. The department has set down a fixed price, and has announced that it will conduct a durability trial of the two brands of lightbulbs. The brand which has the greater durability (in terms of the number of hours of operation) will win the order. The two firms have developed competing versions of a revolutionary design of lightbulb which, in principle, could last forever provided that the filament consists of pure tungsten. However, if there is even the tiniest amount of impurity in the filament, the bulb has a finite life. Although the purifying process for tungsten has come a long way, it cannot be relied on to remove all the impurities. The durability of the lightbulb is an increasing function of the purity of the filament.

The tungsten refining industry is dominated by a monopoly, and both lightbulb manufacturers are supplied with the same grade of refined tungsten for their filaments. Although the two lightbulb manufacturers have developed competing designs, the durability of the two brands is highly correlated, due to their use of filaments of identical purity. We denote by \theta the level of purity of the tungsten used by both manufacturers; \theta lies in the open unit interval (0,1).

The state space which underlies our analysis is given by the set of all triples (\theta, v_1, v_2), where \(v_i \) is the durability of the lightbulb of the \(i \)th manufacturer. We assume that the density function over the triples (\theta, v_1, v_2) is atomless and continuous, and will denote it by \(\pi(\cdot, \cdot, \cdot) \). We will formalize the idea that the durabilities of the lightbulbs increase without bound as \(\theta \) approaches 1 in the following way. Assume that there is a strictly increasing function \(d \) which maps each \(\theta \in (0,1) \) to a positive real number such that \(d(\theta) \to \infty \) as \(\theta \to 1 \). Then, for any given value of \(\theta \), both \(v_1 \) and \(v_2 \) can take any value within \(\epsilon \) distance of \(d(\theta) \). In other words,

\[
\pi(\theta, v_1, v_2) > 0 \Leftrightarrow d(\theta) - \epsilon \leq v_1 \leq d(\theta) + \epsilon, \text{ for all } i \in \{1, 2\}.
\]

Let us denote by \(V_i \) the random variable whose realization is \(v_i \), the durability of the \(i \)th lightbulb. We will assume that \(V_i \) can take any non-negative value. Each man-
ufacturer observes the durability of its own brand, but observes neither the durability of its rival's brand, nor the purity of the tungsten \(\theta \).

Of particular importance to our analysis is the density over the pairs \((v_1, v_2)\) obtained from \(\pi \) by summing over the first component. We denote this density by \(\mu \). Thus,

\[
\mu(v_1, v_2) \equiv \int_{\theta = 0}^{1} \pi(\theta, v_1, v_2) d\theta.
\]

(2.1)

Player 1 will form beliefs by conditioning on the realization of \(V_1 \), while player 2 will form beliefs by conditioning on the realization of \(V_2 \). From (1), \(\mu \) inherits the feature that \(\mu(v_1, v_2) > 0 \) if and only if \(|v_1 - v_2| \leq 2\epsilon \). Hence, upon observing the realization \(V_1 = v_1 \), player 1 infers that the realization of \(V_2 \) lies within distance \(2\epsilon \) of \(v_1 \). The support of the density \(\mu \) is indicated by the shaded region in figure 1. Also, \(\mu \) is continuous since \(\pi \) is continuous.

[Figure 1 here]

We will assume that there is a number \(\eta > 0 \) such that for every realization of \(V_i \), player \(i \) attaches conditional probability of at least \(\eta \) that his rival's realization is above his own. In other words, \(\eta \) is such that, for \(j \neq i \) and all \(v_i \),

\[
\int_{z = v_i}^{\infty} \mu(z \mid V_i = v_i) dz \geq \eta.
\]

(2.2)

This assumption has the effect that, however large \(v_i \) is, there is a uniform lower bound on the probability that the rival's durability is greater than \(v_i \).

3. Trade

We now turn to the description of trade. The game is played between the owners of the two firms. There is a single consumption good. The two firms are assets which lay claim to the consumption good at specified states. The payoffs reflect the "all or nothing" nature of the competition between the two firms. The firm with the more durable lightbulb wins the order, and yields one unit of the consumption good at the end of the game. The losing firm is worth zero in terms of the consumption good. In other words, firm 1 is an asset whose payoff is a random variable \(x_1 \) defined on the pairs \((v_1, v_2)\) such that:

\[
x_1(v_1, v_2) = \begin{cases}
1 & \text{if } v_1 > v_2 \\
0 & \text{otherwise}
\end{cases}
\]

(3.1)
Then, firm 2 is an asset $x_2(v_1, v_2)$ such that $x_2 = 1 - x_1$.

Both players are risk averse, and have identical preferences given by the von Neumann Morgenstern utility function

$$u(c) = c^\alpha,$$

where $0 < \alpha < 1$, and c is the level of consumption.

A trade t is an element of the unit square. Trade $t \equiv (t_1, t_2)$ has the interpretation of an exchange in which proportion t_1 of firm 1 is given up in exchange for proportion t_2 of firm 2. Each trading game is indexed by a particular trade t. The action set of both players is \{Accept, Reject\}. We will contrast two distinct versions of the trading game.

(i) Trade in absence of announcement. For a given trade t, traders observe their respective signals before choosing an action. A strategy of player i is a function which maps each realization of his signal V_i to the action set \{Accept, Reject\}. We will denote by A_1 the set of realizations of V_1 at which player 1 accepts t. Call A_1 the acceptance set of player 1. Denote by A_2 the acceptance set for player 2. Note that a player's acceptance set depends on the proposed trade t.

The trade t takes place when both players accept. Thus, for the pair of messages (v_1, v_2), trade t takes place if and only if $(v_1, v_2) \in A_1 \times A_2$. The acceptance sets of the players provide a convenient shorthand for the strategies of the players. An equilibrium of the trading game in the absence of announcement for trade $t \equiv (t_1, t_2)$ is a pair of acceptance sets (A_1, A_2) such that each player maximizes his expected utility conditional on the realization of his signal. More formally, for any pair of strategies (A_1, A_2), denote by $y_i(v_1, v_2)$ the post-trade allocation of the consumption good for trader 1. It is given by:

$$y_1(v_1, v_2) = \begin{cases} (1 - t_1)x_1(v_1, v_2) + t_2x_2(v_1, v_2) & \text{if } (v_1, v_2) \in A_1 \times A_2 \\ x_1(v_1, v_2) & \text{otherwise} \end{cases}$$

Analogously, the post-trade allocation of the consumption good at (v_1, v_2) for trader 2 given strategies (A_1, A_2) is given by:

$$y_2(v_1, v_2) = \begin{cases} t_1x_1(v_1, v_2) + (1 - t_2)x_2(v_1, v_2) & \text{if } (v_1, v_2) \in A_1 \times A_2 \\ x_2(v_1, v_2) & \text{otherwise} \end{cases}$$

A pair of strategies (A_1, A_2) is an equilibrium of this game if, for all i,

$$E_{\mu}(u(y_i) | V_i) \geq E_{\mu}(u(x_i) | V_i).$$

(3.4)
where E_{μ} denotes the expectations operator with respect to the distribution μ.

(ii) Trade following announcement. In our alternative scenario of the trading game, the players not only observe their own signals, but also receive a public announcement from the supplier of the tungsten filament. The supplier of the filament announces the results of a test which measures the incidence of cobalt in the tungsten. Cobalt is one of a dozen or so possible impurities in the tungsten, but it happens to be the only impurity which can be measured. Thus, the announcement of the cobalt content is, in effect, an announcement of an upper bound \tilde{d} for the purity of the tungsten. From this, the players can infer that the value of d is at most $d(\tilde{d})$, and from (1), that the durability of both brands of lightbulbs is at most $d(\tilde{d}) + \epsilon$.

In terms of the players' beliefs over the pairs (v_1, v_2), the effect of the public announcement is to truncate the support of the joint distribution so that any realization of V_i above $d(\tilde{d}) + \epsilon$ receives zero density. Assuming that both traders update by Bayes rule from the distribution μ, the traders' beliefs following the announcement are governed by a new density over the pairs (v_1, v_2) denoted by λ, where the density of a pair $\lambda(v_1, v_2)$ such that $(v_1, v_2) \leq (d(\tilde{d}) + \epsilon, d(\tilde{d}) + \epsilon)$ is given by

$$
\lambda(v_1, v_2) = \frac{\int_{\tilde{d}}^{\tilde{d}} \pi(\theta, v_1, v_2) d\theta}{\int_{\tilde{d}}^{\tilde{d}} \int_{v_1=0}^{\infty} \int_{v_2=0}^{\infty} \pi(\theta, v_1, v_2) dv_2 dv_1 d\theta}
$$

(3.5)

while the density for a pair (v_1, v_2) such that $(v_1, v_2) > (d(\tilde{d}) + \epsilon, d(\tilde{d}) + \epsilon)$ is zero. The support of λ is illustrated in figure 2.

[Figure 2 here]

An equilibrium of the trading game following the public announcement is defined in an analogous way to our first game, except that players now form beliefs from the density λ rather than the density μ. Thus, a pair of strategies (A_1, A_2) is an equilibrium of the trading game following the announcement if, for all i,

$$
E_{\lambda}(u(y_i) \mid V_i) \geq E_{\lambda}(u(x_i) \mid V_i).
$$

(3.6)

It should be noted that \tilde{d} may be much higher than the realized value of d, in which case the public announcement of \tilde{d} will not be very informative to the traders as to the true value of d and their rival's durability. The observation of their own signal may be far more informative concerning these "fundamentals". In this sense, this public announcement is apparently uninformative. However, by virtue of the fact that the announcement is public, the players have access to the fact that it is common knowledge.
that θ is at most $\tilde{\theta}$. In turn, it is now common knowledge that the durability of both brands of lightbulbs is at most $d(\tilde{\theta}) + c$. This is the key insight which will allow us to understand the contrast between the set of propositions presented below.

In stating our results, we will rule out the trade $t = (0, 0)$. Let's say that a trade t is non-trivial if $t \neq (0, 0)$.

Proposition 1. If the traders are sufficiently risk averse, there is a non-trivial trade t and an equilibrium of the trading game in the absence of announcement in which $A_1 = A_2 = \mathbb{R}_+$.

Proposition 2. For any $\alpha \in (0, 1)$, any non-trivial trade t, and any equilibrium (A_1, A_2) of the trading game following announcement, $A_1 \times A_2$ has measure zero.

Thus, in the absence of a public announcement, trade takes place if traders are sufficiently risk averse, but the public announcement precludes trade, however risk averse the traders are. Before diagnosing the reasons for the absence of trade in proposition 2, let us work through the proofs of both results. We shall prove the first proposition by exhibiting a non-trivial trade which is accepted in equilibrium.

Suppose player 1 has observed $V_1 = v_1$. Then, by (4),

$$E_\mu(u(x_1) \mid V_1 = v_1) \leq (1 - \eta)u(1) = 1 - \eta. \quad (3.7)$$

The conditional expected utility following the trade $(\frac{1}{2}, \frac{1}{2})$ is given by:

$$E_\mu\left(u\left(\frac{x_1 + x_2}{2}\right) \mid v_1\right) = u\left(\frac{1}{2}\right). \quad (3.8)$$

There is some $\alpha^* \in (0, 1)$ such that $(\frac{1}{2})^{\alpha^*} \geq 1 - \eta$. Thus, for all values of $\alpha < \alpha^*$, we have $u(\frac{1}{2}) > 1 - \eta$. In other words, the expected utility following trade is higher than the expected utility of the endowment. An exactly analogous argument holds for player 2. Hence, there is an equilibrium in which the trade $(\frac{1}{2}, \frac{1}{2})$ is accepted by both players at every state. Clearly, $(\frac{1}{2}, \frac{1}{2})$ is a non-trivial trade. This proves proposition 1.

Let us now consider proposition 2. Let us suppose, contrary to proposition 2, that $A_1 \times A_2$ has positive measure for a non-trivial trade t. Then, there is an open set of pairs (v_1, v_2) at which both players accept this trade. Let us denote by $\{V_2 \in A_2\}$ the event that the realization of V_2 is in the acceptance set A_2 of player 2. We denote by $\text{Prob}_\Lambda(\{V_2 \in A_2\} \mid V_1 = v_1)$ the probability of this event conditional on $V_1 = v_1$. In other words,

$$\text{Prob}_\Lambda(\{V_2 \in A_2\} \mid V_1 = v_1) = \frac{\int_{v_2 \in A_2} \lambda(v_1, v_2)dv_2}{\int_{v_2 = 0}^{\infty} \lambda(v_1, v_2)dv_2}. \quad (3.9)$$
Consider the set of realizations of V_i for which player i accepts trade, and conditional on which i attaches positive probability to player j accepting trade, where $i \neq j$. Denote this set by \tilde{V}_i. In other words,

$$\tilde{V}_i \equiv \{v_i \mid v_i \in A_i \text{ and } \text{Prob}_\lambda(\{v_j \in A_j \mid V_i = v_i\} > 0)\} \tag{3.10}$$

Let us denote by \bar{v}_i the least upper bound of the interior of this set. In other words,

$$\bar{v}_i = \sup \text{Int } \tilde{V}_i.$$

Note that \bar{v}_i is finite for both players, since it is bounded above by $d(\bar{v}) + \epsilon$.

Now, let us suppose that $\bar{v}_1 \geq \bar{v}_2$. The expected utility of player 1's endowment given $V_1 = v_1$ is $E_\lambda(u(x_1) \mid V_1 = v_1)$ which is:

$$\text{Prob}_\lambda(\{V_2 < v_1 \mid V_1 = v_1\}u(1) + \text{Prob}_\lambda(\{V_2 \leq v_1 \mid V_1 = v_1\}u(0). \tag{3.11}$$

We know that $u(0) = 0$ and $u(1) = 1$. Also, we know that λ inherits from μ the fact that it is continuous on the interior of its support. Hence, as v_1 approaches \bar{v}_1 from below,

$$E_\lambda(u(x_1) \mid V_1 = v_1) \rightarrow \text{Prob}_\lambda(\{V_2 < \bar{v}_1 \mid V_1 = \bar{v}_1\}) \tag{3.12}$$

Now, consider the expected utility of the post-trade allocation y_1 given $V_1 = v_1$. It is:

$$E_\lambda(u(y_1) \mid V_1 = v_1) = \text{Prob}_\lambda(\{V_2 < v_1 \text{ and } V_2 \notin A_2 \mid V_1 = v_1\}u(1)$$

$$+ \text{Prob}_\lambda(\{V_2 < v_1 \text{ and } V_2 \notin A_2 \mid V_1 = v_1\}u(1 - t_1)$$

$$+ \text{Prob}_\lambda(\{V_2 \geq v_1 \text{ and } V_2 \in A_2 \mid V_1 = v_1\}u(t_2)$$

$$+ \text{Prob}_\lambda(\{V_2 \geq v_1 \text{ and } V_2 \notin A_2 \mid V_1 = v_1\}u(0).$$

By hypothesis, $\bar{v}_1 \geq \bar{v}_2$, so that

$$\{V_2 \geq \bar{v}_1 \text{ and } V_2 \notin A_2\} \subseteq \{V_2 \geq \bar{v}_2 \text{ and } V_2 \in A_2\}. \tag{3.13}$$

But by the definition of \bar{v}_2, we have $\bar{v}_2 \leq \sup A_2$ so that the event on the right hand side of (16) has probability zero. Hence,

$$\text{Prob}_\lambda(\{V_2 \geq \bar{v}_1 \text{ and } V_2 \in A_2 \mid V_1 = \bar{v}_1\}) = 0 \tag{3.14}$$

Since $u(0) = 0$ and $u(1) = 1$, the continuity of the conditional probabilities implies that, as v_1 approaches \bar{v}_1 from below, we have:

$$E_\lambda(u(y_1) \mid V_1 = v_1) \rightarrow \text{Prob}_\lambda(\{V_2 < \bar{v}_1 \text{ and } V_2 \notin A_2 \mid V_1 = \bar{v}_1\)$$

$$+ \text{Prob}_\lambda(\{V_2 < \bar{v}_1 \text{ and } V_2 \in A_2 \mid V_1 = \bar{v}_1\}u(1 - t_1) \tag{3.15}$$

$$< \text{Prob}_\lambda(\{V_2 < \bar{v}_1 \mid V_1 = \bar{v}_1\},$$

8
where the strict inequality follows from the fact that \(v(1 - t_1) < 1 \) and the fact that \(\text{Prob}_\lambda(\{V_2 < \tilde{v}_1 \text{ and } V_2 \in A_2 \} \mid V_1 = \tilde{v}_1) \) is strictly positive by construction. Thus, from (15) and (18), it follows that for an open set of values of \(v_1 \) close to \(\hat{v}_1 \), the endowment \(x_1 \) of player 1 yields strictly higher expected utility than the post-trade allocation \(\gamma_1 \), which violates the rationality of trader 1. Hence, our hypothesis that \(\hat{v}_1 \geq \tilde{v}_2 \) is inconsistent with equilibrium. Thus, in any equilibrium, \(\hat{v}_1 < \tilde{v}_2 \). However, an exactly anaogous argument shows that the rationality of player 2 implies \(\tilde{v}_1 > \hat{v}_2 \), which leads to the absurd conclusion that \(\tilde{v}_1 > \tilde{v}_2 > \hat{v}_1 \). Therefore, our initial supposition that \(A_1 \times A_2 \) has positive measure cannot hold. This proves proposition 2.

4. An Assessment

The arguments used in establishing our pair of results show that many features of the model may be relaxed with affecting the results. For proposition 1, the continuity of the conditional expectation and the uniform lower bound on the probability of a higher type, as expressed by (3), are the only essential ingredients of the proof. For proposition 2, the argument rests on there being an upper bound on the support of the distribution \(\lambda \). We did not make any essential use of the relationship between the distributions \(\mu \) and \(\lambda \), apart from the fact that \(\lambda \) inherits continuity from \(\mu \).

In delving into the reasons behind the fragility of trade as witnessed by proposition 2, it is helpful to consider more systematically the beliefs of the two traders. In the space of pairs \((v_1, v_2) \), the support of the density \(\mu \) is given by the diagonal band of width \(4\epsilon \) as shown in figure 1. The public announcement informs the traders that the true state is in the event \(Q \), where:

\[
Q = \{ (v_1, v_2) \mid v_1 \leq \hat{d}(\beta) + \epsilon \} \tag{4.1}
\]

Thus, prior to the announcement of the event \(Q \), trader 1 believes \(Q \) with probability 1 only at those values of \(v_1 \) which are at least distance \(2\epsilon \) away from the highest value of \(v_2 \) consistent with \(Q \). Thus, we may represent the set of points at which trader 1 believes \(Q \) as in figure 3. We denote this event by \(B_1(Q) \).

[Figure 3 here]

In turn, trader 2 believes \(B_1(Q) \) with probability 1 at those realizations of \(v_2 \) which are distance at least \(4\epsilon \) from the top edge of \(B_1(Q) \). This allows us to represent the event in which 2 believes that 1 believes \(Q \) as in figure 3. We denote this event as \(B_2(B_1(Q)) \). Proceeding in this way, we can consider events at which there is even higher order belief concerning the event \(Q \).
In particular, the sequence X_0, X_1, X_2, \ldots define as $X_0 = Q$ and $X_n = B_2(B_1(X_{n-1}))$ converges to the empty set, since each application of the operator $B_2(B_1(\cdot))$ acts as a strict contraction of bounded size. One consequence of this is that the event in which the event Q is common belief is the empty set. In other words, prior to the public announcement of Q, the event Q cannot be common belief between the two traders. When ϵ is small, and the traders observe low realizations of V_i, the event Q may be believed to a high order of iterated belief. Nevertheless, Q will never be common belief.

However, the effect of the public announcement is to render this event common belief. It is precisely this feature which precludes trade, since a trader of a given type ν enters the market only if he places positive probability on the trading partner being a higher type. Otherwise, trade will make him worse off, for sure. If there is common belief that the type of one’s trading partner is at most $\hat{\nu}$, then for any given level of the risk aversion parameter α, a trader whose own type is sufficiently close to $\hat{\nu}$ will withdraw from the market, since the probability of the trading partner being a higher type is too small to justify trade. Since both traders can reason in this way, it then becomes common belief among the traders that the type of one’s trading partner is at most $\hat{\nu} - \delta$, where δ is the size of the interval of traders who withdraw. But then, the traders can apply the reasoning again to conclude that it is common belief that the type of one’s trading partner is at most $\hat{\nu} - 2\delta$. With each round of this reasoning, the highest types of traders who remain are driven out of the market. In equilibrium, all traders are driven out.

When explained in these terms, our model has more than a passing resemblance to the “lemons” example of Akerlof (1970). In both cases, traders with private information on the value of their own endowment assess the likely consequence of trade, and the traders endowed with the highest quality items withdraw from the market. The difference between our model and that of Akerlof is that, in our story the withdrawal of one side of the market leads to the withdrawal of the other side, which in turn precipitates a further withdrawal of the first side. At the risk of mixing untidy metaphors, we could dub the mechanism underlying proposition 2 as being a “double-sided lemon”. Brams, Kilgour and Davis (1993) have discussed an example which also deals with such unravelling arguments.

It goes without saying that our model is but one special case of an exchange economy with differential information. It is an interesting open question as to how large the class of economies is which is susceptible to the sort of arguments developed in this paper. For the class of finite Bayesian games, Morris, Rob and Shin (1993) have shown that certain general features of the information structure and of the underlying game can interact to produce outcomes which magnify the effects of higher order beliefs. At a more technical level, we can pose the general question as that of identifying the appropriate topology over the set of information structures with respect to which outcomes are continuous. Monderer and Samet (1990) is one paper which addresses this issue for abstract games.
One of the goals of further research will be to distill those essential features of richer economic settings which make outcomes sensitive to higher order beliefs.

References

[Figure 1]
[Figure 2]
This is a list of recent CARESS Working Papers. A complete list (dating from inception of the series) can be obtained by writing to:

Mrs. Kelly A. Quinn
CARESS
3111 Locust Walk
McNeil Building
Philadelphia, PA 19104-6297

92-01B "Normal Form Structures in Extensive Form Games" by George J. Mailath, Larry Samuelson and Jerem M. Swinkels

92-02 "R&D, Investment and Industry Dynamics" by Saul Lab and Rafael Rob
92-03 "Sales, Uncertainty and the Determinants of Investments" by Rafael Rob
92-04 "Market Games with Asymmetric Information: The Private Information Core" by Beth Allen
92-05 "Incentives in Market Games with Asymmetric Information: Approximate (NTU) Cores in Large Economies" by Beth Allen
92-06A "Evolution of Equilibria in the Long Run: A General Theory and Applications" by Michihiro Kandori and Rafael Rob
92-07 "Committing as a Mechanism: Resilient Allocation Rules for Bilateral Trade" by Roger Lagunoff
92-08 "Jet Symposium on Evolutionary Game Theory: Introduction" by George J. Mailath
92-09 "When does Information Lead to Trade? Efficiency and Trade with Heterogeneous Prior Beliefs and Asymmetric Information" by Stephen Morris
Revised and final version forthcoming in Econometrica.

92-10 "Towards a Theory of Inertive Compatibility for Economies with Incomplete Market Structures" by Yves Younès
92-11 "Incentives in Market Games with Asymmetric Information: The Value" by Beth Allen
92-12 "On the Social Stability of Coalitional Property Rights Regimes" by Gerhard Glenn and Roger Lagunoff
92-13 "Finite Bubbles with Short Sale Constraints and Asymmetric Information" by Franklin Allen, Stephen Morris and Andrew Postlewaite
Revised and final version appears in Journal of Economic Theory
92-14 "Bartter and Monetary Exchange Under Private Information" by Steve Williamson and Randall Wright
Revised and final version forthcoming in American Economic Review.

92-15 "Market Games with Asymmetric Information: The Core with Finitely many State of the World" by Beth Allen
92-16 "Induction and Bounded Rationality in Repeated Games" by In-Koo Cho and Akihiko Matsui
92-17 "Dynamic Consistency and the Value of Information" by Stephen Morris
92-18 "Learning and the Ramsey Policy" by In-Koo Cho and Akihiko Matsui
92-19 "Convolution to Mixed Strategies" by Beth Allen
92-20 "Financing, Barter, and Optimal Monetary Policy with Capital" by Pamela Hayashi and Akihiko Matsui
92-21 "On Modeling Cheap Talk in Bayesian Games" by Steven A. Matthews and Andrew Postlewaite
92-22 "Acceptance Games and Protocols" by Stephen Morris
92-23 "The Resale Premium for Assets in General Equilibrium" by Stephen Morris
92-24 "Revising Beliefs and Knowledge: A Generalization of Blackwell's Theorem" by Stephen Morris
92-25 "Sufficiently Specialized Economies have Nonempty Cores" by Roger D. Lagunoff
92-26 "Inequality and the Social Stability of Economies with Collective Property Rights" by Gerhard Glenn and Roger D. Lagunoff
92-27 "Revising Knowledge: A Decision-Theoretic Approach" by Stephen Morris
92-28 "Adverse Selection, Reputation, and Firms in Professional Service Markets" by Jacobo Aysen
92-29 "Constrained Suboptimality with Many Agents" by Atsushi Kaji
92-30 "Search, Matching, and Unions" by Kenneth Baudett and Randall Wright
92-31 "The Burden of Proof in a Game of Persuasion" by Hyun Song Shin
92-32 "How much Common Belief is Necessary for a Convention?" by Hyun Song Shin
92-33 "Multiple Tasks in the Principal-Agent Model" by Dick Bergemann
92-34 "Duality Principles on Intertemporal Preference and Capital Accumulation" by H. Unzu
93-01 "Perpetual Randomness in Evolutionary Economics" by George J. Mailath
93-02 "Noisy Bayes Updating and the Value of Information" by Stephen Morris and Hyun Song Shin
93-03 "Bayes and Seller" by Kenneth Baudett, Melvyn Cole, Nobuhiko Kiyota and Randall Wright
93-04 "AITUS Expected Utility: An Anticipated Utility Theory of Relative Disappointment Aversion" by Simon Grant and Atsushi Kaji

93-05 "Hubel and Wiesel's Monocular Vision" by Atsushi Kaji
93-05 "Roadwagon Effects and Long Run Technology Choice" by Michihiro Kanda
93-06 "A Note on the Incentives to Agglomerate Under Demand Uncertainty" by Rafael Rob
93-07 "A Primer on Functional Differential Equations with Applications to Economics" by Paul J. Zuck
93-08 "An Endogenous Rate of Time Preference, the Pease Rate, and Dynamic Optimality of Environmental Quality" by Hirofumi Uzawa
93-09 "Bidding Spreads with Two-Sided Private Information" by Stephen Morris
93-10 "Risk, Uncertainty and Hidden Information" by Stephen Morris, Rafael Rob and Hiyun Song Shin
93-11 "Risk Dominance and Stochastic Potential" by Stephen Morris, Rafael Rob and Hiyun Song Shin
Revised and final version forthcoming in Econométrica
93-12 "Structural Indifference in Normal Form Games" by George J. Mailath, Larry Samuelson and Jeroen M. Swinkels
93-13 "Search, Bargaining, Money and Price" by Alberto Trejos and Randall Wright
93-14 "Agitators and Fire Rides on the Path to Cooperation: The Evolution of Cooperation in Mechanisms for Public Projects" by Roger D. Lagunoff and Akihiko Matsui
93-15 "Depth of Knowledge and the Effect of Higher Order Uncertainty" by Stephen Morris, Andrew Postlewaite and Hiyun Song Shin
Revised and final version forthcoming in Economic Theory
93-16 "Monetary Exchange Under Private Information: A Note" by Alberto Trejos
93-17 "Relative Income Concerns and the Rise in Married Women's Employment" by David Neumark and Andrew Postlewaite
93-19* "Evolution and Rationalizability" by Akihiko Matsui
93-20* "Strictness, Evolutionary Stability and Repeated Games with Common Interest" by Dieter Balkenborg
93-21* "On Generic Pareto Improvement in Competitive Economies with Incomplete Asset Structures" by Alessandro Citanna and Antonio Villanacci
93-22* "Search, Evolution and Money" by Randall Wright
Revised and final version forthcoming in the Journal of Economic Dynamics and Control
93-23* "A Note on Sunspot Equilibria in Search Models of Fiat Money" by Randall Wright
Revised and final version forthcoming in the Journal of Economic Theory
93-24* "Demand and Supply in New Markets: Diffusion with Bilateral Learning" by Nikolas Vetta
93-25* "Short-Run Independence of Monetary Policy under Pegged Exchange Rates and Effects of Money on Exchange Rates and Interest Rates" by Lee E. Ohanian and Alan O. Stockman
93-26* "Majority Rule and the Public Provision of Health Care" by Miguel Gomez
93-27* "Pareto Improving Financial Innovation in Incomplete Markets" by David Cass and Alessandro Citanna
93-28* "On the Dynamic Selection of Mechanisms as Clubs for the Provision of a Public Project" by Roger D. Lagunoff
94-01* "Expected Utility and Game-Based Reasoning" by Akihiko Matsui
94-02* "Sequential Stratified Sampling" by Edward J. Green and Kailin Zhou
94-03* "Bargaining, Badness and Nash Outcomes" by Simon Grant and Atsushi Kaji
94-04* "Learning and Strategic Pricing" by Dirk Bergemann and Junsu Valimaki
94-05* "Evolution in Mechanisms for Public Projects" by Roger D. Lagunoff and Akihiko Matsui (previous version 93-14)
94-06* "Constrained Suboptimality in Incomplete Markets: A General Approach and Two Applications" by Alessandro Citanna, Atsushi Kaji and Antonio Villanacci
94-07* "Pareto Improving Financial Innovation in Incomplete Markets" by David Cass and Alex Citanna (previous version 93-27)
94-08* "Commodity Money Under Private Information" by Yiting Li
94-09* "Generic Local Uniqueness in the Walrasian Model: A Pedagogical Note" by Marcelo de Barros Lisboa
94-10* "Bargaining-Induced Transaction Demand for Fiat Money" by Merwan Engineer and Shouyong Shi
94-11* "Politico-Economic Equilibrium and Economic Growth" by Per Krusell, Vincenzo Quadrini and José-Victor Rios-Rull
94-12* "On the Evolution of Pareto Optimal Behavior in Repeated Coordination Problems" by Roger D. Lagunoff
94-13* "Evolution and Endogenous Interactions" by George J. Mailath, Larry Samuelson and Avery Skidels
94-14* "How Proper Is Sequential Equilibrium?" by George J. Mailath, Larry Samuelson and Jeroen M. Swinkels
94-15* "Common p-Belief: The General Case" by Atsushi Kaji and Stephen Morris
94-16* "Impact of Public Announcements on Trade in Financial Markets" by Stephen Morris and Hiyun Song Shin