Global Games and Illiquidity

Stephen Morris

December 2009
The Credit Crisis of 2008

- Bad news and uncertainty triggered market freeze
- Real bank runs (Northern Rock, Bear Stearns, Lehman Brothers....)
- Run-like behavior in markets (the "Repo Run")
Bank Runs and Multiple Equilibria

- If I expect everyone else to withdraw deposits from a bank, I have an incentive to do so.
- If everyone withdraws deposits from the bank, the bank collapses (even if assets are fine)
- Two equilibria: all stay, all run
Strategic Complementarities

- An increase in your strategy gives me a greater incentive to increase my strategy, e.g.,
 - If many others withdraw their deposits from a bank, I have an incentive to withdraw.
 - If many others are selling the "pegged" Brazilian real, I have an incentive to dump reals.
 - If others are hoarding liquidity, I hoard liquidity too

- Sufficiently strong strategic complementarities imply multiple equilibria (self-fulfilling beliefs)
Problems with Multiple Equilibrium Modelling

- Weak predictions
 - do not explain when a run occurs
 - do not explain correlation of runs with bad fundamentals

- Hard to do policy analysis
 - what is the impact of increased liquidity (cash on hand) requirements for financial institutions?

- Key unreasonable implicit assumption
 - Complete Information (= common knowledge of payoffs) and equilibrium implies common knowledge of everyone’s actions
Global Games

- Carlsson - van Damme 93, Morris-Shin 98, 03.
- Relax the assumption of common knowledge of payoffs in an intuitive and small way in order to
 1. Generate natural "strategic uncertainty" (uncertainty in equilibrium about others’ actions)
 2. Unique equilibrium
 3. Economic impact of strategic complementarities (small changes in "fundamentals" lead to large changes in outcomes)
 4. Natural comparative statics and policy analysis
This Talk

1. Review Global Games Modelling
2. Discuss an application to quantifying and regulating liquidity risk:
 Morris-Shin 09. "The Illiquidity Component of Credit Risk."
This Talk

1. Review Global Games Modelling
2. Discuss an application to quantifying and regulating liquidity risk:

Morris-Shin 09. "The Illiquidity Component of Credit Risk."

- Slides, More Detailed References, this and other papers available on my website http://www.princeton.edu/~smorris/ (google "Stephen Morris")
- All based on joint work with Hyun Song Shin (Princeton University)
Example

- Two Players: Alice and Bob
- Two Actions: Stay or Run
- Payoffs depend on state of "Fundamentals" $\theta \in \mathbb{R}$
- Payoff Matrix:

<table>
<thead>
<tr>
<th>Alice \ Bob</th>
<th>Stay</th>
<th>Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay</td>
<td>θ, θ</td>
<td>$\theta - 1, 0$</td>
</tr>
<tr>
<td>Run</td>
<td>$0, \theta - 1$</td>
<td>$0, 0$</td>
</tr>
</tbody>
</table>
Complete Information

- Suppose \(\theta \) is common knowledge to Alice and Bob
- Three regions:
 1. If \(\theta < 0 \), running is strictly dominant strategy and thus (run, run) is the unique Nash equilibrium
 2. If \(\theta > 1 \), staying is strictly dominant strategy and thus (stay, stay) is the unique Nash equilibrium
 3. If \(0 \leq \theta \leq 1 \), then there are multiple Nash equilibria: (run, run) and (stay, stay)
Incomplete Information: the Uniform-Uniform Case

- θ is uniformly distributed on the interval $[\theta, \bar{\theta}]$, where $\theta \ll 0$ and $1 \ll \bar{\theta}$
- Alice and Bob observe signals x_A and x_B respectively, where
 - $x_A = \theta + \sigma \epsilon_A$
 - $x_B = \theta + \sigma \epsilon_B$
 - ϵ_A, ϵ_B are independently uniformly distributed on $[-\frac{1}{2}, \frac{1}{2}]$
 - $\sigma > 0$ measures the accuracy of signals
Best Responses

- Each player i’s expectation of θ is x_i.
- Each player will run if he assigns probability greater than x_i to his opponent running.
- Each player will stay if he assigns probability less than x_i to his opponent running.
Deleting Dominated Strategies

Round 1

- Each player has a dominant strategy to run if $x_i < 0$
- Each player has a dominant strategy to stay if $x_i > 1$
Deleting Dominated Strategies

Round 1

- Each player has a dominant strategy to run if $x_i < 0$
- Each player has a dominant strategy to stay if $x_i > 1$

- But now a player observing signal 0 will assign probability at least $\frac{1}{2}$ to his opponent running.
- Thus he will have a strict incentive to run if he observes signal 0 or (by continuity) a signal in an interval above 0
- Symmetrically, a player has a strict incentive to stay if he observes signal 1 or (by continuity) a signal in an interval below 1
Deleting Dominated Strategies

- **Round 1**
 - Each player has a dominant strategy to run if $x_i < 0$
 - Each player has a dominant strategy to stay if $x_i > 1$

- **Round 2:** there exist $0 < \underline{x}^2 < \frac{1}{2} < \bar{x}^2 < 1$ such that
 - Each player has a dominant strategy to run if $x_i < \underline{x}^2$
 - Each player has a dominant strategy to stay if $x_i > \bar{x}^2$
Deleting Dominated Strategies

- Round 2: there exist $0 < \underline{x}^2 < \frac{1}{2} < \bar{x}^2 < 1$ such that
 - Each player has a dominant strategy to run if $x_i < \underline{x}^2$
 - Each player has a dominant strategy to stay if $x_i > \bar{x}^2$

- Round 3: there exist $\underline{x}^2 < \underline{x}^3 < \frac{1}{2} < \bar{x}^3 < \bar{x}^2$ such that
 - Each player has a dominant strategy to run if $x_i < \underline{x}^3$
 - Each player has a dominant strategy to stay if $x_i > \bar{x}^3$
Deleting Dominated Strategies

- Round k: there exist $0 < x^k < \frac{1}{2} < \bar{x}^k < 1$ such that
 - Each player has a dominant strategy to run if $x_i < x^k$
 - Each player has a dominant strategy to stay if $x_i > \bar{x}^k$

- Round $k+1$: there exist $x^k < x^{k+1} < \frac{1}{2} < \bar{x}^{k+1} < \bar{x}^k$ such that
 - Each player has a dominant strategy to run if $x_i < x^{k+1}$
 - Each player has a dominant strategy to stay if $x_i > \bar{x}^{k+1}$
RUN

RUN OR STAY

STAY

0 \ x^2 \ x^3 \ldots \ x^n \ \bar{x}^n \ldots \bar{x}^3 \ \bar{x}^2 \ 1

\theta
There is an (essentially) unique strategy for each player surviving iterated deletion of strictly dominated strategies:

\[s_i^* (x_i) = \begin{cases}
\text{Stay, if } x_i \geq \frac{1}{2} \\
\text{Run, if } x_i < \frac{1}{2}
\end{cases} \]

There is an (essentially) unique equilibrium where both players follow this strategy.

This is true independent of the size of \(\sigma > 0 \)
Key Assumption

- When Alice observes signal x_A, she assigns probability $\frac{1}{2}$ to Bob observing a lower signal and thus probability $\frac{1}{2}$ to Bob observing a higher signal; this is true independent of x_A.

- Thus Alice faces maximal strategic uncertainty exactly when she is at the margin between the two actions.
θ is distributed with smooth density $g(\cdot)$ on the real line

Alice and Bob observe signals x_A and x_B respectively, where

- $x_A = \theta + \sigma \varepsilon_A$
- $x_B = \theta + \sigma \varepsilon_B$
- $\varepsilon_A, \varepsilon_B$ are independently distributed with smooth density $f(\cdot)$ on the real line
- $\sigma > 0$ measures the accuracy of signals
Key Assumption

If Alice observes signal \(x_A \), she assigns probability

\[
\psi_\sigma (x_A) = \operatorname{Prob}_\sigma (x_B \geq x_A | x_A)
\]

\[
= \int_{\theta = -\infty}^{\infty} g(\theta) f \left(\frac{x_A - \theta}{\sigma} \right) \left(\int_{\varepsilon_B = \frac{x_A - \theta}{\sigma}}^{\infty} f(\varepsilon_B) d\varepsilon_B \right) d\theta
\]

\[
= \int_{\theta = -\infty}^{\infty} g(\theta) f \left(\frac{x_A - \theta}{\sigma} \right) d\theta
\]
Key Assumption

As $\sigma \to 0$,

$$
\psi_\sigma(x_A) = \Pr_{\sigma}(x_B \geq x_A | x_A)
$$

$$
\rightarrow \int_{-\infty}^{\infty} f \left(\frac{x_A - \theta}{\sigma} \right) \left(\int_{\varepsilon_B = \frac{x_A - \theta}{\sigma}}^{\infty} f(\varepsilon_B) \, d\varepsilon_B \right) \, d\theta
$$

$$
= \int_{-\infty}^{\infty} f(\varepsilon_A) \left(\int_{\varepsilon_B = \varepsilon_A}^{\infty} f(\varepsilon_B) \, d\varepsilon_B \right) \, d\theta
$$

$$
= \frac{1}{2}
$$
For all $\sigma > 0$, let s^σ be an equilibrium of the σ incomplete information game. As $\sigma \to 0$,

$$s^\sigma_i(x_i) \to s^*_{i} (x_i) = \begin{cases}
\text{Stay, if } x_i \geq \frac{1}{2} \\
\text{Run, if } x_i < \frac{1}{2}
\end{cases}$$
Incomplete Information: General Distributions

In words: if information is accurate but there is not common knowledge, each player will run if and only if running is the best response to a 50/50 belief about the opponent’s action.
Many Player Binary Action Games

- Continuum of Players
- Two Actions: Stay or Run
- Payoffs depend on state of "Fundamentals" $\theta \in \mathbb{R}$
- Payoff to Running: r^*
- Payoff to Staying:
 - $\tilde{r}(\theta)$ if proportion running less than $\lambda(\theta)$
 - $\tilde{r}(\theta)$ and $\lambda(\theta)$ increasing in θ
 - 0, if the proportion running is more than $\lambda(\theta)$
Complete Information

- Suppose θ is common knowledge
- Three regions:
 1. If $\tilde{r}(\theta) < r^*$ or $\lambda(\theta) < 0$, running is strictly dominant strategy and thus "all run" is the unique Nash equilibrium
 2. If $\tilde{r}(\theta) > r^*$ and $\lambda(\theta) > 0$, staying is strictly dominant strategy and thus "all stay" is the unique Nash equilibrium
 3. Otherwise, then there are multiple Nash equilibria: "all run" and "all stay"
Incomplete Information: General Distributions

- θ is distributed with smooth density $g(\cdot)$ on the real line
- Player i observes signal $x_i = \theta + \sigma \varepsilon_i$
 - ε_i are independently distributed with smooth density $f(\cdot)$ on the real line
 - $\sigma > 0$ measures the accuracy of signals

[9x251]Incomplete Information: General Distributions

- θ is distributed with smooth density $g(\cdot)$ on the real line
- Player i observes signal $x_i = \theta + \sigma \varepsilon_i$
 - ε_i are independently distributed with smooth density $f(\cdot)$ on the real line
 - $\sigma > 0$ measures the accuracy of signals

- θ is distributed with smooth density $g(\cdot)$ on the real line
- Player i observes signal $x_i = \theta + \sigma \varepsilon_i$
 - ε_i are independently distributed with smooth density $f(\cdot)$ on the real line
 - $\sigma > 0$ measures the accuracy of signals
Laplacian Beliefs

- For small σ, there is an (essentially) unique equilibrium with each player following a threshold strategy:

$$ s_i^* (x_i) = \begin{cases}
\text{Stay, if } x_i \geq x^* \\
\text{Run, if } x_i < x^*
\end{cases} $$

- For small σ,
 - an agent observing signal x^* has a uniform belief over the proportion of other players with signals higher than x^*
 - the probability of a run is $\lambda (x^*)$
 - $\lambda (x^*) \tilde{r} (x^*) = r^*$
 - $\lambda (\theta^*) \tilde{r} (\theta^*) = r^*$
In words: if information is accurate but there is not common knowledge, a run occurs if the proportion running need to trigger a run ($\lambda (x^*)$) is less that the outside option ratio $\frac{r^*}{\tilde{r}(x^*)}$.
Liquidity versus Solvency

Christopher Cox, (then) SEC chairman, on Bear Stearns in March 2008.

“[T]he fate of Bear Stearns was the result of a lack of confidence, not a lack of capital. When the tumult began last week, and at all times until its agreement to be acquired by JP Morgan Chase during the weekend, the firm had a capital cushion well above what is required to meet supervisory standards calculated using the Basel II standard.

Specifically, even at the time of its sale on Sunday, Bear Stearns’ capital, and its broker-dealers’ capital, exceeded supervisory standards. Counterparty withdrawals and credit denials, resulting in a loss of liquidity - not inadequate capital - caused Bear’s demise.”
Liquidity versus Solvency

- An old and important distinction
- But hard to disentangle in practice
 - Did the run hasten failure of an already insolvent bank?
 - Or, did the run scupper an otherwise sound bank?
- Total credit risk is sum of risk of insolvency and risk of run
 - but the two are jointly determined
 - need to look at how they interact
 - need for a theory...
Fix a bank’s balance sheet.

- Liquid assets: A
- Short term debt: S
- Thus $\lambda (\theta) = \frac{A}{S}$
- The bank will be insolvent if $\theta + \tau \eta \leq \theta^{**}$, where $\eta \sim G (\cdot)$
- Thus if there is not a run, and r_S is the face return on short term debt, the expected return is $\bar{r} (\theta) = r_S G \left(\frac{\theta^{**} - \theta}{\tau} \right)$
- Run point θ^* solves

$$
\lambda (\theta^*) \bar{r} (\theta^*) = r^* \\
\frac{A}{S} r_S G \left(\frac{\theta^{**} - \theta^*}{\tau} \right) = r^* \\
\theta^* = \theta^{**} - \tau G^{-1} \left(\frac{r^* S}{r_S A} \right)
$$
Implications

- Comparative statics: Illiquidity risk...
 - decreases in the liquidity of the balance sheet, i.e., the "liquidity ratio" $\lambda = \frac{A}{S}$
 - decreases fastest when the level of liquidity is low
 - increases in the opportunity cost of funds, i.e., the "outside option ratio" $\frac{r^*}{r_S}$
 - increases in uncertainty about solvency τ

- Policy
 - tells when the financial stability returns of liquidity requirements are highest and lowest
Generalizations and Related Work

- Analysis extends to general games with strategic complementarities [Frankel-Morris-Pauzner 03].
- "Calvo" frictions deliver similar results [e.g., Guimaraes 04].
- Higher Order Belief Foundations [e.g., Morris-Shin 07].
- Experiments [Heinemann, Nagel and Ockenfels 04]
Conclusions

- Global Games
 - multiplicity is - to some extent - an artifact of modelling choices
 - possible to get unique theoretical prediction building on the economics of self-fulfilling beliefs
 - sensible comparative statics / policy analysis

- Illiquidity
 - theory of how coordination is resolved allows model based distinction between insolvency and illiquidity risk
 - insolvency and illiquidity risk are inextricably linked
 - nonetheless, separate policies to address illiquidity risk make sense